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1.  INTRODUCTION

Many marine fish species undergo ontogenetic
shifts in both location and diet, using different habi-
tats and food resources during juvenile and adult life
stages (e.g. Dahlgren & Eggleston 2001, Saul et al.
2012, Kurth et al. 2019). While an understanding of
the habitat needs for each life stage is important, the
extent of movement may be difficult to assess in
many species. Stable isotope data can be used to
interpret both species movements and trophic posi-
tion (Ainsworth et al. 2015, Grüss et al. 2016). An in -
crease in δ15N values with body size is a common

phenomenon among marine predators, and has been
termed ‘trophic growth’ (Wallace et al. 2014, Curtis
et al. 2020, Liu et al. 2020). Within a single species,
individuals often feed at higher trophic positions as
they grow, resulting in trophic growth (e.g. summer
flounder Paralichthys dentatus, Buchheister & Latour
2011; boreo-Atlantic armhook squid Gonatus fabricii,
Golikov et al. 2018; yellowfin tuna Thunnus alba -
cares, Graham et al. 2007). Although trophic fraction-
ation can be variable, δ15N values in marine meso-
predator tissues increase by approximately 2.3−3.4‰
and δ13C values increase by 1.9−2.3‰ with each
trophic step (Post 2002, McCutchan et al. 2003, Mo -
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han et al. 2016, Eddy 2019). Tissue δ13C values can be
useful for indicating basal-resource dependence (Fry
& Wainright 1991, Dance et al. 2018). The δ13C values
of subtropical marine phytoplankton have been
found to be between 3.7 and 6‰ more negative than
those of benthic primary producers (Moncreiff & Sul-
livan 2001, Grippo et al. 2011, Dance et al. 2018).

One factor that complicates the interpretation of
individual isotopic composition bulk tissues for
trophic position and basal-resource dependence in
marine consumers is geographic variation in isotopic
baselines. Spatial variations in stable isotope compo-
sitions (isoscapes) have been established for a num-
ber of marine regions, and these trends are reflected
in the tissues of predators moving through these
areas (MacKenzie et al. 2011, Simpson et al. 2019,
Trueman et al. 2019). Whereas changes in trophic
position will result in changes to isotope values over
time, baseline isotope values can have a similar
effect on the isotopic composition of tissues assimi-
lated during movement. For example, if a fish were to
remain stationary while increasing trophic position
during life, then both δ15N values and δ13C values
would be expected to increase concomitantly as a
function of positive trophic fractionation. Based on
trophic discrimination factors for each isotope, the
average slope of this relationship would be expected
to range from 1.0 to 1.7 in marine mesopredators
(Post 2002, McCutchan et al. 2003, McMahon et al.
2010). In contrast, if the baseline values of the iso-
topes of interest (δ15N and δ13C, in this case) trend in
different geographic directions and the fish has
moved across these opposing trends, then the consis-
tent linear relationship between the isotope values
would be degraded or lost.

During organismal growth and cell maintenance,
new isotopic information is continuously incorpo-
rated into various tissue types, often at distinct rates
(Sweeting et al. 2005, Buchheister & Latour 2010,
Heady & Moore 2013). Internal eye-lens layers (lam-
inae) experience little or no turnover and function as
a conservative record of the isotopic histories within
each individual (Wallace et al. 2014, Nielsen et al.
2016, Simpson et al. 2019, Curtis et al. 2020). Peebles
& Hollander (2020) reviewed fish eye-lens physio -
logy as it relates to stable isotopes. In short, the
record-keeping behavior of eye lenses arises from
lifetime conservation of optical proteins called crys-
tallins. New protein synthesis within individual cells
is not possible after cell formation and the subse-
quent apoptosis (removal) of cellular organelles,
which improves the optical properties of the cells
(Lynnerup et al. 2008, Rinyu et al. 2020). This selec-

tive apoptosis results in preservation of the original
organic material within successively created laminae
(Nicol 1989, Lynnerup et al. 2008, Stewart et al. 2013,
Nielsen et al. 2016). A captive diet-switch study
(Granneman 2018) documented isotopic shifts within
fish eye lenses that mirrored an isotopic shift in the
feed, confirming that a change in diet is reflected in
the fish eye-lens record.

The continental shelf offshore Florida’s Gulf of
Mexico coast (West Florida Shelf) consists of gradually
sloping soft sediment interspersed with limestone
reefs and outcroppings (Locker et al. 2010, Hine &
Locker 2011). Tilefish Lopholatilus chamae leon ti ceps
and red grouper Epinephelus morio are both large,
demersal predators common in the northeastern Gulf
of Mexico. Both species excavate soft sediments
(Scan lon et al. 2005, Ellis et al. 2017) and associate
closely with the burrows or depressions that they cre-
ate (Able et al. 1982, Coleman et al. 2011, Ellis 2019,
Grasty et al. 2019). Juveniles of both species consume
benthic invertebrates (Brule & Canche 1993, Steimle
et al. 1999) and the proportion of fish in the diet in-
creases as individuals grow (Grimes et al. 1986,
Weaver 1996). However, there are notable distinctions
between the life histories of the 2 species in the north-
eastern Gulf of Mexico.

Individual tilefish create and maintain vertical bur-
rows in clay sediments (Grossman et al. 1985, Grimes
et al. 1986, Able et al. 1987) near the edge of the con-
tinental shelf. Smaller individuals are observed near
smaller burrows, suggesting that they remain near
the same burrow over many years (Able et al. 1982,
Grimes 1983, Grimes et al. 1986, Fisher et al. 2014).
Captive-reared tilefish have been observed settling
to the bottom and beginning to dig by 1.5 cm stan-
dard length (Fahay 1983). Because this species rarely
consumes migratory prey (Steimle et al. 1999), δ13C
values and δ15N values of lens protein should reflect
local conditions at a single location throughout the
lifespan of an individual.

Juvenile red grouper are found on the inner conti-
nental shelf (<30 m depth), where they use rocky reef
habitats (Bullock & Smith 1991). Adult red grouper
maintain depressions in soft sediment veneers over-
lying limestone outcrops on the middle to outer conti-
nental shelf (Coleman et al. 2010, Wall et al. 2011,
Grasty et al. 2019). Tagging studies indicate that most
adult red grouper move little over a 1−2 yr period
(Burns & Froeschke 2012, Farmer & Ault 2014). How-
ever, recaptures of individuals that did move were in
deeper water than the depth of original tagging (Moe
1969, Burns 2009, Saul et al. 2012). Based on these
data and the relationship between size and capture
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depth, it is clear that red grouper use different habi-
tats during life (Moe 1969, Johnson & Collins 1994,
Grüss et al. 2017). The existence of ontogenetic habi-
tat shifts thus distinguishes red grouper from tilefish.

Baseline trends in fish tissue δ15N values and δ13C
values on the West Florida Shelf are consistent among
years, seasons, and species, allowing for the de line -
ation of regional isoscapes (Fig. 1A; Rada baugh et al.
2013, Radabaugh & Peebles 2014, Huelster 2015).
Values of δ15N are highest in the northwestern ex-
treme and lowest on the southern end of the West
Florida Shelf, which is consistent with high rates of
riverine input to the north and elemental nitrogen fix-

ation by diazotrophs to the south (McClelland et al.
2003, O’Connor et al. 2016). Trends in δ13C values on
the West Florida Shelf are orthogonal (rotated 90°) to
those of δ15N values, with highest values in shallow,
clear waters where benthic primary producers are
more abundant (Radabaugh et al. 2013). Because of
this orthogonal relationship, movement across these 2
isoscapes (δ15N and δ13C) decouples temporal trends
in δ13C values and δ15N values within the eye lenses of
an individual fish.

Stable isotope values have been used in a variety of
settings with a single species or a small group of spe-
cies as models for life history and autecology (Tal-
lamy & Pesek 1996, Holtum & Winter 2014, Ogston et
al. 2016). We used profiles of eye-lens δ13C values
and δ15N values from tilefish and red grouper as
models of distinct demersal mesopredator life histo-
ries within a similar geographic region. We com-
pared the isotopic histories of burrow-inhabiting tile-
fish, which have lifelong site fidelity, to those of red
grouper, which move long distances as they grow
and mature. By using these 2 species as contrasts be -
tween a lifetime at a single location and a lifetime of
ontogenetic movement, we can use lifetime isotopic
patterns to interpret movement of other species liv-
ing in regions with similar isotopic contrasts, includ-
ing species for which gaps exist in our understanding
of their life history.

2.  MATERIALS AND METHODS

2.1.  Sample collection and preparation

We obtained 36 adult tilefish from the University
of South Florida’s benthic longline surveys (Muraw -
ski et al. 2018) and 30 red grouper from the South-
east Area Monitoring and Assessment Program
(SEA MAP) groundfish trawl surveys (Eldridge
1988). Tilefish were collected from the northern
West Florida Shelf and adjacent areas to the west
(Fig. 1B) in water depths of 178−375 m. Red grouper
were collected from the northern and central West
Florida Shelf (Fig. 1B) in water depths of 10−40 m.
Tilefish were measured to the nearest cm fork
length (FL), dissected, and sexed macroscopically at
sea. Red grouper were measured to the nearest mm
FL and dis sected at sea but were not sexed due to
the difficulty of macroscopic sex designation in this
species (Lowerre-Barbieri et al. 2014). All specimens
were beyond the length at 50% maturity (SEDAR
2011, Lombardi-Carlson 2014). Red grouper are
proto gynous, with 50% transition to male at 743 mm
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Fig. 1. Region of interest, northeastern Gulf of Mexico. (A)
Generalized background isotope (isoscape) trends (based
on Radabaugh & Peebles 2014 and Peebles & Hollander
2020). Values in this context represent deviation from mean
values; they do not represent organismal tissue values of
δ13C or δ15N. Arrows cross approximately at mean values in
both isotopes. (B) Collection locations for all fish in the study
(white symbols: red grouper; black symbols: tilefish). More
than 1 fish was collected at several of the mapped locations.
Bathymetry markings are 100, 200, 1000, 2000, and 3000 m
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FL and 11.5 yr (Lowerre-Barbieri et al. 2014). Oto -
liths were cleaned of tissue before storing dry at
room temperature, and whole eyes were frozen at
−20°C until analysis.

Sagittal otoliths were aged by counting annuli
under transmitted light microscopy using an Olym-
pus SZX12 zoom stereomicroscope. Each species
was aged according to the method employed by the
Florida Fish and Wildlife Conservation Commission
Age and Growth Lab, which assisted on this project.
Tilefish otoliths were thin-sectioned and attached to
a microscope slide, and annuli were counted (Lom-
bardi-Carlson & Andrews 2015). Red grouper otoliths
were aged whole in a water-filled petri dish (Johnson
& Collins 1994). Data on age and length were com-
bined to confirm maturity status (Tables S1 & S2 in
the Supplement at www. int-res. com/ articles/ suppl/
m657 p161_ supp. pdf; SEDAR 2011, Lombardi-
 Carlson 2014).

We dissected and processed eye lenses according
to Wallace et al. (2014) immediately prior to isotope
ana lysis. We thawed whole eyes individually, re -
moved the lens from the lens capsule, placed each
lens on a glass petri dish, and measured eye-lens dia -
meter (ELD) to the nearest 0.05 mm using an ocular
micrometer in an Olympus SZX12 zoom stereomicro-
scope at 10× magnification. We delaminated each
lens using 2 fine-tipped forceps under 10−50× mag-
nification and recorded the ELD after removal of
each lamina. We identified each lamina based on its
diameter midpoint (midpoint between successive
ELDs). The lens core (<1 mm diameter) was the final
tissue in the analyzed series. De-ionized water was
used sparingly for tilefish eye-lens delamination, but
red grouper eye lenses were submerged in water for
delamination. The 2 methods have been shown to
result in comparable isotopic values (Meath et al.
2019). Laminar material became desiccated in <1 h at
25°C.

2.2.  Isotope analysis

For isotope analysis, we weighed 200−600 μg of
eye-lens material from each lamina to the nearest μg
on a Mettler-Toledo precision microbalance. We used
a Carlo-Erba NA2500 Series II Elemental Analyzer
combustion furnace coupled to a continuous-flow
ThermoFinnigan Delta+XL isotope ratio mass spec-
trometer to measure 13C/12C,15N/14N, and C:N ratios
in duplicate at the University of South Florida College
of Marine Science in St. Petersburg, Florida. Calibra-
tion standards (mean ± SD) were NIST 8573 (−26.39 ±

0.09‰ and −4.52 ± 0.12‰ for δ13C and δ15N values,
respectively) and NIST 8574 L-glutamic acid (37.63 ±
0.10‰ and 47.57 ± 0.22‰ for δ13C and δ15N values,
respectively) standard reference materials. Results
are presented in delta notation (δ, in ‰) relative to in-
ternational standards Vienna Pee Dee Belemnite for
carbon and air for nitrogen:

(1)

where X is either 13C or 15N and R is the isotopic ratio
of interest (13C/12C or 5N/14N). Analytical precision,
obtained by replicate measurements of NIST 1577b
bovine liver, was 0.20‰ for δ13C values and ±0.30‰
for δ15N values (maximum standard deviations of n =
300 replicates).

2.2.1.  Eye-lens isotope data analysis

All data analyses were conducted in R statistical
software version 3.6.1 (R Core Team 2019). Eye-lens
isotope profiles represent changes in the eye-lens
δ13C values and δ15N values throughout the lifetime of
each fish, with the innermost lamina representing the
youngest age (postlarval period) and the outermost
lamina representing age at capture. Eye lenses do not
contain known age marks. Therefore, we used the
best-fit regression to relate ELD to FL for each
species. For tilefish, we used the linear regression
FL (cm) = 6.03 × ELD (mm) (F = 1220, R2 = 0.97, p <
0.001; n = 36, FL range = 48−99 cm). The regression
was constructed using maximum ELD and FL for the
individuals used for this study. For red grouper, we
used the logarithmic regression FL (cm) = e(e+0.21×ELD)

(F = 510, R2 = 0.84, p < 0.01; n = 99, FL range = 4.4−
80.5 cm). The regression was constructed using the
individuals from the current study as well as 69 juve-
niles ranging from 4.4 to 30.0 cm FL.

We calculated mean and standard error for the eye-
lens δ13C values and δ15N values of each species. Sub-
sequently, we used the PERMDISPER and PERM -
ANOVA routines in R (package ‘vegan,’ Oksanen et
al. 2019) to compare δ13C values to δ15N values from
the 468 individual tilefish eye-lens laminae with the
406 red grouper eye-lens laminae.

For each species, we measured the fit of a loga-
rithmic curve δX = a + b × ln(ELD) where a is the
para meter controlling the curve location on the y-
axis and b is the parameter controlling curve shape.
This model was chosen as a version of growth equa-
tions commonly used in fish (von Bertalanffy 1938,
Ricker 1975). Regression trends can be attributed to

X
R

R
δ = −⎛

⎝⎜
⎞
⎠⎟
×1 1000 sample

standard
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changes in trophic position with somatic growth.
Substantial deviation from this curve can be attrib-
uted to movement across the background isoscape
or change in basal-resource dependence. We used
the ‘lmer’ routine in the ‘lme4’ package in R (Bates
et al. 2015) to construct linear mixed effects models
comparing δ13C values to δ15N values in each spe-
cies, using individual fish as a random effect. We
used the ‘permanova.lmer’ function in the package
‘Predictmeans’ (Luo et al. 2020) to compute a per-
muted p-value for the overall model in each species.

2.2.2.  Isotope interpretations: movement vs. trophic
position increase for individual fish

We used a series of correlations to distinguish be -
tween the influence of changing trophic position
and movement within individual eye-lens isotope
profiles. We identified all possible isotopic outcomes
that would be associated with different combina-
tions of geographic movement (Radabaugh & Pee-
bles 2014) or trophic position increase with growth
(Fry 2006, Wallace et al. 2014) at the individual
level (Fig. 2). In Fig. 2, gray-shaded cells represent
these trends (positive, negative, or neutral), as indi-
cated by significant departures of lifetime regres-
sion slopes from zero. The potential geographic and
trophic explanations for these trends are presented
in unshaded cells. For example, an individual may
have a positive lifetime trend (+, shaded gray) in
δ15N values or δ13C values for 3 reasons: (1) it moved

in a positive direction along a baseline isotopic gra-
dient while increasing its trophic position, (2) it
increased its trophic position without substantial
movement, or (3) it moved in a positive direction
along a baseline isotopic gradient without substan-
tially changing its trophic position.

In addition to these lifetime trends, we considered
another suite of relationships (via Spearman correla-
tion, rs) that provided additional information; the
conceptual outcomes of these are presented in
Table 1 (which is analogous to Fig. 2, but is based on
correlation). Specifically,

(1) we correlated δ15N values with ELD within indi-
vidual eye-lens profiles to determine whether trophic
growth or movement along the δ15N gradient had
occurred (Hansson et al. 1997);

(2) we correlated δ13C values with ELD within indi-
vidual eye-lens profiles to determine whether move-
ment along the δ13C baseline had occurred or if
basal-resource dependence had changed (Fry &
Wainright 1991, Radabaugh & Peebles 2014); and

(3) we correlated δ13C values with δ15N values
within individual eye-lens profiles to represent site
fidelity, with strong correlations indicating high site
fidelity during life (McCutchan et al. 2003, Meath et
al. 2019).

Individuals with strong correlations in all 3 tests
were interpreted as having experienced trophic
growth with little to no geographic movement, elimi-
nating 1 of 2 possible interpretations for the isotope
profiles in Fig. 2. We acknowledge that this approach
is subject to both Type I and Type II errors but repre-
sents one possible way of moving from a population-
level to an individual-level interpretation.

3.  RESULTS

3.1.  Biological and isotopic comparisons 
between species

Red grouper ranged from 29.2 to 78.1 cm FL and
2−10 yr old, with 1 fish unaged. Tilefish ranged from
48 to 99 cm FL and 8−20 yr old, with 4 fish unaged
(Tables S1 & S2). Multiple linear regression (R Core
Team 2019) did not detect a relationship between FL
and capture depth or capture latitude for either spe-
cies (tilefish: F2,33 = 2.38, R2 = 0.13, p = 0.108; red
grouper: F2,26 = 0.06, R2 = 0.01, p = 0.95).

Multivariate isotope location was significantly dif-
ferent between the 2 species (F = 923.56, R2 = 0.49, p <
0.001; Fig. 3), as was multivariate dispersion (F =
14.60, p < 0.001). Tilefish mean (±SE) eye-lens δ15N
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values and δ13C values were 12.97 ± 0.07 and −17.49 ±
0.04, respectively. Red grouper eye-lens δ15N and
δ13C were 9.46 ± 0.06 and −16.49 ± 0.06, respectively.
In both red grouper and tilefish, ELD had positive,

logarithmic relationships with δ13C and δ15N values
(Table 2, Fig. 4). Fits were over R2 = 0.5 between ELD
and tilefish δ13C, tilefish δ15N, and red grouper δ15N.
However, red grouper δ13C values were not well rep-
resented by this model (R2 = 0.12; Table 2, Fig. 4). We
found a positive linear relationship between tilefish
δ15N and δ13C in the form δ15N = a + b × δ13C (Table 3,
Fig. 5A). However, the linear mixed model for the re-
lationship between δ15N and δ13C in red grouper
failed to converge (Fig. 5B).

3.2.  Relationships between ELD, δ13C, 
and δ15N at the individual level

Individual red grouper eye-lens δ15N increased as
the fish grew (mean Δδ15N ± SE = 3.60 ± 0.20‰). De-
spite red grouper average increases in δ13C over the
lifetime (1.93 ± 0.22‰), visual inspection indicated
that most profiles peaked near 2 mm ELD (Fig. S1).
The mean correlation between δ15N and ELD was rS =
0.75 (p < 0.001) and the mean correlation between
δ13C and ELD was rS = 0.29 (p = 0.50). Correlations be-
tween δ15N and ELD were positive and significant in
all individuals, while δ13C and ELD were positive and
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1. δ15N value correlation with ELD (within individuals)
       1A. If δ15N value negatively correlates with ELD, 

then individual reduced trophic position or moved against δ15N gradient.
       1B. If δ15N value positively correlates with ELD, 

then individual increased trophic position or moved with δ15N gradient.
       1C. If δ15N value does not significantly correlate with ELD, 

then trophic position or movement along δ15N gradient was inconsistent or did not change.
2. δ13C value correlation with ELD (within individuals)
       2A. If δ13C value negatively correlates with ELD, 

then individual reduced trophic position or moved against δ13C gradient.
       2B. If δ13C value positively correlates with ELD, 

then individual increased trophic position or moved with δ13C gradient.
       2C. If δ13C value does not significantly correlate with ELD, 

then trophic position, basal resource, and movement were inconsistent or did not change. 
3. Capture fork length (FL) correlation with relative capture location (within species)
       3A. If capture length correlates (positively or negatively) with capture location, 

then the species tended to have directional movement.
       3B. If capture length does not correlate with relative capture position, 

then the species tended to be stationary or moved inconsistently.
4. δ13C value correlation with δ15N value (within individuals) 
       4A. If δ13C value negatively correlates with δ15N value, 

then the individual (or its prey) moved against one isotopic gradient and with the other.
       4B. If δ13C value positively correlates with δ15N value, 

then the individual remained largely stationary while increasing trophic position.
       4C. If δ13C value does not correlate with δ15N value,

then the individual (or its prey) moved inconsistently or was both stationary and did not change trophic position.

Table 1. Rules of interpretation for all possible correlation outcomes within the eye-lens isotopic profiles of individual fish
and capture location as a function of length for the species. ELD: eye-lens diameter. Correlation = Spearman rank correlation 

applied to the entire lifetime eye-lens isotopic profiles for an individual fish, or species, as indicated
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dards Vienna Pee Dee Belemnite (VPDB) for carbon and air 
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significant for 10 of 30 fish (Table S1). Profiles of eye-
lens δ15N as a function of δ13C for each individual
were highly variable in both slope and direction
(Fig. S2). Five of 30 red grouper appeared to increase
their trophic positions while re maining stationary and
continuing to depend on similar basal resources,
while the remainder ap peared to move substantial
distances across isotopic gradients and/or change
their basal-resource dependence (Table S1).

In each individual tilefish eye lens, there was an in-
crease in δ13C and δ15N values during life. Lifetime
Δδ13C was 2.50 ± 0.12‰ (mean ± SE) and lifetime

Δδ15N was 4.67 ± 0.17‰ (Fig. S2).
 Average tilefish correlation between
δ15N and ELD was rs = 0.80 (p <
0.001), and correlation between δ13C
and ELD was rs = 0.70 (p < 0.001).
 Average correlation between δ13C
and δ15N was rs = 0.86 (p < 0.001;
Table S2) within individual fish.
Nearly all (35 out of 36) tilefish ap-
peared to increase their trophic posi-
tions during life while re maining in
the same location and feeding within

the same basal-resource regime. Only the smallest
tilefish was suspected of a change in basal-resource
dependence based on these rules (Table S2).
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Regressed with ELD      n          a (±SE)           b (±SE)         F          p         R2

Tilefish δ15N                 468   11.02 ± 0.07    1.54 ± 0.05   1069   ≤0.001   0.70
Tilefish δ13C                 468   −18.59 ± 0.05   0.86 ± 0.04   496   ≤0.001   0.52
Red grouper δ15N         406   8.12 ± 0.07    1.28 ± 0.06   526   ≤0.001   0.57
Red grouper δ13C         406   −17.27 ± 0.11   0.68 ± 0.09   56   ≤0.001   0.12

Table 2. Statistics for nonlinear least-squares regression for isotopic values
(δ15N or δ13C) as a function of eye lens diameter (ELD) in both tilefish and red
grouper. These regressions took the form of δ15N or δ13C = a + b × ln (ELD) (see 

Section 2.2.1 for more details)

Species            n         a (±SE)         b (±SE)     Permuted p

Tilefish           468   39.45 ± 1.05   1.51 ± 0.06        0.001
Red grouper  406               Model did not converge

Table 3. Statistics for linear mixed model of δ15N value as a
function of δ13C value in both tilefish and red grouper. All 

regressions took the form of δ15N = a + b × δ13C

δ15N = 11.02 + 1.54 × ln(ELD)
R2 = 0.70, p ≤ 0.001
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4.  DISCUSSION

We used the isotope profiles reconstructed from
fish eye lenses as a novel approach for detecting
ontogenetic habitat shifts. We took advantage of the
spatially decoupled isoscapes of fish tissue δ13C and
δ15N values in the eastern Gulf of Mexico (Fig. 1A) to
interpret eye-lens isotope profiles as movement on a
lifetime scale. We used tilefish, a lifelong burrow-
inhabiting species, as a model of a stationary species.
We contrasted the isotope profiles in these eye lenses

with those of red grouper, which are known to move
inshore and then offshore across the West Florida
Shelf with changing ontogeny. The shapes of eye-lens
isotope profiles and correlations between isotopes,
coupled with the orthogonal isotopic background,
suggest that similar patterns of movement could be
detected for any species living in an area with simi-
larly decoupled isotopic backgrounds.

Differences in overall isotopic values between tile-
fish and red grouper (Fig. 3) follow background
trends in δ13C and δ15N values for the region (Fig. 1A).
Tilefish in the Gulf of Mexico inhabit a narrow geo-
graphic range in areas that have a steep depth gradi-
ent (Steimle et al. 1999, Pierdomenico et al. 2015). All
tilefish in this study were collected at depths of 178−
375 m, with little cross-shelf distribution (Fig. 1B),
which is reflected in their relatively high, tightly
grouped δ13C and δ15N values. Red grouper occur on
patchy reef habitats of the West Florida Shelf (Moe
1969, Coleman et al. 2010), usually in waters <100 m
depth (SEDAR 2015). All red grouper in this study
were collected in 10−40 m to the east and southeast
of tilefish collections (Fig. 1B). The wide range of
eye-lens δ13C values in red grouper reflects cross-
shelf movement over time, and the low eye-lens δ15N
values reflect their reliance on more southern habi-
tats than tilefish (Figs. 1B & 3).

In order to enhance interpretation and broaden ap -
plications of eye-lens stable isotope data, we devel-
oped an approach that established generalized rules
of interpretation (Table 1, Fig. 2). We first segregated
the potential effects of trophic change and movement
on fish eye-lens isotope values, and then recombined
these effects to simulate all possible isotopic out-
comes (Fig. 2), similar to Meath et al. (2019). We
expanded this exercise to include all possible corre-
lations between isotope values and fish length, using
ELD as a proxy (Table 1).

We observed the lowest δ15N values during the ear-
liest phases of exogenous feeding in both species,
which is consistent with previous eye-lens isotope
findings (Wallace et al. 2014, Quaeck-Davies et al.
2018, Simpson et al. 2019). In both species, δ15N fit a
logarithmic function of ELD (Table 2, Fig. 4), with
isotope values increasing at a faster rate during early
life, similar to trends in fish body length (Juanes
2016) and in agreement with a recent fish eye-lens
isotope study (Curtis et al. 2020). One mechanism for
trophic increase with body growth is the addition of
larger prey to the available prey pool as gape limita-
tion decreases (Dalponti et al. 2018). In addition,
large individuals at higher trophic positions, which
are capable of substituting different trophic path-
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ways into their diets, reduce vulnerability to basal-
resource instability (MacKenzie et al. 2012, Burghart
et al. 2013, Dalponti et al. 2018).

At the individual level, Spearman rank correlations
were significant between δ15N values and ELD in all
36 individual tilefish and in 27 of 30 red grouper
(90%). There was no significant correlation between
δ15N value and ELD in 3 red grouper, suggesting that
some individuals either did not increase their trophic
positions or they moved far enough (southward) to
isotopically negate the increase in δ15N value ex -
pected from trophic growth. Red grouper tagging
studies have shown that substantial movement is un -
common for adults over a 1−2 yr time period (Burns &
Froeschke 2012), but some individuals have been
shown to move >50 km southward, a distance suffi-
cient to offset the δ15N value increase from trophic
growth on the West Florida Shelf (Burns 2009).

The logarithmic model relating tilefish eye-lens
δ13C value to ELD fit the data well, as did Spearman
rank correlations between δ13C value and ELD for in-
dividuals, suggesting consistent growth with little
movement over time (Table 2, Fig. 4). The red grouper
logarithmic model did not have a tight fit (Table 2,
Fig. 4), and δ13C values did not correlate significantly
with ELD in most individuals. Many of the non-signif-
icant relationships were due to peaks in the δ13C val-
ues during early life (Fig. S1), potentially revealing
ontogenetic changes in habitat use and/ or basal-
 resource dependence by moving inshore and then
back offshore before sexual maturity (Keough et al.
1998, Araújo et al. 2007, Ellis et al. 2014).

Trophic fractionation without concurrent movement
over time couples δ13C to δ15N values in a lifetime
record such as eye lenses. Both δ13C and δ15N increase
together as trophic position changes. Based on data
from other marine mesopredators, the slope of this re-
lationship would be approximately 1.0−1.7 (Mc-
Cutchan et al. 2003, Matley et al. 2016, Eddy 2019).
However, the linear relationship between tissue iso-
topes is disrupted if the fish move across iso scapes
that are not spatially correlated with one an other (i.e.
the processes that control them are de coupled), as is
the case in the δ13C and δ15N isoscapes on the West
Florida Shelf. Thus, our proposed explanation for cor-
relations in tilefish eye lenses (Fig. 5A; Fig. S4) is in-
creased trophic position as mouth gape increases,
coupled with a lack of movement along either
isoscape. Indeed, the average slope of the relationship
between δ15N and δ13C was 1.5‰ in this species
(Fig. 5A), within the range of values expected for mar-
ine mesopredators. Whereas trophic growth can also
be observed in red grouper eye-lens δ15N profiles

(Fig. 4C; Fig. S1), correlations between δ13C and δ15N
values are weak in this species (Fig. S2), and no linear
relationship ex isted between the 2 isotopes (Fig. 5B;
Fig. S2). Taken to gether, these data suggest that most
individual red grouper moved considerable distances
across the δ13C isoscape during their lifetimes.

The eye-lens isotope profiles observed in tilefish
and red grouper are consistent with available life his-
tory and diet information for the 2 species. In future
studies of fish eye-lens isotopes, we suggest using
models to investigate changes in trophic position,
basal-resource dependence, and movement in popu-
lations as a whole, and a series of correlations to eval-
uate trends within individuals. In areas where δ13C
and δ15N values are not spatially correlated, we sug-
gest that a strong correlation between δ13C and δ15N
values in eye-lens profiles serves as an indicator of
high site fidelity during trophic growth, especially
when a linear relationship between the 2 isotope pro-
files has a slope between 1.0 and 1.7. In contrast, a
weak correlation between the profiles of these 2 iso-
topes and a lack of linear relationship indicates onto-
genetic movement across spatially variable isoscapes.
Individuals with weak correlations and slopes outside
this range can then be investigated for ontogenetic
habitat or diet shifts using methods such as diet
analysis, compound-specific stable isotope analyses
of eye-lens laminae (Wallace 2019), tagging studies,
or other combinations of analysis types. Our approach
provides a promising alternative to subjective inter-
pretation of lifetime isotope profiles. Taking a weight-
of-evidence approach (i.e. by analyzing multiple in-
dividuals and coupling isotope data with other types
of data) strengthens the interpretation. This method
could be applied to species for which other life history
information is lacking, providing a simple means of
detecting ontogenetic movement in poorly studied
species.
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