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INTRODUCTION

In naturally dynamic systems such as estuaries,
species are adapted to changing environmental con-
ditions (Elliott & Whitfield 2011). Estuaries experience
tidal and seasonal changes that lead to dramatic
changes in salinity and temperature which fish spe-
cies are able to survive by means of physiological and

morphological adaptations (Cognetti & Maltagliati
2000, Elliott & Quintino 2007). While euryhaline spe-
cies are adapted to tidal and seasonal salinity fluctua-
tions, their response to greater temporal and spatial
salinity changes due to climate change is unknown.

Climate change is expected to directly increase the
variability and duration of changes in salinity, affect-
ing the availability of suitable habitat for different spe-
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cies (e.g. Robins et al. 2016). Extreme changes in salin-
ity from intense precipitation and storm events have
been predicted for the mid-Atlantic region of North
America (Najjar et al. 2000). Other coastal ma rine eco-
systems are already showing effects of low salinity due
to freshwater inflow from flood events associated with
snowmelt or rain events (H. Huang et al. 2014, W.
Huang et al. 2014). In addition, long-term changes
related to sea-level rises are anticipated to result in
saltwater encroachment in coastal areas, including
salt water intrusion into freshwater aquifers further up -
stream (Werner & Simmons 2009, Hong & Shen 2012).

There may also be indirect effects of environmental
changes to fish assemblages due to changes in water
quality and the quality and quantity of fish habitat,
such as eelgrass beds (Zostera marina). Eelgrass is
particularly sensitive to salinity, with its niche of opti-
mal salinity ranging between 20 and 26; however,
salinity between 5 and 35 and even freshwater can be
tolerated for brief periods (DFO 2009). Additionally,
increases in magnitude and frequency of high (30°C)
water temperature events increase the mortality of
eelgrass in temperate estuaries, potentially past the
point of recovery (Carr et al. 2012). Eelgrass beds pro-
vide structured habitat used by various invertebrate
and fish species as spawning, nursery, and foraging
grounds (Heck et al. 1995, DFO 2009). Thus, reducing
the size and number of eelgrass beds due to un-
favourable salinity and temperature con ditions would
indirectly affect fish communities by reducing prey
abundance (i.e. invertebrates) and fish habitat
(Boström & Bonsdorff 1997, Namba et al. 2018).

Fish community composition changes over space
and time can be quantified using beta diversity
(Whittaker 1972, Baselga 2010). Beta diversity can be
partitioned as nestedness or turnover components
(Baselga 2010). Nestedness can be used to describe
species loss or compare species richness (Baselga
2010, Legendre 2014). Species turnover, also known
as species replacement, along spatial and temporal
gradients can be used to identify locations associated
with greater environmental change (Baselga 2010).
For example, these environmental gradients could be
present in estuaries through salinity and temperature
changes over space and time. Environmental pro-
cesses, therefore, play a major role in turnover of fish
assemblages in estuaries (Henriques et al. 2017).

Spatial gradients in salinity occur along estuaries
due to freshwater input from watersheds upstream
mixing with saltwater from the ocean. Salinity gradi-
ents and the effect on species assemblages have
been assessed in large temperate estuaries with well-
defined gradients, such as Chesapeake Bay, USA

(e.g. Jung & Houde 2003), the Severn, UK (e.g. Potter
et al. 1986), and the Gironde, France (e.g. Pasquaud
et al. 2012), as well as smaller estuaries such as those
along the European Atlantic coast (e.g. Nicolas et al.
2010). In larger estuarine systems, spatial turnover of
species communities is evident due to the defined
salinity gradient (e.g. Wagner 1999, Martino & Able
2003, Giberto et al. 2007). Anthropogenic bathymet-
ric changes to smaller estuaries have been shown to
alter tides (e.g. Winterwerp et al. 2013). In smaller
watersheds, the salinity gradient could be more sen-
sitive to sudden changes from intense weather
events and sea-level rise over a smaller area, but the
extent of this effect is unknown. In fact, predicted cli-
mate change in eastern Canada is expected to impact
all estuaries in the region with salinity and tempera-
ture changes (Zhang et al. 2000, Swansburg et al.
2004), and thus it is critical to determine the current
structure of fish communities across smaller estuaries.

Here, our objective is to determine how fish com-
munities in small, temperate estuaries are structured
by environmental gradients over space and time in
summer to facilitate predictions of changes that may
be expected with climate change. We first deter-
mined how nektonic fish beta diversity varied with
environmental changes over time from June to
August 2005 to 2012 across a region of estuaries in
the southern Gulf of Saint Lawrence, Canada. Sec-
ond, we assessed which environmental variables are
associated with beta diversity changes over space
and time. Such analyses will provide a baseline of
current fish community structure against which the
effects of climate change may be detected.

MATERIALS AND METHODS

Study area

Our study comprised 7 temperate estuaries along
the eastern coast of New Brunswick in the Northum-
berland Strait region of the southern Gulf of Saint
Lawrence, Canada (46.1−47.8° N, 63.8−65.0°W; Fig. 1).
The associated watersheds of the estuaries ranged
from 150 to 510 km2. Substrates in these estuaries are
generally sand and mud and the predominant macro-
phyte is eelgrass Zostera marina.

Sampling

We used fish and environmental data collected from
the Community Aquatic Monitoring Program (CAMP),
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which is coordinated by the Southern Gulf of St.
Lawrence Coalition on Sustainability and Fisheries
and Oceans Canada (Weldon et al. 2005). Adult fish
sampled once monthly in June−August 2005− 2012 by
beach seine (30 × 2 m; 6 mm mesh) were enumerated
by species at 6 fixed sampling stations within each es-
tuary (Table S1 in Supplement 1 at www. int-res. com/
articles/ suppl/ m603 p161_ supp. pdf). Fish communities
at each station were summarized by the annual aver-
age catch of all months. Sampling stations were cho-
sen within comparable estuaries but stations them-
selves varied in nature so as to span a range of
en vironmental gradients and macrophyte vegetation.
Given that each location is different in terms of bathy -
metry, the target sampling area en compassed a 15 ×
15 m block bordering the shore with 1 sample each

month per station. Species were coun -
ted in a live box submerged in water
and then released back into the estuary.
Eelgrass coverage at each sample loca-
tion was estimated using a 50 × 50 cm
quadrat thrown randomly 3 times
within the area seined. Eelgrass cover-
age is a score ranging from 0 to 5 from
the quadrat sampling, with 0 as none
and 5 indicating full coverage. At each
station, water temperature, dis solved
oxygen, and salinity were recorded us-
ing a port able meter (YSI Meter Model
85) at one-half to two-thirds of the
depth down from the  water surface and
ca. 7 m from shore in the beach seine
area. Tidal stage during a sampling
event was recor ded and 5 levels distin-
guished: high tide, incoming, mid-tide,
outgoing, or low tide.

Beta diversity

Beta diversity is a measure used to
compare variations in species composi-
tion over space and time as species
nestedness or species turnover (Ba sel -
ga 2010). Using species turnover (re-
placement), we partitioned total spatial
beta diversity in 2 ways (Le gendre &
De Cáceres 2013). First, spatial beta
 diversity was calculated based on the
local contribution to be ta diversity
(LCBD) index that as sesses which sta-
tions contribute the most to spatial beta
diversity among all 42 stations (7 estu-

aries and 6 stations per estuary) using the overall av-
erage abundance of species from 2005 to 2012. LCBD
represents the uniqueness of community composition
in sampling stations across the sampling region (Le-
gendre & De Cáceres 2013). LCBD was then calcu-
lated over the 42 stations for each year separately.
Second, species that contribute the most to spatial
beta diversity each year can be assessed using the
species contribution to beta diversity (SCBD; Le -
gendre & De Cáceres 2013). Before running the
analyses for LCBD and SCBD, we applied a Hellin -
ger transformation to the abundance data so that
beta diversity values could be computed (Legendre &
De Cáceres 2013). Temporal turnover was measured
using the Sørensen pairwise beta diversity (β-Søren -
sen; Baselga 2010) index comparing year-to-year
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Fig. 1. Study area and sampling stations (n = 42 stations) for the 7 estuaries 
and associated watersheds in New Brunswick (Canada)
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turnover considering all the 42 sampling stations, for
each sampling station from 2005 to 2012.

Relationship of beta diversity to environmental
conditions

We determined periods of significant environmen-
tal change during our study period from 2005 to 2012.
Significantly different years of salinity, water temper-
ature, and dissolved oxygen were assessed using
ANOVA. We further investigated the potential effect
of the tidal cycle on salinity for each year associated
with the timing of sampling during tides by per -
forming a 2-way ANOVA (factors are tidal stage:
high tide, incoming, mid-tide, outgoing, low tide; and
year). Significant year-to-year differences in the
amount of eelgrass coverage were not calculated as
this was based on random quadrats rather than re -
sampled quadrats.

We assessed which environmental variables as
predictors affect beta diversity (spatial turnover re-
sponse variable is LCBD and temporal turnover is β-
Sørensen where each sample in the data matrix is
1 site in 1 year) in our study using generalized linear
mixed models (GLMMs) with Gaussian error distri-
bution due to the normal distribution of data. Nor-
mality was verified with Q-Q plots and collinearity
between environmental variables was checked with
a Pearson correlation matrix. To model temporal
turnover in species composition (here measured with
β-Sørensen between consecutive years), we built 2
alternative models with the current year (current
env.) and the previous year (lag env.) as predictor
variables. We were interested in determining which
year of the turnover difference had a greater influ-
ence on species composition changes over time. The
current year of environmental condition (current
env.) refers to the end of each year-to-year turnover,
whereas the time lag refers to the beginning of each
year-to-year turnover (lag env.). Overall, the current
year of environmental condition refers to the time
 period from 2006 to 2012 and the lag year of environ-
mental condition refers to the time period from
2005 to 2011. Fixed factors were environmental and
habitat variables such as salinity, dissolved oxygen,
temperature, and eelgrass coverage. We further ana-
lyzed within-year variability at each station by deter-
mining the interquartile ranges (IQR) for environ-
mental condition as a fixed factor. Each estuary had
variable levels of fluctuations of salinity from 2005 to
2012 (Fig. S1 in Supplement 2). Estuaries of the sam-
pling stations were treated as random factors to ac-

count for the potential spatial effect of a group of sta-
tions within the same estuary on the response vari-
able. From a full model containing all of the fixed
 factors, we constructed reduced models with all pos-
sible combinations of the variables based on Akaike’s
information criterion (AIC; Burnham & Anderson
2002). We compared the full model with the reduced
model using a chi-squared test. We performed boot-
strapping of the best reduced models with 200 repli-
cations to determine the 95% confidence intervals
(CI) of fixed factors. If the 95% CI did not overlap
with 0, then the fixed factor was considered to have a
significant effect on the res ponse variable. R2 values
were calculated to determine the variance explained
by the best reduced model based on the methods de-
scribed in Nakagawa & Schielzeth (2013). We then
calculated R2

GLMM(m), which is the marginal R2 per-
taining to the variance explained by fixed factors,
and R2

GLMM(c), which is the conditional R2 pertaining
to the variance explained by both fixed and random
factors (Nakagawa & Schielzeth 2013).

We assessed which environmental variables as
predictors affect SCBD with each entry in the data
matrix as each year using generalized linear models
(GLMs) for Gaussian (normal) data. We checked for
normality and removed predictors that are collinear,
which reduced it to 4 predictor variables: dissolved
oxygen, dissolved oxygen IQR, salinity IQR, and tem-
perature IQR. To model SCBD each year, we built 2
alternative models with the current year (current
env.) and the previous year (lag env.) as predictor
variables. The current year of environmental condi-
tion spans from 2006 to 2012. The previous year of
environmental condition spans from 2005 to 2011.
Due to small sample sizes, we compared models with
AIC corrected for small sample sizes (AICc; Burnham
& Anderson 2002).

All analyses were performed using the program R,
version 3.1.0 (R Core Team 2014). We partitioned
beta diversity into turnover using the betapart pack-
age in R (Baselga et al. 2013). We analyzed LCBD
and SCBD values using the beta.div package from
Legendre & De Cáceres (2013). GLMMs were con-
structed using the lme4 package from Bates et al.
(2015).

RESULTS

Fish species

The CAMP detected 26 species of adult fish across
the 7 focal estuaries (Table S1 in Supplement 1).
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Over all months (June, July, August) and years (the 8
years 2005−2012) sampled, the number of species
ranged from 6 to 17 per sampling station.

Environmental condition

Water temperature varied from a minimum of
15.8°C to maximum 27.3°C from 2005 to 2012
(Fig. 2a). The lowest water temperature was re -
corded in Jourimain and the highest was in Cocagne,
both in 2005. Water temperature varied significantly
across 2005 to 2012 (F7,328 = 11.4, p < 0.001; Fig. 2a),
with a significant decrease from 2007 to 2008 (p <
0.001; Fig. 2a). There was a significant increase in
water temperature from 2009 to 2010, followed by a
significant decrease from 2010 to 2011, and finally a
significant increase from 2011 to 2012 (all p < 0.001;
Fig. 2a). Within-year variability of water temperature
IQR at each station differed between 2005 and 2012
within the 42 stations (F7,328 = 8.2, p < 0.001), with
2010 to 2011 being the only 2 consecutive years that
showed a significant difference (p < 0.001).

Annual mean salinity fluctuated from a minimum
of 5.4 to maximum 28.6 from 2005 to 2012 (Fig. 2b).
The lowest salinity was recorded in Saint-Louis-de-
Kent in 2011, in contrast to the highest salinity in
Lamèque during 2010 (Fig. S1 in Supplement 2). Sig-
nificant variation occurred for salinity across 2005 to
2012 (F7,328 = 4.3, p < 0.001; Fig. 2b). Recorded salin-
ity dropped significantly from 2007 to 2008 and 2010

to 2011, and increased from 2011 to 2012 (all, p <
0.001; Fig. 2b). Salinity IQR varied significantly
across 2005 to 2012 (F7,328 = 5.5, p < 0.001), although
only marginally from 2007 to 2008 (p = 0.056). We
found that there was a significant effect of the tidal
cycle (5 levels as defined in ‘Materials and methods’)
on salinity during the 8 sampling years (2005 to 2012)
using a 2-way ANOVA (F23,765 = 3.437, p < 0.001; in
some years, sampling did not always occur during a
specific tidal cycle). Furthermore, although there was
a significant effect based on the sampling done dur-
ing a specific tidal cycle, a post hoc analysis of this
interaction was only significantly different from 2005
to 2006 (Tukey post hoc test: p < 0.001). Therefore,
the majority of years, with the exception of 2005 to
2006, were sampled across all tidal cycles to capture
the environmental change in salinity.

Dissolved oxygen varied from 2.8 to 12.7 mg l−1

(Fig. 2c). Dissolved oxygen varied significantly
across 2005 to 2012 (F7,328 = 10.3, p < 0.001; Fig. 2c),
whereby 2006 was significantly lower than 2007 (p <
0.001) and 2011 was significantly higher than 2012
(p < 0.001; Fig. 2c). The lowest levels of dissolved
oxygen were found in Lamèque during 2005, and the
highest levels were found in Bouctouche during
2008. Dissolved oxygen IQR varied significantly from
2005 to 2012 (F7,328 = 2.8, p = 0.007), with 2011 to
2012 being the only 2 consecutive years that showed
a significant difference (p = 0.003).

Between 2005 and 2012 eelgrass was absent (i.e. it
had an annual average score of 0) in a total of 113
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Fig. 2. Boxplot of water temperature, salinity, dissolved oxygen, and eelgrass coverage within stations in the 7 focal estuaries
(n = 42 stations each year) from June to August of 2005 to 2012. Box: interquartile range (IQR), vertical bars: minimum and
maximum; horizontal line within the box: median. Outliers (circles) are 1.5 × IQR. Eelgrass coverage is a score (0−5) from the 

quadrat sampling, with 5 indicating full coverage
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observations at 39 stations within the 7 estuaries
(Fig. 2d). The maximum annual average score for
eelgrass coverage was 3.25 at Caraquet in 2006.

Spatial beta diversity

LCBD values measured across all years ranged
from 0.005 to 0.0418, and we found 4 sampling sta-
tions that had significant LCBD values (Fig. 3). These
significantly different sites were found within the

estuaries of Saint-Louis-de-Kent and Cape Jouri-
main. When the LCBD was calculated each year from
2005 to 2012 for the 42 stations, stations in Jourimain
contributed to beta diversity every year (Fig. S2 in
Supplement 3).

We found 6 species contributing greater than the
overall mean beta diversity (SCBD) value (0.037;
Table 1) considering all years from 2005 to 2012.
SCBD values ranged from 0 to 0.227 (Table 1). Four
species contributed greater than the mean beta
diversity across all stations obtained considering all

years from 2005 to 2012 (Table 1). A total
of 9 different species contributed greater
than the mean beta diversity value in any
1 year (Table 1).

Temporal beta diversity

Temporal turnover considering all sta-
tions measured as β-Sørensen of year-to-
year changes in community composition
was significantly different from 2005 to
2012 (F6,246 = 316.9, p < 0.001). All year-
to-year comparisons were significantly
different (after Bonferroni correction: p <
0.001), with the exceptions of 2008−2009
and 2009− 2010 (Bonferroni correction:
p > 0.05). Two periods, 2006−2007 and
2011− 2012, showed markedly low tempo-
ral turnover, in contrast to 2005−2006,
with high temporal turnover (Fig. 4).
Overall, temporal turnover considering
all stations responded similarly over time
between stations and among estuaries
(Fig. 4).

Relationship of beta diversity to
 environmental change

The reduced GLMM with estuaries as a
random effect for the LCBD values con-
tained only temperature IQR (Table 2).
The full model was not significantly dif-
ferent than the reduced model with tem-
perature IQR (χ2 = 2.98, df = 7, p = 0.89).
The reduced model explained 43.3% of
the variation (R2

GLMM(c)) of LCBD values,
temperature IQR explained 0.08% of the
variation (R2

GLMM(m)), and estuaries as a
random effect explained 43.22% of the
variation.
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Fig. 3. Local contribution to spatial beta diversity (LCBD) represented as
relative proportional symbols and significant sites across 42 sampling sta-
tions considering all years (2005−2012). Higher LCBD values indicate
greater differences in community composition at a site compared to all
sites in a region. Maximum LCBD value is 0.0418. Significant sites
 contributing to beta diversity located in STLO and JOUR. Median and in-
terquartile range (IQR) of summer water temperature within each estuary 

is marked. See Fig. 1 for abbreviations of estuaries
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For temporal turnover (β-Sørensen) considering all
stations with year-to-year variation of species com-
munities and the current year for environmental con-
dition as fixed effects and estuaries as a random
effect, the reduced model contained dissolved oxy-
gen, temperature, salinity, dissolved oxygen IQR,
and eelgrass (Table 2). The full model was not signif-
icantly different than the reduced model (χ2 = 1.70,
df = 3, p = 0.64). The reduced model explained 11.7%
of the variation (R2

GLMM(c)) of β-Sørensen values, all
due to environmental condition.

For the time lag of 1 yr for environmental condition
and its effect on β-Sørensen values, the reduced
model with estuaries as a random effect contained
salinity IQR, temperature IQR, dissolved oxygen IQR,
and temperature (Table 2). The time lag of 1 yr for the
effect of temperature on temporal turnover was not
significant (Table 2). The reduced model was not sig-
nificantly different than the full model (χ2 = 1.91, df =
4, p = 0.75). The reduced model explained 23.0% of
the variation (R2

GLMM(c)). The fixed factors ex plained
21.8% of the variation (R2

GLMM(m)), and the random
 effect of estuaries explained 1.2% of the variation.

SCBD each year was affected by the current envi-
ronmental condition of dissolved oxygen from 2006
to 2012 (Table 3). The 4 species that responded to
dissolved oxygen (Table 3) also corresponded to the
species that consistently contributed to beta diversity
greater than the mean SCBD between stations con-
sidering all years from 2005 to 2012 (Table 1). Mum-
michog Fundulus heteroclitus and Atlantic silverside
Menidia menidia contributed less to beta diversity
with increasing dissolved oxygen, whereas fourspine
stickleback Apeltes quadracus and threespine stick-
leback Gasterosteus aculeatus contributed more to
beta diversity with increasing dissolved oxygen. By
contrast, SCBD was unaffected by the environmental
condition of the previous year, as none of the vari-
ables were significant.

DISCUSSION

We found that the amount of eelgrass, salinity,
water temperature, and dissolved oxygen gradients
over time are related to the environmental condition
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Common name Scientific name Mean Mean SCBD rank by year
SCBD abundance 2005 2006 2007 2008 2009 2010 2011 2012

Mummichog Fundulus heteroclitus 0.227 135.1 3 2 1 1 2 1 1 1
Atlantic silverside Menidia menidia 0.212 80.2 1 1 2 4 4 2 2 2
Fourspine stickleback Apeltes quadracus 0.168 37.9 2 3 3 2 1 3 3 3
Threespine stickleback Gasterosteus aculeatus 0.161 40.5 4 6 4 3 3 4 4 5
Blackspotted stickleback Gasterosteus wheatlandi 0.061 17.0 5 4 7 5 5 6 6 4
Banded killifish Fundulus diaphanus 0.044 6.2 9 11 8 11 11 8 7 8
Ninespine stickleback Pungitius pungitius 0.035 5.3 6 7 6 7 7 7 8 9
Smooth flounder Pleuronectes putnami 0.033 3.2 8 5 5 6 6 5 5 6
Alewife Alosa pseudoharengus 0.03  1.3 16 18 17 15 9 11 20 7
Winter flounder Pseudopleuronectes americanus 0.007 0.7 7 9 10 10 10 9 9 10
American sand lance Ammodytes americanus 0.006 0.09 15 12 15 8 8 21 12 13
Cunner Tautogolabrus adspersus 0.004 0.08 11 14 13 16 19 13 13 11
Striped bass Morone saxatilis 0.004 0.1 18 18 17 9 17 14 10 18
Rainbow smelt Osmerus mordax 0.002 0.03 17 18 17 21 16 15 20 14
Northern pipefish Syngnathus fuscus 0.002 0.08 18 8 14 21 19 12 15 22
Windowpane flounder Scophthalmus aquosus 0.001 0.02 10 18 11 13 14 10 16 12
Atlantic tomcod Microgadus tomcod 0.001 0.08 12 10 9 14 13 19 11 15
Grubby Myoxocephalus aenaeus 0.001 0.01 18 18 17 21 19 18 20 17
American eel Anguilla rostrata 0 0.03 13 13 17 18 12 16 14 20
Shorthorn sculpin Myoxocephalus scorpius 0 0.01 14 17 12 20 19 21 17 19
Lake chub Couesius plumbeus 0 0.003 18 15 17 21 19 21 20 24
Trout spp. 0 0.001 18 16 16 21 19 21 20 24
Rock gunnel Pholis gunnellus 0 0.007 18 18 17 12 18 17 20 23
White sucker Catostomus commersonii 0 0.0008 18 18 17 17 19 21 18 24
Brook trout Salvelinus fontinalis 0 0.007 18 18 17 19 15 20 18 21
Cyprinidae family 0 0.0004 18 18 17 21 19 21 20 16

Table 1. Species contribution to spatial beta diversity (SCBD) across 42 sampling stations in each year from 2005 to 2012 and the associated
ranks of the highest SCBD values for each year. Bolded mean SCBD values indicate species contributing greater than the mean SCBD
across all stations considering all years from 2005 to 2012 (mean = 0.0370), and bolded ranks indicate years when SCBD was greater than 

mean SCBD. Mean abundance of species averaged for each year from 2005 to 2012 across 42 sampling stations
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leading to temporal turnover as fish composition
changes. Previously, it has been shown that other
seagrasses in estuaries are sensitive to extreme fluc-
tuations in salinity and water temperature (e.g. Mon-
tague & Ley 1993, Glemarec et al. 1997, Fernández-
Torquemada & Sánchez-Lizaso 2005). Consequently,
the increased mortality of seagrasses leads to greater
decay of organic matter, thus reducing dissolved oxy-
gen levels through the decomposition of detritus
(D’Avanzo et al. 1996). Due to these changing dis-
solved oxygen levels and reduction in habitat in estu-
aries, temporal turnover occurs as species are re -

placed by persistent species that can tolerate lower
oxygen conditions (Pihl et al. 1991).

Spatial turnover of each year measured as the
LCBD index was mostly influenced by specific char-
acteristics of each estuary (random effect explained
43.22% of the variance) that in turn potentially influ-
ence environmental variation. Such characteristics of
estuaries could be due to the bathymetry and ex -
posed or sheltered estuaries affecting fish commu -
nities within and across estuaries (Lekve et al. 2002).
Thus, unmeasured geomorphological differences with -
in an estuary may have resulted in the variability of
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Fig. 4. Temporal species turnover considering all 42
 stations measured as β-Sørensen index of year-to-year
changes in community composition from June to August
of 2005 to 2012 in the 6 sampling stations of the 7 est -
uaries (see Fig. 1 for abbreviations of estuaries). Median 

and interquartile range (IQR) are given for salinity
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spatial turnover among other estuaries. Once the ef -
fects of each estuary are accounted for, there is evi-
dence that the variability of water temperature affects
spatial turnover of each year (fixed effect signifi-
cantly explained 0.08% of the variance).

By contrast, temporal turnover of year-to-year vari-
ation in fish communities was mostly driven by water
temperature, salinity, the amount of eelgrass, and
dissolved oxygen during the current year of environ-
mental condition in all estuaries. The environmental
condition of a time lag of 1 yr contributed to temporal
turnover due to variability of salinity, temperature,
and dissolved oxygen. Furthermore, locations along

a geographical region, here based on
the estuary, affected temporal turnover
each year. Each indivi dual estuary had
different environmental gradients and
variability over space and time that
could be influenced by the shape and
size of the estuary. For example, smaller
and broader estuaries would potentially
have shorter environmental gradients of
temperature compared to larger and
longer estuaries. These differences may
contribute to the magnitude of change of
environmental condition within each
estuary. Therefore, spatial and temporal
turnover of fish communities may be
driven by environmental changes in our
study area.

Dissolved oxygen during a given current year of
environmental condition affects year-to-year tem po -
ral turnover. During the study period, dissolved oxy-
gen in the estuaries fluctuated to levels below 8.0 mg
l−1. The interim recommended guideline for dissolved
oxygen in estuarine waters is a minimum of 8.0 mg l−1

or lower if natural processes resulted in this decrease
(Canadian Council of Ministers of the Environment
1999). Given that the estuaries within this study area
fluctuated below the interim guideline, the lower dis-
solved oxygen levels may be due to eutrophication
caused by potential anthropogenic impact in several
of the estuaries of New Brunswick (Schmidt et al.
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Response         Variable                                                                                                                 Estimate       Lower        Upper 
                                                                                                                                                                             95% CI      95% CI

                        Random effect (spatial): Estuaries (n = 7 yr)                                                                                                     

LCBD (spatial turnover) (n = 336, R2
GLMM(c) = 0.433, R2

GLMM(m) = 0.0008)
                        Temperature IQR                                                                                                      0.015           0.0082        0.022

β-Sørensen (temporal turnover, current env.) (n = 294, R2
GLMM(c) = 0.117, R2

GLMM(m) = 0.117)
                        Dissolved oxygen                                                                                                      0.53             0.47            0.62
                        Temperature                                                                                                              0.48             0.36            0.61
                        Salinity                                                                                                                       0.41             0.37            0.46
                        Dissolved oxygen IQR                                                                                              0.38             0.36            0.40
                        Eelgrass                                                                                                                     0.37             0.36            0.38

β-Sørensen (temporal turnover, lag env.) (n = 294, R2
GLMM(c) = 0.230, R2

GLMM(m) = 0.218)
                        Salinity IQR                                                                                                               0.42             0.39            0.45
                        Temperature IQR                                                                                                      0.38             0.36            0.41
                        Dissolved oxygen IQR                                                                                              0.36             0.34            0.37
                        Temperature                                                                                                              0.062         −0.039          0.18

Table 2. Generalized linear mixed effect models (GLMMs) for beta diversity as a response to the effects of significant (p < 0.05)
annual environmental variables from 2005 to 2012 in 42 stations, with model coefficient and confidence intervals (CI). Spatial
turnover analyzed as local contribution to beta diversity (LCBD). Temporal turnover (β-Sørensen index) of year-to-year varia-
tion analyzed with the environmental condition of the current year (current env.) and a time lag of 1 yr (lag env.). Estuaries
(n = 7) were treated as a random effect. R2

GLMM(c): conditional R2 (variance explained by fixed and random effects), 
R2

GLMM(m): marginal R2 (variance explained by fixed effects), IQR: interquartile range

SCBD Parameter Estimate SE p

Mummichog Intercept 0.66 0.14 0.006
Fundulus heteroclitus Dissolved oxygen −0.054 0.019 0.03

Atlantic silverside Intercept 0.86 0.17 0.004
Menidia menidia Dissolved oxygen −0.083 0.022 0.01

Fourspine stickleback Intercept −0.14 0.086 0.16
Apeltes quadracus Dissolved oxygen 0.039 0.011 0.02

Threespine stickleback Intercept −0.44 0.11 0.01
Gasterosteus aculeatus Dissolved oxygen 0.072 0.014 0.004

Table 3. Generalized linear models (GLMs) for 4 species’ contribution to
beta diversity (SCBD) annually as a response to the effects of signi ficant an-
nual environmental variables (current environmental condition) averaged
across 42 stations each year from 2006 to 2012 (n = 7). Model coefficients,
standard error (SE), and p-values of the best supported model for each 

species are displayed
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2012). In contrast to the Canadian Council of Minis-
ters of the Environment (1999) recommended interim
guideline of 8.0 mg l−1, several studies have recom-
mended lower thresholds for aquacultures in coastal
waters (e.g. Brooks & Mahn ken 2003, Page et al.
2005). The effects of hypoxic conditions begin to af -
fect the metabolism of species between 2.0 and
4.0 mg l−1, and mortality occurs below 0.5−2.0 mg l−1

(Gray et al. 2002, Vaquer-Sunyer & Duarte 2008). Pro -
 longed variability away from the norm would favour
species tolerance of lower dissolved oxygen levels
and ultimately a shift in assemblage composition.

Changes in species composition over time, and
measured as SCBD, were attributed to 4 key species
across all years: mum michog Fundulus heteroclitus,
Atlantic silverside Menidia menidia, fourspine stick-
leback Apeltes quadracus, and threespine stickle-
back Gasterosteus aculeatus. Species able to tolerate
a wide range of environmental conditions, such as F.
heteroclitus, contributed to beta diversity between
stations in all years. F. heteroclitus is known to be tol-
erant to environmental changes such as fluctuating
temperatures, salinity, and low levels of dissolved
oxygen as well as pollutants (Abraham 1985, Mar-
shall et al. 1999, Weis 2002, Stierhoff et al. 2003).
Given that F. heteroclitus is adapted to low dissolved
oxygen, it would contribute more to beta diversity
during these periods. Due to the turnover of other
species unable to tolerate lower dissolved oxygen, F.
heteroclitus becomes abundant at particular sites.
For example, sites that are impacted by anthro-
pogenic activities, such as agriculture, with signs of
eutrophication and showing hypoxic conditions, tend
to be dominated by F. hetero clitus (Finley et al. 2009).
The dominance of F. heteroclitus during these condi-
tions may be due to their ability to gulp air at the
water surface and thereby survive low oxygen condi-
tions (Stierhoff et al. 2003). In contrast to hypoxic
conditions, the dominance of F. heteroclitus would be
reduced during normoxic conditions. Despite these
periods of prominent environmental change, F. hete-
roclitus is able to persist and remains as an important
part of the community composition in estuaries.

Similarly, the lower dissolved oxygen during sam-
pling in 2008 resulted in species such as M. menidia
contributing more to beta diversity between stations
during that year. During spawning, M. menidia have
been found congregating in areas with de pleted dis-
solved oxygen (Middaugh et al. 1981). The spawning
season for M. menidia in higher latitudes begins in
early summer (Middaugh 1981, Conover & Present
1990), which coincides with the sampling period of
our study. As a result of the greater abundance of M.

menidia associated with periods of low dissolved
oxygen, SCBD is higher during these events.

Demersal species in the Gasterosteidae family
responded to high dissolved oxygen. A. quadracus
and G. aculeatus were sensitive to dissolved oxygen
when these species were found in greater abundance
and contributed to beta diversity. Eggs of A. quadra-
cus have greater mortality in periods of low dissolved
oxygen, which reduces the recruitment to the adult
population (Poulin & FitzGerald 1989). G. aculeatus
has also been associated with high dissolved oxygen
in European estuaries (Araújo et al. 1999, Maes et al.
2007). Thus, when looking at the respective current
environmental condition of year-to-year changes in
species composition, dissolved oxygen is an impor-
tant factor in structuring turnover.

Results of our analysis with 1 yr lag indicate that
greater within-year variability of environmental con-
ditions, specifically salinity, temperature, and dis-
solved oxygen, have an effect on temporal species
turnover. Yet, species communities are also rapidly
responding to the current environmental conditions
based on the temporal turnover in the respective
year. We found that the locations that affect spatial
beta diversity the most were consistent across the
years, such as sampling stations within Cape Jouri-
main located on the coast. These exposed stations
allow for greater flushing, resulting in consistent fish
habitat over years (Nedwell 1996).

We focused on the lag of environmental conditions,
as we were interested in the effects of the environ-
mental conditions of the previous year. The lag
response of fish species turnover to environmental
conditions may be due to the recruitment of adult
individuals. Unfavourable environmental conditions
during a year may then be linked to changes in
trophic interactions of fish communities or adult con-
dition (Neill et al. 1994, Pershing et al. 2005), leading
to lower fecundity for adult individuals and therefore
reducing recruitment in subsequent years. It is nec-
essary to distinguish this lag of environmental condi-
tion from the magnitude of environmental change
between years. Henriques et al. (2017) assessed the
environmental dissimilarity between fish communi-
ties in estuaries worldwide, where environmental
differences such as sea surface temperature structure
fish species turnover. These differences within envi-
ronmental gradients may elucidate how fish commu-
nities respond in estuaries. Here, we found that the
environmental variability within a year, which is dif-
ferent than the magnitude of difference between
years, also causes spatial and temporal fish species
turnover in estuaries.
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Spatial turnover considering all years does not
change rapidly over time, as communities are mainly
structured by the robust environmental gradients
that occur within each estuary. These salinity gradi-
ents structure fish communities in large estuaries
such as Chesapeake Bay (Jung & Houde 2003), as
well as small estuaries (e.g. Harrison & Whitfield
2006, Nicolas et al. 2010). Turnover in fish communi-
ties has been examined in a wide range of estuaries
globally (Henriques et al. 2017), and in upstream
freshwater environmental gradients (Edge et al.
2017). Similarly, we have also found that temperature
gradient changes in the smaller estuaries of New
Brunswick may structure fish community turnover.
These variations may be driven by individual estuar-
ies due to unmeasured parameters such as bathy -
metry, as our results indicate that each estuary had a
prominent effect on spatial turnover. For example,
the species assemblage of our Cape Jourimain site
contrasts significantly with other sites in the region,
as it is exposed to the sea. Second, the watersheds of
the estuaries could contribute to the environmental
variation affecting submergent aquatic vegetation (Li
et al. 2007), which may indirectly affect fish assem-
blages. Future research into the bathymetry and the
watersheds of the estuaries could potentially drive
the environmental variation influencing spatial and
temporal turnover of fish communities.

In summary, spatial turnover operates on a local-
ized scale corresponding to each estuary where envi-
ronmental variability remains an important factor
that influences the structure of fish community com-
position in the dynamic nature of estuaries. Effects of
large-scale changes, such as climate change leading
to increased within-year variability, could have po -
tential effects on localized changes in estuaries that
affect species composition over time. These findings
imply that temporal turnover is rapid in estuaries,
due to environmental variability, and shifts in species
communities that occur during the year are due to
sensitivity to environmental change. As a result, such
climatic changes would undermine any management
efforts regarding the reduction of anthropogenic
pressures in estuarine ecosystems.
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