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1. INTRODUCTION

Climate change is causing shifts in the geographic 
distribution of species globally, as rising tempera-
tures are driving species up in elevation, down in 
water depth, and toward the poles (Sorte et al. 2010, 

Chen et al. 2011, Pecl et al. 2017). In marine ecosys-
tems, range shifts are an order of magnitude faster 
than terrestrial shifts and almost all shifts are pole-
ward (Sorte et al. 2010). Among marine mammals, 
many sub-Arctic and temperate species are demon-
strating such changes in distributions into polar areas 
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as oceans warm, sea ice decreases, and prey species 
redistribute, and these shifts are predicted to con-
tinue (Heide-Jørgensen et al. 2007, Higdon & Fergu-
son 2009, Lambert et al. 2011, Kerosky et al. 2012, 
Albrecht et al. 2021). 

Models of future climate change scenarios project 
that species invasions will be greatest toward the 
poles (Cheung et al. 2009), and climate-induced 
range shifts are prevalent in the Arctic, where cli-
mate change has caused more dramatic environmen-
tal changes than elsewhere (Post et al. 2009). Arctic 
temperatures have increased nearly 4 times faster 
than the global mean (Rantanen et al. 2022), leading 
to substantial changes in sea ice cover, with many 
areas transitioning from multi-year sea ice to sea-
sonal, first-year sea ice (Maslanik et al. 2011, Comiso 
2012); these changes directly impact ice-obligate and 
ice-associated Arctic marine mammals (Laidre et al. 
2008, Moore & Huntington 2008, Chambault et al. 
2020). Simultaneously, over the past several decades, 
historically sub-Arctic marine mammals have ex -
panded their geographic ranges into the Arctic and 
migratory species have extended the portion of the 
year that they spend within Arctic waters, including 
baleen whales in the Pacific Arctic (Clarke et al. 
2013, Moore 2016), killer whales in the eastern 
Canadian Arctic (Higdon & Ferguson 2009), and var-
ious cetaceans around Svalbard (Kovacs et al. 2011). 
In Greenland, both climate warming and range-shift-
ing species are evident. Seasonal sea ice formation in 
northwest Greenland is now delayed several weeks 
compared to the last 40 yr, and climate models pro-
ject that on both the east and west coasts, by 2060, air 
temperatures will increase and sea ice will decrease 
outside of ranges observed in the last 100 yr (Laidre 
et al. 2012, Straneo et al. 2022). Limited evidence 
from recent subsistence harvests suggests a rapid 
increase in the number of sub-Arctic marine mam-
mals present in waters around Greenland, including 
humpback whales Megaptera novaeangliae, long-
finned pilot whales Globicephala melas, and white-
beaked dolphins Lagenorhynchus albirostris (NAM
MCO 2019). Yet native Arctic species in Greenland 
and other Arctic regions are less capable of shifting 
distributions in response to changing conditions 
because of contracting Arctic area and specialized 
habitat requirements, e.g. the strong association of 
narwhal Monodon monoceros with deep waters and 
pack ice (Chambault et al. 2020). 

As the northward movement of historically sub-
Arctic marine mammal species increases both the 
geographic and temporal overlap with native Arctic 
species, species interactions may change. Species 

reorganizing geographically can cause new or in -
creasing overlap between species with similar eco-
logical roles, leading to potential competition for lim-
ited resources (Pecl et al. 2017). For native species, 
new or increasingly abundant competitors may re -
duce food availability (Hamel et al. 2013), relegate 
native species to lower quality habitat (Milazzo et al. 
2013), and reduce survival and development (Alex -
ander et al. 2015). New competition with non-native 
species for prey resources may add yet more pres-
sure to native Arctic species that are already vulner-
able to ecosystem changes (Laidre et al. 2008). 

While the overlap between native and range-
 ex panding marine mammal species in the Arctic sug-
gests that new competitive interactions are possible, 
the extent to which this is occurring is largely un -
known. Throughout the Arctic, there is evidence of a 
‘borealization’ of fish communities, with sub-Arctic 
fishes being observed at increasingly higher latitudes 
(Fossheim et al. 2015, Pedro et al. 2020). This trend 
suggests that sub-Arctic marine mammals may be 
 following traditional prey north, as opposed to switch-
ing to consuming Arctic prey. There is also evidence 
of some native Arctic marine mammals shifting to 
sub-Arctic prey, particularly in the Canadian Arctic, 
where northward-shifting capelin Mallotus villosus 
are replacing polar cod Boreogadus saida in the diets 
of both beluga Delphinapterus leucas and ringed seal 
Pusa hispida (Marcoux et al. 2012, Chambellant et al. 
2013, Choy et al. 2020). In Greenland, increased 
catches of boreal fishes suggest a transitioning marine 
ecosystem (Straneo et al. 2022), but it is not evident 
how much, if at all, these changes are influencing 
Greenland marine mammal diets. In the Norwegian 
Arctic and Pacific, there is evidence of niche segrega-
tion between some native and new marine mammal 
species, suggesting that, at least in these areas, feed-
ing niche overlap between species may be limited 
(Moore et al. 2019, MacKenzie et al. 2022). 

While competition is challenging to observe di -
rectly, niche overlap is a necessary condition for com-
petition that comes from sharing limited resources, 
such as food (Alley 1982). Chemical tracers, particu-
larly stable isotopes and, more recently, fatty acid 
signatures, are often used as proxies to model spe-
cies’ feeding niches and can be useful in assessing 
the degree of niche overlap between species of 
unknown diets (Newsome et al. 2012, Swanson et al. 
2015, Bowes et al. 2017, Pedro et al. 2020, MacKenzie 
et al. 2022). In marine mammals, stable isotope ratios 
of carbon (δ13C) indicate the base carbon source of an 
animal’s prey, nitrogen (δ15N) identifies trophic posi-
tion, and sulfur (δ34S) can separate benthic and pe -

2



Land-Miller et al.: Greenland marine mammal feeding niches

lagic resources and migration pathways (Newsome 
et al. 2012, Szpak & Buckley 2020). Together, all 3 
elements provide a footprint of the overall dietary 
niche. However, one challenge in using stable iso-
topes to study marine mammals is that their tissues 
are high in lipids, which have lower δ13C ratios that 
can bias overall carbon isotope ratios. Lipid extrac-
tion processes that correct for this issue with δ13C can 
affect the δ15N values (Yurkowski et al. 2015, 
Larocque et al. 2021). In other taxa, there is conflict-
ing evidence on whether lipid extraction affects δ34S, 
and this question has not been studied in marine 
mammal muscle tissue (Elliott et al. 2014, Larocque 
et al. 2021, Riverón et al. 2022). Analysis of fatty acids 
from marine mammal blubber samples can similarly 
reflect dietary patterns as, in particular, long-chain 
polyunsaturated fatty acids (PUFAs) are only ac -
quired through diet; thus, fatty acid analysis can also 
reflect the degree of feeding niche overlap among 
species, often with greater detail than stable isotopes 
alone (Budge et al. 2006, Pedro et al. 2020). 

In this study, we compared the feeding patterns of 
11 species of marine mammals in Greenland, using 
both stable isotope ratios and fatty acid signatures to 
elucidate their overlap and potential food competition. 
We included 4 native Arctic species: bearded seal 
Erignathus barbatus, ringed seal, Atlantic walrus 
Odobenus rosmarus rosmarus, and narwhal, and 7 
sub-Arctic species in Greenland: harp seal Pago -
philus groenlandicus, hooded seal Cystophora cris -
tata, harbor porpoise Phocoena phocoena, white-
beaked dolphin, long-finned pilot whale, minke 
whale Balaenoptera acutorostrata, and humpback 
whale. We first assessed the effects of lipid extraction 
on isotopic ratios of carbon, nitrogen, and sulfur in the 
muscle tissue of each species. Next, we compared sta-
ble isotope ratios and fatty acid signatures among 
species. Finally, we compared niche breadth of all 11 
species and quantified niche overlap between Arctic 
and sub-Arctic species to determine the degree of po-
tential feeding niche overlap between native and 
northward-range-shifting marine mammals. 

2.  MATERIALS AND METHODS 

2.1.  Sample collection 

We opportunistically obtained blubber and muscle 
tissue samples from all species (except blubber and 
liver for harbor porpoise) after local subsistence har-
vest by communities in Greenland. Sample selection 
was entirely determined by which animals were 

encountered and collected by hunters and which 
 tissues were subsequently made available to re -
searchers, so sample size, location, and year vary by 
species. All collections occurred from 2010 to 2018, 
except for one minke whale sampled in 2000 and 2 
minke whales and one humpback whale with un -
known year (Table S1 in the Supplement at www. 
int-res.com/articles/suppl/m14440_supp.pdf, Fig. 1), 
which were retained due to small sample size for 
these species. 

2.2.  Stable isotope analysis 

The majority of stable isotope samples were ana-
lyzed in the Ecological Tracers Lab at McGill Univer-
sity. These samples constituted muscle tissue from 9 
species (bearded seal n = 8, ringed seal n = 13, walrus 
n = 2, narwhal n = 2, humpback whale n = 14, minke 
whale n = 8, long-finned pilot whale n = 20, white-
beaked dolphin n = 99, harp seal n = 5) and liver tis-
sue from harbor porpoise (n = 10) (harbor porpoise 
liver used only in the lipid-extracted versus non-
lipid-extracted analysis; see Section 2.4). Samples of 
bearded seal, ringed seal, and walrus were stored as 
a full blubber−muscle profile and muscle was sub-
sampled for analysis, while all other species were 
subsampled on collection and muscle was stored 
independently. Samples were analyzed twice: once 
each for lipid-extracted and non-lipid-extracted ana -
lysis. A 0.4 g sample of each tissue was weighed, cut 
into small pieces, and oven-dried overnight at 80°C 
(Barrow et al. 2008). Samples were ground using a 
glass mortar and pestle, and half of the dried sample 
was reserved for non-lipid-extracted analysis. To 
extract lipids from the remaining half of each sample, 
2 ml of 2:1 chloroform:methanol was added and sam-
ples were incubated for 24 h at 30°C, subsequently 
rinsed twice with 2:1 chloroform:methanol and then 
allowed to dry completely (Stern et al. 2021). For a 
small number of samples (3 minke whale, 3 white-
beaked dolphin, 2 long-finned pilot whale) for which 
we had less than 0.4 g of tissue, lipids were not 
extracted and the whole sample was dried and 
ground for non-lipid-extracted analysis only. 

A 1.2 mg mass of each powdered sample was 
weighed into a tin capsule and analyzed on a Thermo 
Scientific EA Isolink Flash Elemental Analyzer with 
ramped gas chromatography oven paired with a 
Delta V Plus Isotope Ratio Mass Spectrometer (IRMS) 
configured to simultaneously measure carbon, nitro-
gen, and sulfur (CNS) isotopes. To compensate for 
low amounts of sulfur in our samples relative to car-
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bon and nitrogen, helium flow through the elemental 
analyzer was reduced part-way through the run to 
concentrate sulfur and amplify the sulfur peak in the 
IRMS (Sayle et al. 2019). Duplicates were run for one 
in 10 samples. 

Values were calibrated against international ref-
erence materials from the United States Geological 
Survey (USGS) and International Atomic Energy 
Agency (IAEA) (USGS40, USGS41a, IAEA-N-2, 
IAEA-S-1, IAEA-S-2, IAEA-S-3) to obtain δ13C, 
δ15N, and δ34S. The isotope ratio was calculated for 
each element as: 

                     

Inter-day analytical precision was assessed using 
replicates of reference materials; specifically, USGS
40 and USGS41a for carbon and nitrogen, and IAEA-
S-1 for sulfur. Standard deviations (SD) of both USGS 
standards were 0.09−0.11‰ for carbon (n = 108) and 
0.08−0.09‰ for nitrogen (n = 108), while SD was 
0.14‰ for sulfur (n = 55). We determined accuracy 
using standards USGS88, USGS89, and Elemental 
Micoroanalysis gelatin B2215 for carbon and nitro-
gen (n = 69), and gelatin B2215 only for sulfur (n = 24), 

Rsample – Rreference

Rreference
δX = ×1000
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Fig. 1. Sampling locations for 11 species collected around Greenland primarily from 2010 to 2018. Four species are Arctic: 
bearded seal Erignathus barbatus, ringed seal Pusa hispida, Atlantic walrus Odobenus rosmarus rosmarus, and narwhal Mon-
odon monoceros; 7 are range-shifting sub-Arctic species: harp seal Pagophilus groenlandicus, hooded seal Cystophora 
cristata, harbor porpoise Phocoena phocoena, white-beaked dolphin Lagenorhynchus albirostris, long-finned pilot whale Glo-
bicephala melas, minke whale Balaenoptera acutorostrata, and humpback whale Megaptera novaengliae. Multiple species 
were collected near the same site in 4 locations (Maniitsoq, Tasiilaq, Ittoqqortoormiit, West Ice) and points were shifted very  

slightly for readability. One minke whale from an unknown location is not shown
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by calculating the mean difference from certified val-
ues for each element: 0.06 ± 0.17‰ for carbon, 0.17 ± 
0.08‰ for nitrogen, and 0.16 ± 0.28‰ for sulfur. 
Intra-day precision based on duplicates run for 10% 
of samples (n = 40) showed a mean absolute differ-
ence of 0.10 ± 0.16‰ for carbon, 0.05 ± 0.04‰ for 
nitrogen, and 0.11± 0.20‰ for sulfur. 

Additional samples of muscle tissue from harp (n = 
4) and hooded seal (n = 4) from the West Ice, narwhal 
from Gåsefjord (n = 17), and ringed seal from Itto-
qqortoormiit in 2018 (n = 17) were analyzed for δ13C 
and δ15N at the Center for Permafrost at the Uni -
versity of Copenhagen, Denmark. Only non-lipid-
 ex tracted analysis was performed. Samples were 
analyzed with an elemental analyzer (CE 1110, 
Thermo Electron) paired with an IRMS (Finnigan 
MAT Delta PLUS, Thermo Scientific), using interna-
tional reference materials (IAEA sucrose and ammo-
nium sulfate) to calibrate internal reference gases, 
with an analytical precision of <0.1‰ SD. While no 
samples were run at both labs to allow direct com-
parison, ringed seal samples collected near Ittoqqor-
toormiit in different years (2012 for McGill, 2018 for 
Copenhagen) showed small mean differences in δ13C 
and δ15N (≤1.1 ‰). These differences were well 
within expected intraspecies variation and not large 
enough to obscure inter-species differences, so data 
from both labs was retained. 

2.3.  Fatty acid signature analysis 

We extracted fatty acids from the blubber of all spe-
cies and included a standard reference material, 
NIST1945 Pilot Whale Blubber, with each batch of 
samples, as per established procedures (McKinney et 
al. 2013). In summary, we treated 0.3−0.5 g of blubber 
with 10.5 ml of 2:1 chloroform:methanol containing 
0.01% butylated hydroxytoluene. After adding 2.6 ml 
of 0.9% sodium chloride, we extracted the chloro-
form−lipid layer and filtered extracts through anhy-
drous sodium sulfate before fully evaporating chloro-
form to determine lipid content. Extracted fatty acids 
were trans-esterified to fatty acid methyl esters 
(FAMEs) using the Hilditch reagent. Extracted FAMEs 
were diluted with hexane to 50 mg FAME per ml and 
then analyzed on an Agilent 8860 gas chromatograph 
(Agilent Technologies) with a flame ionization detec-
tor (Pedro et al. 2019, Facciola et al. 2022). A total of 
69 monitored fatty acids were quantified as mass per-
cent of total FAME. The accuracy was indicated by 
the percent error for NIST1945 values relative to the 
published values (Kucklick et al. 2010) and showed a 

mean (±SD) of 16 ± 23%. The intra-day precision, in-
dicated by the relative percent difference between 
duplicate samples (n = 6), was 8 ± 13%. 

2.4.  Data analysis 

For all species analyzed for both lipid-extracted 
and non-lipid-extracted stable isotopes, and for 
which we had a sample size greater than 3, we com-
pared raw δ13C, δ15N, or δ34S from lipid-extracted ver-
sus non-lipid-extracted tissues. To do so, we used 
paired t-tests with a Bonferroni correction (α / 21 = 
0.0024) to test for differences in mean δ13C, δ15N, or 
δ34S values between the 2 treatments. 

To compare feeding patterns, we tested for differ-
ences in mean CNS isotope values among species us-
ing one-way ANOVAs. Harbor porpoise were ex-
cluded from all isotopic comparisons between species, 
as liver isotopic values are not always comparable to 
muscle in marine mammals, and muscle and liver 
have different turnover rates (Sinisalo et al. 2008, Los-
eto et al. 2008). Although there is a known latitudinal 
trend in the δ15N isotopic baseline around Greenland 
(Hansen et al. 2012), correcting for this baseline did 
not reduce variation in the data, and appeared to 
over-correct for species collected in more southern 
latitudes. Additionally, because many of the sub-Arc-
tic species are migratory (Heide-Jørgensen et al. 
2023), collection location does not necessarily repre-
sent the main feeding location during other times of 
the year, so we did not baseline-adjust the δ15N 
values. Trends in δ13C baseline values are not consis-
tent around Greenland (Hansen et al. 2012), and 
there is a lack of information on the sulfur isotopic 
baseline, so we did not attempt baseline adjustment 
for δ13C and δ34S. ANOVAs were run on the raw δ15N, 
δ13C, and δ34S values, as the data were normally dis-
tributed and showed homogeneity of variances, con-
firmed through visual inspection of residual and Q-Q 
plots. We ran post hoc Tukey’s HSD tests to determine 
which species differed significantly in their mean sta-
ble isotope ratios for each element. 

We also tested for interspecific variation in feeding 
patterns based on fatty acid signatures. As fatty acid 
data are proportional, fatty acids from all 11 species 
were first transformed using a log-ratio transforma-
tion: xtrans = ln[xi / g(x)], with g(x) being the geometric 
mean of all fatty acid proportions in the sample 
(Aitchison 1983, Budge et al. 2008, Bourque et al. 
2018). We next selected a limited set of fatty acids 
to use in further analyses to satisfy a minimum 5:1 
 sample:variable ratio for both principal component 
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ana lysis (PCA) and MANOVA (Budge et al. 2006). To 
do so, we calculated the mean of each fatty acid value 
for each species, and individual fatty acids were only 
used if they had a mean proportion of ≥0.1% for all 
species to avoid measurement variability for low-con-
centration fatty acids. The set was then further limited 
to those fatty acids largely originating from diet rather 
than from de novo synthesis (Iverson et al. 2004). For 
the PCA, the number of fatty acids was further re-
duced to a final set of 14 by selecting those fatty acids 
from this reduced set of dietary fatty acids that had 
the highest mean proportions across species: 16:3n6, 
18:2n6, 18:3n3, 18:4n3, 20:1n11, 20:1n9, 20:1n7, 
20:2n6, 20:4n6, 20:4n3, 20:5n3, 22:1n11, 22:2n9, and 
22:6n3. PCA then was performed on the transformed 
data using the package ‘FactoMineR’ in R (Lê et al. 
2008). For MANOVA, because the number of re-
sponse variables is limited to fewer than the number 
of the smallest group (Budge et al. 2006), we first 
grouped harp and hooded seals as ‘sub-Arctic seals’, 
given their overlapping fatty acid signatures (McKin-
ney et al. 2013), and then used the 7 fatty acids from 
our limited set that had the highest mean proportions. 
MANOVA was performed to test whether the fatty 
acid profiles of each group were different, and be-
cause fatty acids did not show homogeneity of vari-
ance, post hoc Welch’s ANOVAs were performed on 
each fatty acid to determine which specific fatty acids 
showed interspecific differences. For those fatty acids 
that showed differences, a post hoc Games-Howell 
test was used to test for pairwise differences in spe-
cies’ mean fatty acid concentrations. We did not con-
sider sex, age, or year in these isotope and fatty acid 
analyses, as sex and age data were not available for 
all individuals and each species was not collected in 
all years (Table S1). Walrus were excluded from sta-
tistical tests of fatty acids with a sample size of 2. Fatty 
acids were interpreted based on known associations 
with lower trophic-level organisms, including 22:1n9 
and 22:1n11 as Calanus copepod markers, 20:5n3 as a 
sea-ice algae diatom marker, and 22:6n3 as a dinofla-
gellate marker (Dalsgaard et al. 2003; our Table S2). 

Feeding niche breadth and overlap using stable iso -
topes and fatty acids were primarily calculated using 
Ba yesian estimates of probabilistic niche regions via 
the package ‘nicheROVER’ in R, using default non-in-
formative priors and 10 000 repetitions (Swanson et al. 
2015). In 2 dimensions, to measure niche breadth we 
instead used the package ‘SIBER’ in R to calculate 
standard ellipse area corrected for small sample sizes 
(SEAC) (Jackson et al. 2011). The harbor porpoise was 
excluded again here for the analysis of stable isotope 
ratios, as only liver tissue was available. We first mod-

eled niche regions with only carbon and nitrogen to 
provide measures of isotopic niche breadth (SEAC) 
comparable to previous studies that used these 2 iso-
topes. Calculations of niche breadth and overlap were 
then repeated using carbon, nitrogen, and sulfur in 3 
dimensions, for all samples for which we measured all 
3 elements, to assess the effect of adding sulfur on the 
separation of species’ niches. Niche region size (NR) 
was here used as a measurement of niche breadth 
while the probability of an individual from one 
species (species A) falling into the 95% probable 
niche region of another species (species B) was used 
to represent niche overlap of species B onto species A 
throughout. We then also calculated niche breadth 
(SEAC) and overlap using PC1 and PC2 from the PCA 
of the fatty acid profiles to assess whether different 
tracers provided additional insight into overlap in 
species’ feeding niches. All analyses were performed 
in R version 4.2.2 (R Core Team 2022). All data used in 
this study is accessible on the repository Zenodo 
(https://doi.org/10.5281/zenodo.8125162). 

3.  RESULTS 

3.1.  Impact of lipid extraction on  
stable isotope ratios 

The effects of chemical lipid extraction varied by 
both species and element (Fig. 2, Table S3). In long-
finned pilot whale and white-beaked dolphin, lipid 
extraction increased mean δ13C values (Bonferroni-
adjusted p < 0.0001) by 0.98 and 0.52‰, respectively. 
Lipid extraction did not significantly affect δ13C val-
ues for all other (8 out of 10) species (Bonferroni-
adjusted p > 0.05), but it did reduce the variance in 
δ13C for most species. Lipid extraction increased 
mean δ15N values of long-finned pilot whale, white-
beaked dolphin, and bearded, ringed, and harp seals 
(Bonferroni-adjusted p < 0.05), while δ15N values 
were not different after lipid extraction for the other 
5 species (Bonferroni-adjusted p > 0.05). Increased 
δ15N values after lipid extraction ranged from 
+0.41‰ for ringed seal to +0.60‰ for white-beaked 
dolphin. Values of δ34S were lower after lipid extrac-
tion for bearded, ringed, and harp seals, and for har-
bor porpoise (Bonferroni-adjusted p < 0.001) but did 
not significantly differ between lipid-extracted and 
non-lipid-extracted tissues for the other 6 species 
(Bonferroni-adjusted p > 0.05). Decreased δ34S val-
ues after lipid extraction ranged from −0.99‰ for 
harp seal to −0.72‰ for harbor porpoise. Lipid ex -
traction did not affect any isotope in either of the 
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baleen whale species. The variance in δ15N and δ34S 
values was similar for each species between lipid-
extracted and non-lipid-extracted tissues. 

We used the results of our lipid-extracted and non-
lipid-extracted stable isotope value comparisons to 
select whether to use lipid-extracted or non-lipid-
extracted values for all subsequent analyses 
(Table S4). Because lipid extraction reduced the vari-
ance of δ13C in most species and showed some signif-
icant effects on δ13C values, whenever possible we 
used lipid-extracted carbon values for further com-
parison of stable isotopes between species. However, 
for a small number of minke whale samples (n = 3) 
that were analyzed for only non-lipid-extracted val-
ues because of small amounts of tissue, we used non-
lipid-extracted δ13C for subsequent analyses, as we 
found no difference between lipid- and non-lipid-
extracted carbon signatures for this species. Addi-
tionally, all samples analyzed at the University of 
Copenhagen (some ringed seal, harp seal, hooded 
seal, and narwhal) were not lipid-extracted, but we 

chose to include these δ13C values in multi-species 
comparisons for the following reasons: (1) we found 
no significant differences in mean δ13C for any seal 
samples analyzed for both treatments at McGill, and 
(2) for narwhal, although we were only able to ana-
lyze 2 samples for both treatments, the mean differ-
ence between lipid-extracted and non-lipid-ex -
tracted carbon signatures was small (−0.25‰). For 
δ15N and δ34S, lipid extraction significantly altered 
values for these isotopes for some species, and there-
fore we used non-lipid-extracted δ15N and δ34S for all 
subsequent inter-species comparisons. 

3.2.  Comparison of feeding patterns  
between species 

For all 3 elements, interspecific differences were 
found (Fig. 3). One-way ANOVAs revealed differ-
ences in means of δ13C, δ15N, and δ34S among spe-
cies, with F8,199 = 123.3, p < 0.0001 for δ13C, F8,199 = 
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Fig. 2. Effect of chemical lipid extraction on stable isotope ratios of carbon (δ13C), nitrogen (δ15N), and sulfur (δ34S) in marine 
mammal muscle tissues (except liver tissue for harbor porpoise) sampled in Greenland between 2010 and 2018 (except one 
minke whale from 2000 and 2 humpback whales from unknown years). Paired non-lipid-extracted and lipid-extracted sam-
ples from the same individuals are shown connected by gray lines. Paired t-tests were run for each element and species 
 (excluding walrus and narwhal, for which n = 2), and Bonferroni-corrected equivalent of p-values are shown: *p < 0.05; **p < 
0.01; ***p < 0.001; ****p < 0.0001. For each species and treatment, boxes represent quartile 1, median, and quartile 3, while  

whiskers show minimum and maximum excluding outliers. All data points are shown
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85.0, p < 0.0001 for δ15N, and F6,157 = 10.3, p = 0.0001 
for δ34S. The species that showed different values 
varied by element, although the 2 baleen whale spe-
cies did not differ from one another in the means of 
any of the 3 elements, and the 2 sub-Arctic pin-
nipeds, harp and hooded seals, did not differ in the 
means of δ13C and δ15N (hooded seals were not ana-
lyzed for δ34S). 

For δ13C, the 4 Arctic species tended to have either 
high or low values, whereas more intermediate values 
were found for the sub-Arctic species. Bearded seal 
had the highest mean δ13C of all species (−17.63 ± 
0.29‰, padj < 0.0001 for all pairwise comparisons). 
Ringed seal and walrus had the lowest δ13C values, 
−21.27 ± 0.63‰ and −21.48 ± 0.11‰, respectively, and 
the ringed seal mean was significantly lower than all 
other species (padj < 0.0001), while walrus was ex-
cluded from statistical tests because of low sample 
size. The mean δ13C for narwhal, the final Arctic spe-

cies, at −20.48 ± 0.63‰, was significantly lower than 
all sub-Arctic species, except for harp and hooded 
seals, which had means of −20.07 ± 0.28 and −20.07 ± 
1.04‰, respectively. Among the 6 sub-Arctic species, 
these harp and hooded seals generally had lower δ13C 
values than the sub-Arctic cetaceans, which had 
means ranging from −19.28 ± 0.77 to −18.62 ± 0.28‰. 
Except for hooded seal and minke whale, all sub-Arc-
tic cetaceans had significantly higher values than the 
sub-Arctic seals (padj < 0.0052). 

Three Arctic species had among the highest mean 
δ15N values, with 14.41± 0.55‰ for narwhal, 13.84 ± 
0.82‰ for ringed seal, and 13.55 ± 0.54‰ for bearded 
seal, but walrus had one of the lowest δ15N at 11.49 ± 
0.09‰. The sub-Arctic seals also had relatively high 
δ15N values, 12.62 ±1.02‰ for harp seal and 13.79 ± 
0.72‰ for hooded seal, relative to the 4 sub-Arctic 
cetacean species, which had lower δ15N signatures 
than both the sub-Arctic seals and all Arctic species 
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Fig. 3. Stable isotope ratios of carbon (δ13C), nitrogen (δ15N), and sulfur (δ34S) in muscle samples of Arctic and sub-Arctic mar-
ine mammal species sampled around Greenland primarily from 2010 to 2018 (except one minke whale from 2000 and 2 hump-
back whales from unknown years). The δ13C values are from lipid-extracted samples, while δ15N and δ34S values are from non-
lipid-extracted samples. The exception to this is that δ13C for some minke whale (n = 3), ringed seal (n = 17), harp seal (n = 4), 
hooded seal (n = 4), and narwhal (n = 17) were only analyzed for non-lipid-extracted signatures, so non-lipid-extracted carbon 
ratios are shown. The same letters above boxplots represent groups with means that were not significantly different from each 
other, according to an ANOVA with post hoc Tukey HSD tests. Walrus was excluded from all statistical tests with a sample size 
of 2, while narwhal and hooded seal were also excluded from the test of sulfur isotopic ratios, with sample sizes of 2 and 0, 

respectively. Boxplot parameters as in Fig 2
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except for walrus (p < 0.0001), apart from harp seal 
and the 2 baleen whales. 

There was overall less variation in δ34S between 
species relative to δ13C and δ15N (Fig. 3). The total 
δ34S range (3.83‰) was smaller than for δ13C (5.07‰) 
or δ15N (6.26‰). No clear trends were visible either 
between sub-Arctic and Arctic species or between 
taxa. For means of all species and all elements, see 
Table S5. 

Blubber profiles of the top 7 fatty acids of dietary 
origin differed by species (MANOVA, p < 0.0001) 
(Fig. 4, Table S6). When we tested each fatty acid in-
dividually, proportions of all were also affected by 
species (post hoc Welch’s ANOVA, p < 0.0001). Fatty 
acids 22:1n11, 20:5n3, and 22:6n3 differed the most 
be tween Arctic and sub-Arctic species, with Arctic 
species generally having lower proportions of 22:1n11 
and higher proportions of 20:5n3 and 22:6n3. The ex-
ception to this trend was for narwhal, for which the 
proportions of both fatty acids were more similar to 
sub-Arctic species. Additionally, harp and hooded 
seals had similarly high proportions of 20:5n3 and 
22:6n3 as bearded seal, ringed seal, and walrus. 
Baleen whales had intermediate proportions of these 
2 fatty acids, while all odontocetes (‘toothed whales’) 

had the lowest proportions. The fatty acids 20:1n11 
and 20:1n9 showed patterns similar to 22:1n11, but 
differences between Arctic and sub-Arctic species 
were less pronounced. Proportions of 18:4n3 varied 
by species, but without any clear trend on species 
grouping, while 18:2n6 was generally similar among 
all species. The mean proportions of all 7 fatty acids 
did not differ between the 2 baleen whale species 
(p > 0.05). 

3.3.  Feeding niche breadth and overlap 

Visualizing niches of all marine mammal species us-
ing both δ13C and δ15N and a PCA of the fatty acid pro-
files revealed varying niche size, niche separation, 
and potential overlap between species (Figs. 5, 6, & 
S1). Patterns in niche breadth among species varied 
based on the metric used (Table 1). Isotopic niche 
breadth, measured as SEAC using δ13C and δ15N, was 
highest in 3 sub-Arctic species, harp and hooded seals 
(grouped for this analysis), minke whale, and hump-
back whale (Fig. 5, Table 1). Ringed seal and narwhal 
had more intermediate niche sizes, while white-
beaked dolphin, long-finned pilot whale, and bearded 
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Fig. 4. Proportions of the major fatty acids of dietary origin in the blubber of Arctic and sub-Arctic marine mammal species 
sampled around Greenland primarily from 2010 to 2018 (except one minke whale from 2000 and 2 humpback whales from un-
known years). A one-way MANOVA of these 7 fatty acids determined that fatty acid profile varies by species. Post hoc Welch’s 
ANOVAs on each fatty acid determined that all individual fatty acids also varied by species, and pairwise comparisons are 
shown with letters above each bar. Within each individual fatty acid, the same letters indicate species that did not have  

significantly different mean proportions of that fatty acid. Error bars represent standard error
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seal had the smallest SEAC. However, when δ13C, 
δ15N, and δ34S were all used to calculate NR, 42 individ-
uals not analyzed for sulfur were excluded, and pat-
terns differed (Fig. S1). Using NR, humpback whale 
still had the largest niche, but harp and hooded seals 
and minke whale were smaller and more similar to all 
other species measured (Table S7). Because many in-
dividuals were removed, measures of niche breadth 
including sulfur are not directly comparable to meas-
ures including all individuals with δ13C and δ15N and 
fatty acids. For fatty acids, SEAC based on PC1 and 
PC2 of a PCA of all individuals showed that minke 
whale (along with harbor porpoise) had the largest 
fatty acid niche, while humpback whale and harp and
hooded seals were more comparable to the other spe-
cies. Long-finned pilot whale and ringed seal had the 
smallest fatty acid niches, while all other species had 
similar or slightly larger SEAC from fatty acids. 

Fatty acid profiles, based on the top 14 dietary fatty 
acids in all species, separated species more by taxa 

than Arctic vs. sub-Arctic grouping (Fig. 6). Pin-
nipeds loaded the most positively on PC1, followed 
by baleen whales, while odontocetes loaded more 
negatively. PC2 separated the odontocetes between 
larger (narwhal and long-finned pilot whale) and 
smaller (white-beaked dolphin and harbor porpoise) 
species. PC2 also separated the Arctic pinnipeds 
from the baleen whales and harp and hooded seals, 
which were more closely clustered. 

For isotopic niches defined by δ13C and δ15N, the 
most overlap was evident among all sub-Arctic spe-
cies (Figs. 5 & 7). Arctic species tended to have 
isotopic signatures at the more extreme values, while 
all sub-Arctic species clustered with more intermedi-
ate values. Harp and hooded seals had the isotopic 
niche closest in isotopic space to, but still distinct 
from, narwhal and ringed seal, while bearded seal 
was not close to any other species. Including sulfur 
(Fig. S1) did not clarify separation of any species not 
already separated by δ13C and δ15N. Calculated prob-
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Fig. 5. Stable isotope ratio biplots of carbon (δ13C) and nitrogen (δ15N) in muscle samples of Arctic (filled shapes) and sub-
 Arctic (open shapes) marine mammal species sampled around Greenland primarily from 2010 to 2018 (except one minke 
whale from 2000 and 2 humpback whales of unknown year). Ellipses represent confidence intervals of 0.4 for each species.  

Harp and hooded seals are grouped based on similar ecology and small sample sizes
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abilities of niche overlap using δ13C and δ15N to define 
a 95% niche region also demonstrate the highest 
probabilities of overlap among sub-Arctic species, ex-
cept for a high probability of harp and hooded seals 
over lapping both narwhal and ringed seal (Fig. 7a). 
Narwhal and ringed seal also had moderate probabil-
ities of overlapping each other (43.3−58.2%), with 
quite low probabilities (<15%) of overlap from any 
other species, with bearded seal showing low overlap 
with all species. The niches of the 2 baleen whale spe-
cies had overall the highest probabilities of overlap-
ping others, with moderate to high probabilities 
(32.1−97.8%) of overlapping all other sub-Arctic spe-
cies. Using fatty-acid-based niches, probability of 
overlap was high be tween species of similar taxa, ex-
cept for high probabilities of overlap between harp 
and hooded seals and baleen whales (Fig. 7b). Of the 
Arctic species, narwhal had the highest probabilities 
of overlap by sub-Arctic species, showing moderate 
probability of overlap (14.9−57.3%) by the fatty acid 
niches of harbor porpoise, white-beaked dolphin, 
long-finned pilot whale, and minke whale. 
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Species                                         SEAC                  SEAC 
                                              stable isotopes      fatty acids 
                                                (δ13C, δ15N)         (PCI, PC2) 
 
Bearded seal                                 0.57                    0.69 
Ringed seal                                   1.17                    0.52 
Narwhal                                        1.14                    0.84 
Harp and hooded seals                2.03                    0.70 
Harbor porpoise                                                       1.60 
White-beaked dolphin                 0.26                    0.86 
Long-finned pilot whale              0.30                    0.44 
Minke whale                                 1.85                    2.30 
Humpback whale                         1.60                    0.91

Table 1. Niche breadth of Arctic and sub-Arctic marine 
mammal species sampled around Greenland primarily from 
2010 to 2018 (except one minke whale from 2000 and 2 
humpback whales of unknown year), quantified through 3 
metrics: (1) standard ellipse areas corrected for small sample 
sizes (SEAC) calculated from stable isotope ratios of δ13C and 
δ15N and (2) SEAC calculated from a principal component 
analysis of fatty acid signatures. SEAC were calculated using 
the packages SIBER (Jackson et al. 2011) in R. SEAC from 
fatty acids were calculated using axes PC1 and PC2 of a 
principal component analysis of the 14 most abundant fatty 
acids among all species that also derive primarily from diet

Fig. 6. Principal component analysis of fatty acid signatures from blubber samples of Arctic (filled shapes) and sub-Arctic 
(open shapes) marine mammal species sampled around Greenland primarily from 2010 to 2018 (except one minke whale from 
2000 and 2 humpback whales of unknown year). The 14 fatty acids with the highest proportions in all species, and that are 
largely of dietary origin, were included. Percentages on axes labels indicate the percent of variance in fatty acid signatures 
 explained by each PC. Ellipses represent confidence intervals of 0.4 for each species. Harp and hooded seals are grouped  

based on similar ecology, fatty acid patterns (McKinney et al. 2013), and small sample sizes
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4.  DISCUSSION 

After assessing the effects of lipid extraction on sta-
ble isotope ratios in marine mammal tissues, we used 
both stable isotope ratios and fatty acid signatures to 
compare the feeding niches of 4 Arctic and 7 north-
ward-shifting sub-Arctic marine mammal species in 
Greenland. We found that the effects of lipid extrac-
tion varied according to species and element (among 
carbon, nitrogen, and sulfur), although increases in 
carbon signatures after lipid extraction were small 
and rarely significant. There were more often signif-
icant effects of lipid extraction for δ15N, and we also 
demonstrate for the first time that δ34S values for mar-
ine mammal muscle were significantly depleted for 
some species after lipid extraction. Subsequent inter-
specific comparisons showed differences in stable 
isotope values, as well as in the proportions of some 
of the most abundance fatty acids, between Arctic 
and sub-Arctic marine mammal species. In quantify-
ing niche breadth, sub-Arctic species consistently 
had the largest niches, particularly the baleen 
whales, harbor porpoise, and harp and hooded seals. 
Patterns in niche overlap differed between isotopes 
and fatty acids but generally showed high degrees of 

separation among species. However, there were 
some instances of overlap between Arctic and sub-
Arctic species that emphasize areas of further poten-
tial for feeding competition as sub-Arctic species 
continue to shift north with the warming climate. 

4.1.  Effects of lipid extraction on  
stable isotope ratios 

Lipid extraction affected δ13C and δ15N, consistent 
with previous studies on marine mammal muscle 
(Horstmann-Dehn et al. 2012, Yurkowski et al. 2015). 
Nonetheless, like these other studies, the size of the 
effect on δ13C was small (maximum of 1.16‰), and 
the effect was only significant for white-beaked dol-
phin and long-finned pilot whale. These 2 species 
showed higher δ13C after lipid extraction but also had 
the largest sample sizes (99 and 20, respectively), so 
the higher power of the t-tests for these species may 
explain this result. We found no significant effect of 
lipid extraction on δ13C for any seal species, which 
contrasts significant enrichment for harp seal and the 
somewhat unusual depletion for bearded seal previ-
ously reported (Yurkowski et al. 2015). The limited 
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Fig. 7. Probability of tracer-based niche overlap of Arctic and sub-Arctic marine mammals collected around Greenland prima-
rily from 2010 to 2018 (except one minke whale and 2 humpback whales), based on (a) stable isotope ratios of carbon and ni-
trogen and (b) axes PC1 and PC2 from a principal component analysis of fatty acid profiles. Numbers represent probability (as 
a percent) of an individual of species A (y-axis) falling into the 95% niche region of species B (x-axis), as described in the 
‘nicheROVER’ package in R (Swanson et al. 2015). This indicates that the niche of species B overlaps species A. The 95%  

credibility intervals are shown below percent values
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effect size of lipid extraction on δ13C values was likely 
caused by low lipid content in our samples. Although 
for most species, the C:N ratios of non-lipid-extracted 
tissues (Table S3) were above thresholds used for 
lipid extraction (3.4 or 3.5; e.g. Larocque et al. 2021, 
Yurkowski et al. 2015), the magnitude of changes in 
δ13C relative to changes in C:N after lipid extraction 
were consistent with previous studies (Table S3, 
Yurkowski et al. 2015, Larocque et al. 2021). 

For δ15N, we found an effect of lipid extraction for 
bearded seal, ringed seal, and harp seal, while 
Yurkowski et al. (2015) found effects for ringed and 
bearded but not harp seals. These studies together 
suggest that species may not be the only factor influ-
encing lipid extraction effects on δ13C and δ15N for 
marine mammals and should not necessarily be the 
basis for decision-making around lipid extraction. 
Both studies overall found more significant effects on 
δ15N than δ13C, likely caused by co-extraction of 
lipid-associated proteins (Sotiropoulos et al. 2004, 
Bodin et al. 2007), suggesting that the bias on δ15N 
caused by lipid extraction may outweigh any benefits 
of lipid extraction for δ13C, depending on the re -
search question. Nonetheless, the variance in δ13C 
decreased after lipid extraction for most species, 
which could be caused by variation in lipid content 
among individuals (Post et al. 2007). Decreased vari-
ance was particularly noticeable for samples stored 
as a full muscle−blubber profile (ringed seal, beard -
ed seal, walrus) versus muscle stored separately from 
blubber (all other species). Although only a qualita-
tive observation, it may suggest that studies not plan-
ning to lipid-extract tissue should collect muscle and 
blubber in separate sampling containers during field 
work and storage to avoid a potential influence of 
blubber lipids on muscle δ13C values. 

To our knowledge, this is the first study to assess the 
effects of lipid extraction on muscle δ34S of marine 
mammals, and our results indicate that at least for seal 
species, lipid extraction can significantly bias δ34S val-
ues. Sulfur ratios have been suggested as a promising 
new tool to separate benthic and pelagic feeding pat-
terns and as markers of migration in marine species 
(Hoekstra et al. 2002, Connolly et al. 2004, Szpak & 
Buckley 2020). To do so, the effects of lipid extraction 
on δ34S must be assessed. Recent studies have found 
mixed results on the effects of lipid extraction on δ34S 
in various tissues, finding no effect for brown bear tis-
sues (Javornik et al. 2019), significant effects for shark 
liver and muscle but not pinniped skin (Riverón et al. 
2022), and mixed effects on salmon muscle and sea-
bird eggs (Oppel et al. 2010, Elliott et al. 2014, 
Larocque et al. 2021). Effects are likely caused by the 

co-extraction of sulfolipids or sulfur-containing pro-
teins during lipid extraction (Oppel et al. 2010) and 
could affect the interpretations of δ34S values. Because 
there are only small amounts of sulfur in muscle and 
liver samples, the removal of even small quantities of 
these compounds could explain the effects observed. 
In this study, the total observed range of δ34S values 
was smaller than those of δ13C and δ15N, while the ef-
fect sizes of lipid extraction are comparable across el-
ements. Therefore, the effect of lipid extraction is pro-
portionally greater for δ34S, potentially obscuring 
ecologically significant patterns from δ34S. The 
cetacean species often showed intraspecific variation 
in the direction and magnitude of effects of lipid ex-
traction without overall significant species-level ef-
fects, suggesting that lipid extraction may result in 
unreliable δ34S values for these species as well as for 
seals. Interestingly, long-finned pilot whales showed 
lower values becoming more enriched and higher 
values becoming more depleted, but the cause of this 
pattern is unclear. Consequently, we recommend us-
ing non-lipid-extracted tissue for δ34S of marine mam-
mal muscle in future studies. 

4.2.  Inter-species comparisons of  
stable isotope patterns 

After these observed effects were used to inform 
the choice of treatment for each element for inter-
species comparisons, Arctic species generally had 
more enriched or depleted δ13C values than sub-
 Arctic species. Bearded seal had the highest δ13C of 
all 11 species analyzed, while ringed seal, walrus, 
and narwhal had values lower than almost all sub-
Arctic species. While few studies of these species’ 
diets have been done in Greenland specifically, 
bearded seal is generally known for benthic foraging 
patterns (Hjelset et al. 1999), and higher δ13C is asso-
ciated with benthic feeding (France 1995), likely 
explaining these high values. However, the low δ13C 
of all other Arctic species is somewhat surprising, as 
ringed seal and particularly walrus are also known to 
feed benthically at least occasionally (Hobson et al. 
2002). There is a documented difference in δ13C 
between the ice-associated food web and pelagic 
food webs, with ice-associated carbon sources hav-
ing higher δ13C than pelagic carbon (Kohlbach et al. 
2016); however, this interpretation does not match 
our data showing ringed seal, narwhal, and walrus 
all having lower δ13C than the sub-Arctic species. 

A more likely explanation for the low δ13C values of 
ringed seal, narwhal, and walrus relative to sub-
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 Arctic species may be baseline δ13C variation around 
Greenland; these species were primarily collected 
from central East Greenland near the Kangertittivaq 
fjord system (Scoresby Sound) and the municipality of 
Ittoqqortoormiit during the winter when extensive ice 
allows limited access to, e.g. Mya spp., Hiatella spp., 
and Serripes spp. While variation in δ13C baseline 
around Greenland has been documented (Hansen et 
al. 2012), clear geographic patterns are not evident, 
and baseline values have not been reported in central 
East Greenland near this fjord. Carbon ratios of the 
bearded seal in this study are reasonably consistent 
with values found in other locations (Hoekstra et al. 
2002, Young et al. 2010, MacKenzie et al. 2022), while 
ringed seal values are low compared to other ringed 
seals (Young et al. 2010, Young & Ferguson 2014, 
MacKenzie et al. 2022). Ringed seal teeth from near 
Ittoqqortoormiit have also shown lower δ13C values 
than those from central West Greenland (Aubail et al. 
2010), which was interpreted as colder Arctic waters 
brought southward to East Greenland via the East 
Greenland current causing a lower δ13C baseline in 
that area compared to West Greenland waters, which 
are influenced by the warmer, more saline Irminger 
Current (Aubail et al. 2010). Furthermore, the 
narwhal and ringed seals in this study showed 
relative isotopic niche positions similar to that found 
in West Greenland (Linnebjerg et al. 2016), but with 
δ13C values shifted ~2‰ lower. Therefore, the δ13C 
baseline in central East Greenland, specifically near 
Kangertittivaq fjord, warrants further study, particu-
larly as climate change continues to rapidly shift dy-
namics in East Greenland (Heide-Jørgensen et al. 
2023). Going forward, compound-specific carbon iso-
tope analysis could help disentangle the influence of 
baseline variation versus feeding habitat on δ13C val-
ues of East Greenland marine mammals (McKinney et 
al. 2013, Whiteman et al. 2019, McMahon & Newsome 
2019, Larsen et al. 2020). Specifically, patterns in the 
relative δ13C values of diet-derived (‘essential’) amino 
acids can identify carbon originating from pelagic, 
sea-ice-associated, and benthic sources (Chen et al. 
2022, Vane et al. 2023). These patterns are often 
maintained across regions with different δ13C base-
lines (Larsen et al. 2013, Elliott Smith et al. 2018) and 
could therefore clarify differences in base carbon re-
source use, as well as baseline δ13C variation, among 
species. Until then, the evidence for a particularly low 
δ13C baseline in this area suggests that the low δ13C 
values of ringed seal, narwhal, and walrus relative to 
sub-Arctic species may largely reflect baseline varia-
tion, obscuring possible evidence of distinct carbon 
resource use. 

Excluding walrus, Arctic species had higher δ15N 
values than sub-Arctic species, particularly than 
 sub-Arctic cetaceans, suggesting that ringed seal, 
bearded seal, and narwhal feed at a higher trophic 
position than sub-Arctic species (Post 2002). Alterna-
tively, these high δ15N signatures could also be due to 
increases in baseline δ15N with latitude (Hansen et 
al. 2012), and the fact that the Arctic species feed 
year-round at high latitude, whereas the sub-Arctic 
species only spend part of the year feeding in Green-
land. Other studies have found relatively similar δ15N 
values for bearded seal, ringed seal, and walrus 
(Dehn et al. 2007, Young et al. 2010, Aubail et al. 
2011, MacKenzie et al. 2022). Harp and hooded seals 
had similar δ15N values to the Arctic species, which is 
consistent with other areas of the Arctic (Ogloff et al. 
2019). These sub-Arctic seals had higher δ15N values 
than sub-Arctic cetaceans, though, which may be 
due to sub-Arctic seals having greater seasonal re -
liance on Arctic food webs than sub-Arctic cetaceans 
(Folkow et al. 2004, Haug et al. 2004, Laidre et al. 
2008, Hamilton et al. 2021) and/or to sub-Arctic seals 
feeding on higher trophic position prey, at least com-
pared to the baleen whales, which may partially feed 
on krill and pelagic fish (Laidre et al. 2010, Haug et 
al. 2017). The baleen whales also showed the largest 
ranges in δ15N values, which could be influenced by 
fasting during migration, known to alter δ15N ratios 
(Hobson et al. 1993, Newsome et al. 2010, Aguilar et 
al. 2014). 

There were no clear patterns in δ34S either by 
 Arctic−sub-Arctic grouping or taxa. Sulfur ratios may 
reflect migration patterns, as sulfur baselines change 
with latitude (García-Vernet et al. 2022), and this 
could explain why migratory white-beaked dolphin 
had by far the largest range of δ34S values, although 
the same pattern was not seen for the other migratory 
species. Long-finned pilot whale samples collected in 
similar locations in 2017 and 2018 showed differ-
ences in δ34S, but not in δ13C or δ15N, possibly sug-
gesting 2 groups of animals with different movement 
patterns. In Arctic studies, further investigation of 
drivers of variation in δ34S (e.g. with latitude, migra-
tion, or habitat type — ice-associated vs. pelagic vs. 
benthic) is needed to increase the value of this tool. 

4.3.  Inter-species comparisons of  
fatty acid  patterns 

The PUFAs 20:5n3 and 22:6n3 were generally 
higher in Arctic species, while the opposite pattern 
was found for the monounsaturated fatty acids 

14



Land-Miller et al.: Greenland marine mammal feeding niches

(MUFAs) 20:1n9 and 22:1n11. The exceptions were 
narwhal, which had proportions of these fatty acids 
more similar to sub-Arctic species, and harp and 
hooded seals, which had proportions more similar to 
Arctic species. The variation in these signatures is 
evident on PC1, as species separated along a gradi-
ent from toothed whales to baleen whales to seals. 
Fatty acids 20:1n9 and 22:1n11 are Calanus copepod 
markers, indicating that sub-Arctic cetaceans and 
narwhals rely more on a pelagic, copepod-based 
food web (Dalsgaard et al. 2003). By contrast, higher 
levels of 20:5n3 in the other Arctic species and in the 
sub- Arctic seals are characteristic of feeding on the 
sea ice-associated food web with carbon from 
diatom-dominated ice algae (Dalsgaard et al. 2003), 
again con sistent with greater use of Arctic food webs 
by harp and hooded seals than the other sub-Arctic 
species. Although 22:6n3 is generally considered to 
be a dinoflagellate marker and less indicative of sea 
ice (Dalsgaard et al. 2003), ice algae communities 
can vary in composition (Ratkova & Wassmann 2005, 
Lund-Hansen et al. 2020, Kunisch et al. 2021), and 
the higher levels of PUFAs relative to Calanus-
marker MUFAs support less reliance on a pelagic 
food web. Bearded seals and walrus are specialized 
benthic feeders, and ringed seal occasionally feed 
benthically as well (Hjelset et al. 1999, Moore & 
Huntington 2008). In some areas of the Arctic, there 
is coupling of the benthic and ice-associated food 
webs (McMahon et al. 2006, Søreide et al. 2013, 
Kohlbach et al. 2019), so the close clustering of all 
Arctic pinnipeds could indicate reliance on common 
base carbon resources in both the benthic and ice-
associated food webs, which is consistent with the 
high contributions of sea ice carbon to bearded seal, 
ringed seal, and walrus diets demonstrated in other 
areas of the Arctic (Koch et al. 2023). The clustering 
of baleen whales closer to the seals may reflect the 
presence of krill species in the whales’ diet, which 
also have higher levels of 22:6n3 (Meier et al. 2016). 
Meanwhile, the clustering of narwhal firmly between 
all sub-Arctic species suggests vulnerability to com-
petition for food resources. 

The contrast of native Arctic species relying on sea 
ice and benthic resources while many increasingly 
present sub-Arctic species rely on pelagic resources 
reflects a broader trend observed across the Arctic in 
recent decades; as sea ice has decreased, ecosystems 
have transitioned from primarily benthic and sea ice-
associated food webs to a higher dominance of pe -
lagic food webs (Grebmeier et al. 2006, Meier et al. 
2014, Brown et al. 2017, Florko et al. 2021). Future 
studies could use highly branched isoprenoid bio-

markers to further assess the coupling of sea ice-
associated and benthic food webs in Greenland and 
to monitor changes in Greenland marine mammals’ 
reliance on sea ice carbon as climate change pro-
gresses (Brown et al. 2014, Koch et al. 2023). 

4.4.  Niche breadth and overlap 

Several sub-Arctic species had the highest niche 
breadths as determined using stable isotopes and 
fatty acids. Minke whales, humpback whales, and 
harp and hooded seals, which had the largest isotope 
SEAC, are all generalist feeders, and their flexibility 
likely makes them more capable of exploiting novel 
areas and food resources as the Arctic warms 
(Kovacs et al. 2011, Moore et al. 2019). Harbor por-
poise, which have been shown to feed on a variety of 
crustaceans, fish, and squid in Greenland (Teilmann 
& Dietz 1998, Lockyer et al. 2003) and have large 
home ranges in the North Atlantic (Nielsen et al. 
2018), likewise showed large fatty acid niches, as did 
minke whales. While the patterns for species with 
smaller niche sizes were less clear, long-finned pilot 
whale had small niches using both tracers, consistent 
with their diet of primarily cephalopods (Santos et al. 
2014). Native Arctic species had generally smaller 
niches, and the isotope SEAC of narwhal and 
bearded seal were similar to those calculated using 
δ13C and δ15N in other regions, while ringed seal iso-
topic niche size was smaller than was found for con-
specifics in Svalbard (1.17 vs. 1.96) (Zhao et al. 2022, 
MacKenzie et al. 2022). Small feeding niches empha-
size the potential vulnerability of Arctic species, par-
ticularly narwhal, to ecosystem changes (Laidre et al. 
2008, Chambault et al. 2020). 

Patterns in niche overlap differed somewhat 
between the 2 tracer types, but sub-Arctic seals 
showed overlap with Arctic species when either 
tracer type was considered. The isotopic niches sug-
gest that sub-Arctic cetaceans feed on similar prey 
resources to one another and overlap little with Arc-
tic species, although there is likely some confound-
ing influence of baseline variation on both δ13C and 
δ15N. This could indicate that sub-Arctic cetaceans 
feed on shared sub-Arctic prey, such as capelin and 
other boreal fish that are also increasingly present in 
Greenland (Heide-Jørgensen et al. 2023). However, 
because baseline variation is likely biasing both δ13C 
and δ15N signatures and exaggerating separation 
between Arctic and sub-Arctic species, true feeding 
niche overlap of sub-Arctic and Arctic species may 
be higher than isotopic niches suggest. Even so, the 
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sub-Arctic seals showed high probabilities of over-
lapping native Arctic species (specifically ringed seal 
and narwhal), and in other locations, ringed seal and 
harp and hooded seals showed niche overlap as cli-
mate change has caused more geographic overlap as 
well (Ogloff et al. 2019). While controlled feeding tri-
als are not feasible for many marine mammals, stud-
ies from other large mammals suggest that stable iso-
topes in muscle tissue have turnover rates of >3 mo to 
1 yr (Sponheimer et al. 2006, Newsome et al. 2010, 
Vander Zanden et al. 2015), while blubber fatty acids 
likely integrate diet signatures on a scale of weeks to 
months (Budge et al. 2006, Watt & Ferguson 2015), so 
muscle stable isotopes may represent diet from a 
larger portion of the year, including when the migra-
tory sub-Arctic species are at lower latitudes. There-
fore, in addition to the effects of baseline variation on 
stable isotopes, differences between isotope and 
fatty acid niche overlap could represent species in -
teractions on 2 different time scales, with fatty acids 
being more representative of the period in which 
Arctic and all sub-Arctic species overlap geographi-
cally. Fatty acids are also higher resolution tracers 
and may more clearly identify niche separation 
caused by prey with similar stable isotope signatures 
(i.e. among sub-Arctic cetaceans) (Budge et al. 2006), 
while stable isotopes can show differences in prey 
trophic levels not reflected in fatty acids. Despite 
these differences, fatty acid niches of harp and 
hooded seals also showed overlap with Arctic species 
(in this case, ringed seal and bearded seal), empha-
sizing that if food resources are limited, these seals 
may be the most likely to compete for food with Arc-
tic species as climate-induced range shifts continue. 

Fatty acid niches suggested moderate overlap of 
narwhal by multiple sub-Arctic species: harbor por-
poise, white-beaked dolphin, long-finned pilot 
whale, and minke whale. While it is not clear exactly 
what prey these species may share, they seem to be 
feeding on a similar pelagic food web with a strong 
influence of Calanus copepods. Narwhal are already 
considered among the most vulnerable Arctic 
species to the effects of climate change because of 
their close associations with pack ice in winter, lim-
ited distributions, high site fidelity, specialized feed-
ing, and possible increasing predation by killer 
whales (Laidre et al. 2008, Kovacs et al. 2011, Breed 
et al. 2017, Chambault et al. 2020). Although overlap 
probabilities on narwhal are moderate, the vulnera-
bility of this species, and the likelihood of further 
community composition shifts as temperatures con-
tinue to rise, warrant particular attention. As climate 
change continues, competition for food resources 

could be a significant, if indirect, negative effect of 
climate change on this important Arctic species. 

4.5.  Conclusions 

This study provides a representation of the rela-
tionships between species’ feeding patterns during 
the last decade, but as climate change continues to 
progress rapidly in the Arctic, and species’ ranges 
and interactions continue to shift (Storrie et al. 
2018, Hansen et al. 2019, Heide-Jørgensen et al. 
2023), ongoing study of these inter-species relation-
ships will be essential to understanding their 
effects on native Arctic species. Bulk stable isotopes 
currently demonstrate little niche overlap between 
Arctic and sub-Arctic species, but baseline isotopic 
variation likely masks true feeding niche segrega-
tion or overlap, and future studies using compli-
mentary methods such as compound-specific stable 
isotope analysis are necessary to fully understand 
species’ feeding dynamics. Fatty acids also gen -
erally demonstrate limited niche overlap between 
Arctic and sub-Arctic marine mammals, but to -
gether, both tracers point toward clear areas of 
potential niche overlap. Specifically, sub-Arctic seal 
species overlap the feeding niches of Arctic species 
the most of all range-shifting species, and narwhal 
appear to be the Arctic species most vulnerable to 
niche overlap by range-shifting species. This study 
demonstrates that as the Arctic continues to warm, 
some sub-Arctic and Arctic species may have the 
capacity to coexist through feeding niche segrega-
tion, while other may be vulnerable to niche over-
lap and potential competition. Although changing 
interspecific relationships can be challenging to ob -
serve, this project exemplifies how changing spe-
cies interactions could serve as a potent threat of 
climate change to native species in the Arctic. 
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