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INTRODUCTION

Coral reefs are systems that exhibit notably high
primary production despite being surrounded by oli-
gotrophic waters (Odum & Odum 1955). Due to the
scarcity of bioavailable nutrients, benthic organisms
such as hard and soft corals have evolved an effective
mutualistic symbiosis with single-celled dinoflagel-
lates of the genus Symbiodinium (also known as zoo-

xanthellae) for maintaining efficient uptake, recycling
and conservation of (in)organic carbon (C), phospho-
rus (P) and nitrogen (N) (Davy et al. 2012, Kopp et al.
2013, Ferrier-Pagès et al. 2016). In this biogeochemical
cycling of nutrients, N is often considered the limiting
factor that controls primary productivity (i.e. the fixa-
tion of inorganic C through photo synthesis), and is
therefore an essential macro nutrient for zooxanthellae
(Falkowski 1997, Wang & Douglas 1999). Uptake of
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ammonium by the zooxanthellae as a source of inor-
ganic N is preferred over uptake of other forms such
as nitrate (Ezzat et al. 2015). Bioavailable N is lost
when nitrifying and denitrifying bacteria act together
to transform ammonium into dinitrogen (N2), which
most organisms cannot use. However, N2-fixing pro -
karyotes, or diazotrophs, are able to restock the bio -
available N pool by converting N2 into ammonium.
Zooxanthellate corals appear to have evolved charac-
teristic associations with diazotrophs (Lema et al.
2012, 2014, Bednarz et al. 2015a), and recent research
indicates that N2 fixation can provide hard corals with
a significant portion of their daily N requirements
(Cardini et al. 2015, Benavides et al. 2016). Thus, the
association with diazotrophs may be key to their
 success in oligotrophic waters.

Besides corals, N2 fixation activity has been meas-
ured for other benthic organisms that represent
important functional groups on coral reefs (see Car-
dini et al. 2014 for a review), namely macroalgae (e.g.
Capone et al. 1977). Here, diazotrophs inhabit the
macroalgae epibiotically (e.g. Fong et al. 2006, Lach-
nit et al. 2011), often in high abundances (Maximilien
et al. 1998), and may play an important ecological
role in (a)biotic interactions with the macroalgal host
(Wahl 2008, Wahl et al. 2012). These macroalgae−
diazotroph interactions could provide the macro-
algae with otherwise unavailable nutrients and
may be essential for their competitive success. Until
recently, N2 fixation in coral reefs did not receive
much attention, and data on macroalgae−diazotroph
interactions is particularly lacking. To our knowledge
only a few studies on macroalgae-associated N2 fixa-
tion activity are available (e.g. Carpenter 1972, Head
& Carpenter 1975, Capone et al. 1977, Penhale &
Capone 1981, Hamersley et al. 2015) and some only
report N2 fixation rates from a single isolated species
of diazotroph (Carpenter 1972, Head & Carpenter
1975). These studies reported N2 fixation rates for the
genera Sargassum, Codium, Macrocystis, Laurencia,
Microdictyon, Dictyota, Padina, and Halimeda. Of
these, the latter 5 were collected from coral reefs.

Anthropogenic stressors will continue to act upon
coral reef systems in the future (Hoegh-Guldberg et
al. 2007), and may well lead to a loss of coral cover (or
recruitment) and/or an increase in (macro)algal
cover (Lapointe 1997, Hoegh-Guldberg et al. 2007,
Albright et al. 2010). This can cause a progressive
shift from coral domination towards (macro)algae
domination in what is called a phase shift (Done
1992). In this context, recent studies suggest that
ocean acidification and increased sea surface tem-
peratures as well as  eutrophication can alter diazo -

trophic communities  associated with hard corals
(Santos et al. 2014, Rä decker et al. 2015) as well as
their N2 fixation activity (Rädecker et al. 2014, Car-
dini et al. 2016a). While the coral symbiosis is highly
adapted to a low-nutrient regime, and zooxanthellae
population densities are effectively controlled by the
host by limiting nutrient availability to the algae
(Falkowski et al. 1993), macro algae are usually fast-
growing organisms that quickly capitalize on pulses
of dissolved nutrients that are otherwise rarely avail-
able (den Haan et al. 2016). In this context, N2

 fixation activity may give macroalgae an additional
competitive advantage over corals, especially in a
warming ocean (Rädecker et al. 2015) and/or in the
absence of herbivores due to overfishing (Bellwood
et al. 2006). Further studies examining the environ-
mental factors that control the activity of macroalgae-
associated diazotrophs are thus important if we want
to understand the potential mechanisms underlying
coral−algal phase shifts.

N2 fixation is dependent upon several factors such
as light, oxygen (O2) concentrations, temperature,
water flow, and availability of nutrients (Williams &
Carpenter 1998, Sohm et al. 2011, Knapp 2012, Car-
dini et al. 2014). Furthermore, seasonal differences
in N2 fixation have been observed in hard corals
(Cardini et al. 2015), soft corals (Bednarz et al.
2015a), sponges (Rix et al. 2015), turf algae (Rix et al.
2015), coral rock (Rix et al. 2015), and sediments
(Bednarz et al. 2015b), but not macroalgae. Bednarz
et al. (2015a), Cardini et al. (2015) and Rix et al.
(2015) also suggested that N2 fixation rates are corre-
lated with productivity of the associated organism,
which was especially evident during summer when
light intensity and water temperature were highest
and nutrient availability lowest. Moreover, Rix et al.
(2015) found exceptionally high N2 fixation associ-
ated with turf algae compared to values measured in
other benthic organisms such as hard corals, likely
due to a frequent association of turf algae with
cyanobacteria (e.g. Cetz-Navarro et al. 2015). A high
proportion of this fixed nitrogen is translocated to the
eukaryotic part of the turf algae assemblage (e.g.
Rhodophyta, Chlorophyta, and Phaeophyceae) and
may thus provide the turf algae with a competitive
advantage over other benthic organisms such as hard
corals.

The present study extends the current literature by
investigating (1) N2 fixation and primary production
associated with 2 common reef macroalgal genera,
i.e. Caulerpa and Lobophora, (2) whether N2 fixation
and primary production are linked, and (3) which
environmental factors drive macroalgae primary pro-
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duction and associated N2 fixation. Finally, we ex -
plore (4) how macroalgae-associated N2 fixation and
primary production compare to other key benthic
reef organisms and (5) what the biogeochemical
implications for coral−algal phase shifts could be. N2

fixation and primary production rates, for both
macroalgae and a set of key environmental para -
meters, were measured during all 4 seasons of the
year 2013 in a northern Red Sea reef. The same
methodology (acetylene reduction assay and O2

measurements, i.e. production and consumption)
and normalization parameters (species surface area)
were used as in parallel incubation experiments that
targeted different benthic reef organisms (e.g. see
Rix et al. 2015, Bednarz et al. 2015a) to facilitate com-
parison of results.

MATERIALS AND METHODS

Study site and environmental monitoring

This study was conducted in 2013 at a fringing
coral reef located within a marine reserve in front of
the Marine Science Station (MSS) at the northern
Gulf of Aqaba, Jordan (29° 27’N, 34° 58’E). The area
is characterized by strong regional seasonality re -
flected by substantial variability of environmental
key parameters throughout the year (Silverman et al.
2007, Carlson et al. 2014). In order to examine the
effect of seasonality on macroalgae-associated N2

fixation and primary production, all experiments
described below were repeated over 4 seasonal peri-
ods in 2013: February (winter), April (spring), Sep-
tember (summer), and November (autumn).

Environmental parameters were continuously re -
corded at the sampling location at 10 m water depth
over the course of the entire study period. This
included daily measurements of in situ water temper-
ature and light intensity using data loggers (Onset
HOBO Pendant UA-002-64; temperature accuracy:
±0.53°C, spectral detection range: 150 to 1200 nm)
and a quantum sensor (LI-COR LI-192SA), and
weekly collection and processing of seawater sam-
ples to quantify inorganic nutrients (dissolved inor-
ganic nitrogen [DIN = ammonium + nitrate + nitrite]
and phosphate [DIP]; fluorometrically for ammonium
or photometrically for the remaining nutrients), par-
ticulate nitrogen (PN), particulate organic carbon
(POC), and chlorophyll a (chl a; fluorometrically)
concentrations. A detailed description of the sample
and data analysis can be found in Bednarz et al.
(2015b) or Rix et al. (2015).

Algae collection and maintenance

Individual fragments (n = 8) of 2 macroalgal genera,
Caulerpa sp. and Lobophora sp. (herein referred to
as Caulerpa and Lobophora, respectively), were col-
lected during each season from the reef slope at 10 m
water depth using SCUBA. Caulerpa fragments were
carefully retrieved with their holdfasts from the sedi-
ment, while Lobophora leaves were carefully removed
from their anchoring rock. All macroalgae were trans-
ferred to an outdoor 800 l flow-through aquarium sup-
plied with seawater pumped directly from the reef at
10 m water depth (exchange rate: 4000 l h−1), thereby
providing in situ water temperature and nutrient lev-
els. Layers of netting were positioned above the tank
to adjust light levels to those measured in situ at 10 m
water depth. The algae were allowed to acclimate for
approximately 24 h before the incubations described
below were carried out in the aquarium under the
same environmental conditions.

Quantification of N2 fixation and primary
 production

A detailed description of the chamber incubation
procedure to quantify algae-associated N2 fixation
and primary production rates, as net photosynthesis
(Pnet) and dark respiration (Rdark), can be found in Bed-
narz et al. (2015a). Briefly, N2 fixation was quantified
by an adapted acetylene (C2H2) reduction technique
(Capone 1993, Wilson et al. 2012). Macroalgae were
incubated under constant stirring (600 rpm) over a full
dark−light cycle (24 h) under maximum seasonal irra-
diance (see Table 1) in 1 l chambers with the seawater
(0.8 l) and headspace (0.2 l) being 10% C2H2-
enriched. Gas samples were drawn after 0, 4, 12, 16
and 24 h, and analyzed for ethylene (C2H4) concentra-
tion using a customized reducing compound pho-
tometer (Peak Laboratories, detection limit 100 ppb).
Pnet rates were quantified via O2 production measure-
ments over 60 to 90 min between 12:00 and 14:00 h,
while Rdark incubations were conducted 1 to 2 h after
sunset in complete darkness for 90 to 120 min using a
conductivity- and temperature-corrected O2 optode
sensor (MultiLine® IDS 3430, WTW, accuracy: ±0.5%
of measured value). Macroalgae were incubated un-
der identical conditions as for N2 fixation in individual
1000 ml closed cell respirometric glass chambers. Pnet

and Rdark were calculated by subtracting the initial O2

concentration from the end concentration, and C2H4

evolution in each incubation chamber was calculated
according to Breitbarth et al. (2004). C2H4 and O2
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measurements in each incubation cham-
ber were control-corrected (unfiltered sea-
water) and normalized to incubation time
and macroalgal surface area (see van
Hoytema et al. 2016).

Statistical analysis

As not all assumptions for standard tests
(e.g. ANOVA) were met, the data were
analyzed using the non-parametric per-
mutational multivariate analysis of vari-
ance (PERMANOVA). To test for differ-
ences in parameters (N2 fixation, Pnet and
Rdark) between macroalgae genera and
seasons, 2-factor PERMA NOVAs were
performed, based on Bray Curtis similari-
ties of normalized and square-root trans-
formed data. Therefore, Type I (sequential) sum of
squares was used with permutation of residuals under
a reduced model (999 permutations), and pairwise-
tests were carried out when significant differences oc-
curred. Statistical analyses were carried out using
Primer-E version 6 software (Clarke & Gorley 2006)
with the PERMANOVA+ add on (Anderson 2001).

Correlations between N2 fixation rates, Pnet and Rdark

rates per season and across all seasons followed by cor-
relation analyses with environmental water para meters
across seasons were determined via linear regression
using Sigmaplot 12 (Systat software). Un less specified
otherwise, significance level was set at α = 0.05.

RESULTS

Seasonal variations of key environmental factors

All monitored environmental parameters exhibited
a strong seasonal pattern with maximum light inten-
sity and maximum water temperature during summer,
while inorganic nutrients (i.e. DIN and DIP) and chl a
concentration were lowest during summer (Table 1).
Conversely, winter and spring displayed the most dis-
tinct environmental parameters compared to summer,
followed by autumn (Table 1).

N2 fixation activity associated with Lobophora
and Caulerpa

Both macroalgae exhibited associated N2 fixation
during all 4 seasons indicated by high C2H4 evolu-

tion rates in algae-containing incubation chambers,
while rates in the seawater controls were negligible.
Macro algae-associated N2 fixation activity, expres -
sed per algal surface area and averaged across the
4 seasons, resulted in similar values, i.e. 0.89 ± 0.19
and 1.07 ± 0.24 nmol C2H4 cm−2 h−1 for Lobophora
and Caulerpa, respectively. In a seasonal compari-
son, Caulerpa revealed maximum N2 fixation rates
during spring and summer and lowest rates in win-
ter, followed by autumn (Fig. 1a). In contrast,
Lobophora showed significantly increased N2 fixa-
tion rates during summer (p < 0.001), while the low-
est rates were measured in winter followed by
spring and autumn (Fig. 1a).

Primary production of Lobophora and Caulerpa

Pnet and Rdark differed significantly between the 2
investigated macroalgae genera (p < 0.001). Cauler -
pa displayed higher rates than Lobophora, averag-
ing 0.900 ± 0.059 and 0.300 ± 0.015 µmol O2 cm−2

h−1 for Pnet and 0.096 ± 0.011 and 0.067 ± 0.015 µmol
O2 cm−2 h−1 for Rdark, respectively, across all seasons.
Pnet was similar in winter, spring, and summer for
both macroalgae, but decreased significantly for
both genera from summer to autumn (Fig. 1b). Pnet

was similar for autumn and winter in Caulerpa, but
similar for autumn and spring in Lobophora
(Fig. 1b). Rdark was significantly higher in Caulerpa
compared to Lobophora in all seasons except
autumn (Fig. 1c) but followed roughly the same
fluctuating pattern throughout the year for both
macroalgae.
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Environmental variable Winter Spring Summer Autumn

PAR (µmol m−2 s−1) 180 (15) 257 (9) 317 (17) 159 (18)
Temperature (°C) 23.0 (0.1) 22.8 (0.1) 27.5 (0.2) 25.2 (0.2)
DIN (µM) 1.03 (0.02) 1.02 (0.11) 0.20 (0.04) 0.43 (0.08)
Ammonium (µM) 0.32 (0.04) 0.46 (0.03) 0.14 (0.03) 0.28 (0.06)
Nitrate (µM) 0.34 (0.03) 0.44 (0.04) 0.04 (0.01) 0.13 (0.05)
Nitrite (µM) 0.37 (0.06) 0.12 (0.04) 0.02 (0.01) 0.02 (0.01)
DIP (µM) 0.11 (0.01) 0.10 (0.01) 0.04 (0.01) 0.04 (0.01)
DIN:DIP 9.59 (1.09) 10.21 (0.43) 5.31 (3.40) 11.25 (2.22)
POM (µM) 7.18 (0.70) 11.52 (1.48) 8.92 (1.23) 9.68 (0.49)
POC:PN 7.34 (0.57) 8.18 (0.59) 8.34 (0.44) 10.20 (0.51)
Chl a (µg l−1) 0.21 (0.01) 0.22 (0.02) 0.10 (0.01) 0.19 (0.02)

Table 1. Summary of key environmental water parameters monitored at
10 m  water depth during 4 seasons. PAR: photosynthetically active radia-
tion; DIN: dissolved inorganic nitrogen; DIP: dissolved inorganic phos-
phate; POM (POC + PN): particulate organic matter; POC: particulate or-
ganic carbon; PN: particulate nitrogen. Values are represented as means 

(n = 4) with SE in parentheses (from Bed-narz et al. 2015b)
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Relationships of metabolic rates and 
environmental factors

Linear regression analyses revealed a negative
relationship between N2 fixation and Pnet for Lobo -
phora during autumn (F = 23.85, r2 = 0.799, p = 0.003)
(Fig. 2d), while a positive relationship was found in
the same season for Caulerpa (F = 8.25, r2 = 0.579, p
= 0.03) (Fig. 2h). No relationships could be estab-
lished for winter, spring or summer (Fig. 2). Also, N2

fixation rates and Rdark correlated positively for
Caulerpa during spring (F = 7.81, r2 = 0.566, p = 0.03;
data not shown), while no other correlations for Rdark

were found. A positive relationship was found be -
tween N2 fixation rates and Pnet for Caulerpa across
all seasons, while no such relationship was found for
Lobophora. However, the positive relationship was
mainly due to 2 high values, so that no relationship
was found when these 2 values were excluded.

In response to environmental parameters, positive
relationships were revealed for Lobophora-associ-
ated N2 fixation for temperature and irradiance,
while negative relationships were found for DIN and
DIP (Table 2). For Caulerpa-associated N2 fixation,
linear regression analysis revealed a significant posi-
tive relationship only with irradiance (Table 2). No
relationships were found for Pnet with any environ-
mental parameters for both macroalgae (Table 2). In
addition, a positive relationship was found for Rdark

and DIP availability in Caulerpa, while no relation-
ships were found for Rdark in Lobophora (Table 2).

DISCUSSION

Macroalgae-associated N2 fixation and primary
production

Previous studies reported macroalgae−diazotroph
interactions for pelagic and benthic red, brown, and
green macroalgae from temperate seas and tropical
coral reefs as a ubiquitous and important physiologi-
cal symbiosis (Carpenter 1972, Head & Carpenter
1975, Penhale & Capone 1981). In some of these stud-
ies, a single diazotroph species was isolated and
tested for N2 fixation rates (Carpenter 1972, Head &
Carpenter 1975). Here, N2 fixation rates and primary
production associated with the whole consortium of 2
coral reef macroalgal holobionts are reported, i.e. the
eukaryotic host and its associated diazotrophic com-
munity.

The present study found no differences in annual
averaged N2 fixation between the 2 macroalgae, i.e.
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Fig. 1. (a) N2 fixation, (b) net photosynthesis (Pnet), and (c)
dark respiration (Rdark) associated with the 2 macroalgae
(Caulerpa and Lobophora) measured during 4 different sea-
sons (winter, spring, summer, autumn). Values are given as
mean ± SE (n = 8). The significant factor (M = macroalgae, S
= season, M × S = interaction) is displayed for each para -
meter. Significant differences between the macroalgae dur-
ing each season are indicated by *p < 0.05, **p < 0.01, ***p <
0.001. Different letters indicate significant differences within
each macroalga per parameter between the seasons (Lobo -
phora: a, b, c; Caulerpa: w, x, y, z), based on pair-wise 

PERMANOVA analysis
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Caulerpa and Lobophora, suggesting similar yearly
activity of the diazotrophic community. To the best of
our knowledge, this is the first study to normalize N2

fixation activity to macroalgal surface area, whereas
previous studies normalized to dry weight of the
macroalgae (e.g. Carpenter 1972, Hamersley et al.
2015), making comparisons challenging. However,
when comparing dry weight normalized N2 fixation
rates of brown and green algae, Capone et al. (1977)
also found similar N2 fixation rates between the
green alga Halimeda and brown alga Padina, while
in the same study, they found that the green alga
Microdictyon and brown alga Dictyota were also

similar to each other but had 5 to 10 times higher
rates. Thus, rates observed here may not necessarily
be representative for other green and brown algae
found in the northern Red Sea.

In contrast, primary production differed between
the macroalgal genera. This may be due to different
preferred light regimes necessary for green and brown
algae since they have evolved associations with dif-
ferent pigments that allow for optimal photosynthesis
at different depths (Fong & Paul 2011) and thus
caused by a natural physiological boundary. Further-
more, morphological differences between both gen-
era could also explain these differences. Algae such
as Caulerpa with a more complex or filamentous
morphology have improved uptake of nutrients due
to their surface area:volume ratio and can therefore
exhibit higher primary production rates (Rosenberg
& Ramus 1984, Gacia et al. 1996). Furthermore,
Lobophora may favor protection from herbi vores
over higher primary production. High up take of N
and subsequent high primary production may come
at the expense of anti-herbivory strategies as high N
uptake is negatively correlated with the production
of phlorotannins (Arnold et al. 1995).

Relationship between N2 fixation and primary
production

Related studies using similar methods at the same
location in the Red Sea found positive correlations
between N2 fixation and parameters of primary pro-
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Irradiance Temperature DIN DIP

Caulerpa
N2 fixation 0.216* 0.015 0.011 0.011
Pnet 0.041 0.024 0.051 0.080
Rdark 0.059 0.121 0.167*

Lobophora
N2 fixation 0.472*** 0.656*** 0.517*** 0.347***
Pnet 0.034 0.005 0.031 0.085
Rdark 0.013 0.031 0.045

Table 2. Linear regression analysis (r2 values) for N2 fixation
(nmol C2H4 cm−2 h−1), net photosynthesis (Pnet; μmol O2 cm−2

h−1) and dark respiration (Rdark; μmol O2 cm−2 h−1) rates of 2
macroalgae, Caulerpa and Lobophora, and 4 different envi-
ronmental water parameters, irradiance, temperature, dis-
solved inorganic nitrogen (DIN), and dissolved inorganic
phosphorous (DIP). Bold values indicate significant positive
relationships, and italicized values indicate significant 

negative relationships. *p < 0.05, ***p < 0.001

Fig. 2. Seasonal relationships between N2 fixation and net primary productivity (Pnet) for Lobophora for (a) winter, (b) spring,
(c) summer, and (d) autumn, and Caulerpa for (e) winter, (f) spring, (g) summer, and (h) autumn (n = 6 to 8). Best-fit linear
 regression lines: (——) significant relationship was established; (– – –) not significant; (·········) ± 95% confidence intervals. 

Note the different values of all x-axes
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duction (i.e. Pnet, gross photosynthesis and/or Rdark) of
the associated benthic organism (Bednarz et al.
2015a, Cardini et al. 2015, Rix et al. 2015). In this
study, in a seasonal comparison, both N2 fixation and
Pnet declined for both macroalgae during the transi-
tion from summer to autumn. Indeed, linear regres-
sion confirmed a relationship between the 2 proces -
ses during autumn for both macroalgae. Although
the energy-demanding process of N2 fixation is high -
ly dependent on photosynthesis as an energy source
(Mortenson 1964), the correlation in Lobophora was
negative. This may suggest, for this algal species, a
diazotrophic community dominated by non-hetero-
cystous diazotrophs that cannot fix N2 when oxygen
is produced as a byproduct of photosynthesis (Dug-
dale et al. 1964, Carpenter 1972). In contrast, Cau -
lerpa revealed a positive relationship between N2

 fixation and Pnet, suggesting the presence of either
heterocystous cyanobacteria, or diazotrophs with
other mechanisms in place to protect the nitrogenase
enzyme from oxygen inhibition. Despite the strong
decline of N2 fixation rates for Caulerpa from summer
to autumn, the significant drop in Pnet was not as
strong as expected. This may be due to ambient DIN
concentrations increasing during autumn. The DIN:
DIP ratio remained below the 16:1 Redfield ratio,
indicating that N remained the limiting nutrient in all
seasons. This suggests that the combined concen -
trations of ambient DIN and bioavailable N provided
by the diazotrophic community are responsible for
maintaining fairly stable primary production rates in
Caulerpa (Capone 1996, O’Neil & Capone 2008). In
addition, Rdark correlated with N2 fixation rates for
Caulerpa during spring when N2 fixation rates were
high, while no correlations were found for Lobo -
phora. For Caulerpa, Rdark declined significantly from
spring to summer while N2 fixation rates remained
similar. In contrast, Rdark for Lobophora remained sta-
ble from spring to summer, while N2 fixation rates
increased dramatically in summer. This suggests
either differences in diazotrophic activity or commu-
nity structure between seasons for both macroalgae.

Seasonal patterns in N2 fixation and primary
production

Macroalgae-associated N2 fixation rates revealed
high sensitivity to seasonally changing environmen-
tal conditions, whereas the net primary productivity
of the macroalgae exhibited only very minimal sea-
sonal change. The overall N2 fixation rate pattern of
Lobophora revealed highest N2 fixation rates during

summer when irradiance and ambient water temper-
ature were highest and nutrient availability (DIN and
DIP) lowest. This was further substantiated by linear
regression as a correlation was found for each of
these parameters. Head & Carpenter (1975) also
found a positive correlation between N2 fixation rates
and light intensity in the green macroalga Codium
fragile. They also reported reduced primary produc-
tion and N2 fixation rates in shaded conditions. Here,
N2 fixation rates were positively correlated with irra-
diance, while no correlation was found for primary
production. Thus, light intensity may have been sat-
urating throughout the year for primary production
(Franklin et al. 1996). Substantially lower rates of N2

fixation were found during winter, spring and au -
tumn when nutrient availability was higher. Indeed,
N2 fixation rates are likely to be affected by availabil-
ity of DIN in particular (Head & Carpenter 1975,
Knapp 2012). While our results report relationships
on the scale of a single genus, the same patterns can
be found on the community level. Overall community
rates of benthic N2 fixation appear to be strongly
affected by seasonality, while primary production
remains fairly similar (Cardini et al. 2016b). More-
over, this characteristic is not limited to salt water
systems, as this has also been observed in oligo -
trophic Arctic freshwater lakes (Gettel et al. 2013).
Interestingly, like in the present study, Gettel et al.
(2013) also found that primary production remained
fairly similar under different N2 fixation rates. Thus,
it is most likely that N2 fixation rates in Lobophora
used in this study were primarily regulated by nutri-
ent availability and temperature, which can also
have a positive effect on the nitrogenase enzyme
(Cardini et al. 2014).

The observed pattern of N2 fixation for Caulerpa
was similar to Lobophora with the exception of the
spring season. In Caulerpa, highest N2 fixation rates
were found in spring and in summer. Moreover, like
Lobophora, a positive correlation between N2 fixation
and irradiance was found for Caulerpa. However, N2

fixation rates during spring were not significantly dif-
ferent from summer, when irradiance was highest,
and autumn, when irradiance was at its lowest. It is
likely that the high variability during spring con-
founded the data, causing a lack of correlation for all
other parameters. This may have been caused by
physiological differences between the sampled tissues
of the macroalgal genotypes, due to age of the blades
(Perkins et al. 2016), or the presence/absence of hete-
rocystous diazotrophs. Moreover, this high variability
may also be explained by inhibition of nitrogenase ac-
tivity due to the presence of a higher ammonium con-
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centration (Sohm et al. 2011), while at the same time
nitrogenase activity may be increased due to higher
water temperatures and irradiance (Cardini et al.
2014). This observed pattern disparity between Cau -
lerpa and Lobophora suggests that diazo trophic com-
munities may differ interspecifically while the high
variability in spring for Caulerpa even suggests large
intraspecific differences (sensu Barott et al. 2011).

The seasonal pattern of N2 fixation rates observed
for Lobophora show a striking similarity to the one
observed for coral rock investigated in parallel (Rix et
al. 2015), including the apparent discrepancy during
spring. Interestingly, the pattern observed for Cau -
lerpa was similar to the one observed for carbonate
sand investigated in parallel (Bednarz et al. 2015b).
Both macroalgae were sampled from these respec-
tive substrates. Linear regression analysis, using
mean N2 fixation rates (±SE) per season from coral
rock (data taken from Rix et al. 2015) and carbonate
sand (data taken from Bednarz et al. 2015b) com-
pared to N2 fixation rates for both macroalgae meas-
ured in this study, shows a clear significant correla-
tion (r2 = 0.8748; p < 0.001) (Fig. 3). This strongly
suggests that the diazotrophic community structures
of both macroalgae are similar to their associated
substrate (sensu Dobretsov et al. 2006).

The apparent (synergistic) links of temperature,
light, and nutrient availability with N2 fixation rates
reported here highlight the complexity of eukaryote−
diazotroph (macroalgal holobiont) interactions with
their environment, even within a single functional
group (i.e. macroalgae) or a single species/genus.
Identification, relative abundance, and activity meas-
urements of the total microbial and diazotrophic
community, and also for the macroalgae-associated
substrates, may shed some light on observed N2 fixa-
tion patterns during all 4 seasons.

Comparison with parallel investigated organisms

The yearly macroalgae-associated N2 fixation rates
reported in the present study (9.56 ± 3.95 and 7.81 ±
4.03 µmol C2H4 cm−2 yr−1 for Caulerpa and Lobo -
phora, respectively) were higher compared to hard
and soft corals investigated in parallel (Table 3). N2

fixation rates were lowest for Xeniidae at 0.18 ±
0.12 µmol C2H4 cm−2 yr−1 and highest for Goniastrea
sp. (now Coelastrea sp.; Huang et al. 2014) at 2.14 ±
1.03 µmol C2H4 cm−2 yr−1 (Table 3), resulting in 9 and
up to 53 times higher N2 fixation rates in the investi-
gated macroalgae. These differences could be attrib-
uted to abundances, community structure, and/or
metabolism of diazotrophs associated with each
organism (Barott et al. 2011). Overall, primary pro-
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Reef organism N fixation activity Net primary production Reference
(μmol C2H4 cm−2 yr−1) (mmol O2 cm−2 yr−1)

Green alga Caulerpa sp. 9.56 ± 3.95 7.88 ± 1.44 This study
Brown alga Lobophora sp. 7.81 ± 4.03 2.63 ± 0.37 This study
Hard coral Acropora sp. 0.91 ± 0.73 5.03 ± 0.66 Cardini et al. (2015)
Hard coral Pocillopora sp. 1.07 ± 0.44 4.54 ± 0.81 Cardini et al. (2015)
Hard coral Stylophora sp. 1.38 ± 0.67 4.21 ± 0.93 Cardini et al. (2015)
Hard coral Goniastrea sp. 2.14 ± 1.03 5.38 ± 0.74 Cardini et al. (2015)
Soft coral Xeniidae 0.18 ± 0.12 3.43 ± 0.50 Bednarz et al. (2015a)
Soft coral Sarcophyton sp. 0.52 ± 0.24 1.86 ± 0.71 Bednarz et al. (2015a)
Sponge Mycale sp. 1.72 ± 1.07 −2.10 ± 0.65 Rix et al. (2015)
Turf algae 40.09 ± 19.35 4.59 ± 0.91 Rix et al. (2015)

Table 3. Comparison of N2 fixation activity and net primary production associated with different benthic coral reef organisms 
from the northern Red Sea. The mean value of each season was used to calculate the annual average (mean ± SE, n = 4)

Fig. 3. Linear regression analysis of N2 fixation rates of
macroalgae (Lobophora and Caulerpa) and their associated
substrate (coral rock and carbonate sand) throughout the
year. Substrate data combines coral rock data from Rix et al.
(2015) and carbonate sand data from Bednarz et al. (2015b). 

Values are given as mean ± SE
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duction rates of all benthic organisms compared by
this study were relatively similar (Table 3). However,
in corals, large quantities of photosynthetic products
(dissolved organic carbon [DOC]) are transferred to
the coral host (e.g. Muscatine 1973, Muscatine &
Porter 1977). Thus, less DOC may be available for the
coral-associated microbial community. Macroalgae
can release considerably higher proportions of DOC
compared to corals (Haas et al. 2013), which could be
particularly beneficial as an energy source for (epibi-
otic) heterotrophic microbes. Furthermore, because
of its composition, DOC released by macroalgae can
cause considerably higher growth of microbes com-
pared to DOC released by corals (Nelson et al. 2013).
At the same time, epibiotic diazotrophs on macro-
algae are usually exposed to good light conditions
that may provide an optimal light regime for photo-
synthetic diazotrophs, including cyanobacteria (Ba -
rott et al. 2011). Thus, we suggest that macroalgae
are a more favorable host for diazotrophs compared
to corals, providing optimal conditions for both
 heterotrophic (algae-derived DOC as energy source)
and autotrophic (light as energy source) species.

N2 fixation rates presented in this study were lower
compared to turf algae investigated in parallel, which
had N2 fixation rates of 40.09 ± 19.35 µmol C2H4 cm−2

yr−1, while rates for the macroalgae were up to 5 times
lower (Table 3). This could be explained by (a combi-
nation of) 2 reasons. Firstly, these differences could
be attributed to turf algae assemblage structure and
characteristics, such as high turnover and opportunis-
tic growth dynamics (Littler et al. 2006, Littler & Littler
2013). Given these life-history traits, it is not unlikely
that the diazotrophic part of the turf algae assemblage
displays similar characteristics, i.e. fast growth and
high activity to provide bio available N to facilitate
growth of the assemblage. Secondly, even though Pnet

rates found in this study are relatively similar to those
in turf algae, release of organic matter in the form of
DOC is considerably higher in turf algae (compared to
macroalgae) and also subject to seasonality (Haas et
al. 2010). Surprisingly, Haas et al. (2010) reported
lowest DOC release rates during summer, while the
N2 fixation rates reported by Rix et al. (2015) were
highest during summer. Besides eukaryotic algae, turf
algae assemblages may consist of high numbers of fil-
amentous cyanobacteria (den Haan et al. 2014). How-
ever, high abundances of heterotrophs can be found
in these cyanobacterial mats (Zehr et al. 1995). Thus,
instead of being released in the water column, it is
likely that released DOC is rapidly utilized by the
 microbial community (and thus not measurable), pro-
viding energy for N2 fixation.

Implications for coral−algal phase shifts

With sea surface temperatures expected to exceed
coral temperature thresholds more often in the future
(Hoegh-Guldberg et al. 2007), following the potential
subsequent mass mortality of corals due to bleach-
ing, phase shifts from coral- to algae-dominated reefs
are more likely to occur. Moreover, recent research
has revealed that benthic algae, such as Lobophora,
can rapidly utilize excess nutrients from terrestrial
run-off and thrive under these conditions (den Haan
et al. 2016), while corals, depending on the type of
eutrophication, possess reduced resilience (Wieden-
mann et al. 2012, Vega Thurber et al. 2014). Thus,
eutrophication can result in the loss of coral cover
and give rise to potential spaces for (macro)algae to
grow. Also, following disturbances, (macro)algae can
rapidly colonize new territory (Hughes 1994), possi-
bly facilitated by higher N2 fixation rates compared
to e.g. hard corals. Lobophora in particular can oc -
cupy substrates otherwise available for coral recruits
(Kuffner et al. 2006) and can cause coral mortality by
shading (Box & Mumby 2007). This study and that of
Rix et al. (2015) reveal that N2 fixation rates in macro-
algae, as well as turf algae, were significantly higher
than those measured in corals investigated in paral-
lel, while their primary production was similar
(Table 3). The high variability of N2 fixation rates
observed in turf algae assemblages (Rix et al. 2015)
makes it difficult to determine whether they are able
to outcompete the macroalgae investigated in the
present study. Thus, a qualified statement on com -
petition between turf and macroalgae cannot be
made.

N2 fixation rates appeared to be affected by DIN
with lower diazotrophic activity under less oligo -
trophic conditions. These findings indicate that
warming- induced phase shifts from corals to (macro)
algae could result in increased diazotrophic-driven
import of N in tropical shallow coastal environments.
In perspective, this may suggest that ocean warming
and a subsequent increase in the input of fixed N by
diazotrophs could result in phase shifts even in the
absence of anthropogenic eutrophication. In addi-
tion, this input of fixed N could potentially facilitate
an increase in DOC release by turf algae (Mueller et
al. 2016), creating a positive feedback loop that can
be detrimental to coral health status (Bourne et al.
2009, Haas et al. 2010, Rädecker et al. 2015). Al -
though increased ammonium concentrations down-
regulate N2 fixation activity during and after a phase
shift, diazotrophs may act as an important trigger for
changing the ecosystem.
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In conclusion, while both climate change-related
stressors and eutrophication can cause phase shifts,
the results presented here indicate that the type of
disturbance is likely to influence N2 fixation rates
 differently. Whereas increased sea surface tempera-
tures (partly) correlated with increased N2 fixation
rates, so did declining ambient DIN availability. The
apparent role of DIN in the N2 fixation rates reported
here and in related literature suggest that input of N
from allochthonous sources may cause N2 fixation to
become an obsolete biological mechanism for pro-
ducing bioavailable N, and also for macroalgae
 during phase shifts. Our study further suggests that
ocean warming may be accompanied by higher
diazo troph activity associated with macroalgae, but
only while oligotrophic conditions persist.
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