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1.  INTRODUCTION 

Marine ecosystems provide humanity with a num -
ber of important ecosystem services, including tour-
ism and furnishing food for a growing portion of the 
world’s population (Peterson & Lubchenco 1997). 
However, marine ecosystems (and consequently the 

services they provide) are increasingly threatened by 
pollution, overexploitation, habitat destruction, and 
climate change (Dulvy et al. 2003, Lotze et al. 2006, 
Halpern et al. 2008). Preserving marine ecosystems in 
the face of continued and increasing human exploita-
tion requires careful spatial planning and manage-
ment. Effective management is only possible if resear -
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chers and management agencies are able to observe 
and characterize the spatial ecology of marine species 
and ecosystems. Importantly, assessing the spatial 
ecology of oceanic species has historically been very 
difficult due to the sheer scale of their habitats (i.e. 
the open ocean), their highly mobile nature, the 
dynamic nature of oceanic ecosystems, and, perhaps 
most importantly, the logistical and technological dif-
ficulties associated with actually studying these ani-
mals in the wild (Block et al. 2002). 

Understanding how mobile marine organisms react 
to various oceanographic features is critical for 
informing management of these species and ecosys-
tems. Marine organisms may favor and select more or 
less strongly for specific environmental conditions, 
such as specific ranges of sea surface temperature 
(SST) or chlorophyll a (chl a) concentration that can 
be tracked remotely from satellites (Abrahms et al. 
2019, Lee et al. 2021, Pinti et al. 2022). By associating 
the distribution of marine species with particular 
environmental conditions, we can characterize envi-
ronmental selection in these animals and predict 
environmental mismatches that may arise because of 
climate change (Pörtner & Knust 2007, Møller et al. 
2008). The first step to predicting the adaptive capacity 
of an ecosystem is to identify environmental selection 
(Tew Kai et al. 2009, Oliver et al. 2019, Hazen et al. 
2021, Fahlbusch et al. 2022) and to separate the selec-
tion signal from observation errors. These errors may 
arise from position uncertainty for animal locations 
(Braun et al. 2023) or from a mismatch of the scales at 
which animals react to environmental variables and 
those at which they are observed (Scales et al. 2017). 

To estimate animal locations, a wide array of elec-
tronic tag technologies are available, each with its 
own specificities and with different spatio-temporal 
resolutions and accuracies (Hussey et al. 2015). For 
example, acoustic telemetry records precisely when 
an animal carrying an acoustic tag is within the range 
of an acoustic receiver, but does not provide any 
information when animals are outside those detection 
ranges (Matley et al. 2022). Pop-up satellite archival 
tags (PSATs) rely on light levels to compute time of 
dawn and dusk, and day duration (sometimes coupled 
with SST or other measurements) to estimate the posi-
tion of individuals, but that means that position un -
certainties routinely reach hundreds of kilometers 
(Gunn et al. 1994, Sibert et al. 2003). Positions obtained 
from ARGOS tags are generally much more precise 
(~100s of meters to kilometers), although their uncer-
tainty can also sometimes reach 10s to 100s of kilo-
meters. Additionally, ARGOS tags require the animal 
to stay at the surface for some period of time so that 

multiple ARGOS satellites can triangulate the tag 
position (Douglas et al. 2012). The development of 
Fastloc GPS tags has facilitated the collection of 
much more precise location data with uncertainties 
only up to a few meters, even for animals that only 
surface briefly (Dujon et al. 2014, Thomson et al. 
2017). While these technologies all provide similar 
types of data, the large range of uncertainties associ-
ated with their respective location estimates means 
that they cannot be used interchangeably and that the 
ecological question that is being investigated should 
dictate the kind of biologging technology used. As 
PSATs are often the only possibility for studies of 
pelagic organisms that do not surface, large uncer-
tainties are a particular challenge for assessing hab-
itat selection in marine organisms. Using tracks with 
very large location uncertainty may yield incorrect 
results or blur selection signals. 

Environmental conditions also vary in space and 
time, and their measurements come with their own 
uncertainties. Decorrelation length scales (DCLSs) 
estimate the spatial distance over which a variable 
(e.g. temperature) remains correlated. Formally, the 
DCLS is the distance at which the correlation 
between the time series of a variable (or its anomaly) 
drops below a certain value, typically 1/e (Kuragano 
& Kamachi 2000, Hosoda & Kawamura 2004, De Bene-
detti & Moore 2017). It can be thought of as the 
 typical scale of a coherent feature (such as a front or 
eddy), as captured by the data set. These length 
scales vary greatly between different environmental 
variables; they also vary based on the resolution of the 
observations. We hypothesized that DCLSs impact 
our ability to investigate habitat selection in marine 
organisms. To detect selection, animals would have to 
traverse length scales longer than the DCLS in a given 
region. We also postulate that the environmental 
selection of dynamic fields with very small DCLSs 
needs to be studied at a fine scale, and thus requires 
more precise estimates of animal location and higher-
resolution environmental fields than the investigation 
of animals selecting for less dynamic environmental 
variables with larger DCLSs. 

Here, we investigated how the interplay between 
animal location accuracy, selection strength, and 
DCLSs of environmental variables impacts our ability 
to statistically detect habitat selection by marine or -
ganisms. To do so, we created synthetic animal tracks 
with predetermined selection strengths for different 
environmental conditions. The specific environmen-
tal variables used were SST, chl a concentration, and 
a Lagrangian metric, finite-time Lyapunov exponent 
(FTLE), that captures the tendency of ocean currents 
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to aggregate or disperse passive tracers (Haller & 
Yuan 2000, Shadden et al. 2009). By comparing these 
synthetic tracks with generated pseudo-absences that 
mimic the movements of similar but environmentally 
naive individuals, we were able to determine what 
level of location accuracy is required to definitively 
identify selection for the studied environmental vari-
ables. In addition, we introduce the notion of ‘effec-
tive selection’ (combining both the test statistic and 
the significance level of Kolmogorov-Smirnov tests), 
significantly decreasing false-positive results in the 
absence of selection while only marginally increasing 
the rate of false-negative results at high sample sizes. 

2.  METHODS 

2.1.  Environmental variables and DCLS 

Three different environmental fields were used in 
this study: SST, chl a concentration, and FTLE 
(Fig. 1A–C). 

SST and chl a concentration were taken from 
MODIS-Aqua observations (JPL/OBPG/RSMAS 2020, 
NASA Goddard Space Flight Center et al. 2022). 
These fields have a native 9 km spatial resolution. The 
native time resolution is 1 d, but the data are processed 
so that each day consists of a backward rolling average 
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lated tracks: (A) sea surface temperature (SST, in °C), (B) chlorophyll a (chl a) concentration (mg m–3), (C) finite-time Lyapunov 
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of the previous 8 d to increase data coverage, by de-
creasing missing data due to clouds and incomplete 
daily satellite coverage (Fig. S1). 

The FTLE field is a tool for differentiating regions of 
the ocean subject to high dispersal from those prone 
to accumulation of passive tracers (e.g. Waugh et al. 
2012, Peacock & Haller 2013, Sulman et al. 2013, Alls-
house & Peacock 2015, Haller 2015, Hadjighasem et 
al. 2017, Callies & von Storch 2023). They measure 
relative dispersion, i.e. how far nearby water parcels 
separate or come together over a specified time inter-
val. The FTLE field is a function of ocean currents, 
which were taken here from a global run of the Hybrid 
Coordinate Ocean Model (HYCOM), experiment 
19.1, carried out by the Naval Research Laboratory at 
Stennis, MS, and archived by the HYCOM consor-
tium at hycom.org. The FTLE field is computed using 
an along-trajectory velocity gradient integration on 
the model archive grid, which has a 1/12.5° (~9 km) 
native resolution (Huntley et al. 2015). 

We hypothesized that some marine organisms are 
attracted to regions of the ocean whose currents are 
conducive to accumulation of particles (e.g. plank-
ton) over the recent past (Della Penna et al. 2015, 
Oliver et al. 2019, Lieber et al. 2023). Therefore, 
FTLEs were derived from an integration backward in 
time over 3 d. The sign convention adopted here has 
large positive FTLE values corresponding to highly 
attracting regions—water parcels that started far 
apart end up close together at the point in question 
and at the index time. 

In addition, we also investigated the influence of 
data coverage by creating an environmental product 
corresponding to the FTLE product with the same 
data coverage as chl a. In practice, we removed FTLE 
data where chl a data were missing, effectively testing 
whether data gaps would affect our results. 

For these 3 environmental variables (SST, chl a, and 
FTLE), we computed the zonal (in the east–west 
direction) and meridional (in the north–south direc-
tion) DCLS, defined as the e-folding scale of the vari-
able anomalies (Hosoda & Kawamura 2004, De Bene-
detti & Moore 2017), i.e. the distance at which the 
correlation between 2 time series of the same variable 
drops below 1/e. In practice, we started by subtract-
ing the climatological signal (computed as the aver-
age for each calendar day over the period 2000–2010) 
from the daily signal. Then, for each reference point, 
we computed the correlation between the time series 
at that reference point and nearby time series. The 
distance at which the correlation drops below 1/e (in 
either the positive or negative direction) is taken as 
the DCLS at the reference point. The time series used 

here were 80 d long, spanning from 1 May to 19 July 
2006, which is the same time period as the one over 
which the animal tracks were generated (see Sec-
tion 2.2). 

2.2.  Generation of synthetic animal tracks 

For each of the 3 environmental variables, we 
created an array of 100 tracks (each 80 d long), here -
after referred to as synthetic tracks (Fig. S2). We varied 
the strength κ of environmental selection (κ = 0 for 
no  selection, κ = 0.25, 0.5, 0.75, 1, 2, 5, 10, 20 for 
increasing selection strengths for high values of the 
target environmental variable) and the level of uncer-
tainty σ assigned to the locations within these tracks. 
The standard deviations associated with the track 
locations are σ = 0 (exact location), 1, 10, 25, 50, and 
111 km (~1°). Our total data set of synthetic tracks 
thus consisted of 9 × 6 × 3 (9 different κ values and 
6 different σ values for the 3 environmental variables 
used) sets of 100 tracks, i.e. 16 200 tracks. 

The synthetic tracks of daily positions were gener-
ated as biased random walks, following Pinti et al. 
(2022), although here step lengths were not fixed, to 
better mimic the daily movements of marine organ-
isms. For each track, a random starting location was 
picked in the Northeast Pacific, with latitude between 
10 and 40° N and longitude between 140 and 130° W. 
Then, for each time step, the location of the highest 
value of the target variable within a 50 km radius was 
found, and the distance and bearing to that location 
were computed. The bearing of the actual step was 
then computed by modulating this bearing by a ran-
dom angle drawn from a von Mises distribution with 
mean 0 and concentration κ (Fig. 2A). The step length 
is the distance to the location of highest value mod-
ulated by a random distance drawn from a normal 
 distribution with mean 0 and standard deviation 
(Fig. 2B), except for κ = 0. The case κ = 0 mimics envi-
ronmentally naive organisms, and to be sure that no 
information about the environment can be used for 
pseudo-absences generation, the step length was 
only drawn from a normal distribution with mean 
50 km and standard deviation = 20 km. 

2.3.  Generation of pseudo-absences 

Following Pinti et al. (2022), 3 different kinds of 
pseudo-absences were generated: Brownian motion, 
correlated random walks, and joint correlated ran-
dom walks. Pinti et al. (2022) also explored using Lévy 
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walks as a null model, but concluded that they could 
lead to high rates of false positive results — hence our 
use of only 3 different kinds of null models here. For 
each synthetic track, 100 tracks of each null model 
were generated, for a total of 300 pseudo-absences for 
each presence record from the synthetic tracks. 
Uncertainties associated with pseudo-absence loca-
tions are the same as the uncertainties associated with 
the generated synthetic locations. 

Each pseudo-absence track starts at the starting 
location of its corresponding synthetic presence 
track, and is reset to the actual synthetic animal loca-
tion at the beginning of every month, following the 
analysis of Pinti et al. (2022). Therefore, pseudo-
absence tracks were maximum 31 d long. This en -
sured that pseudo-absences were constrained to the 
area around the real track and could still be reason-
ably considered to be in the same environment (Pinti 
et al. 2022). 

Each null model generates locations based on step 
lengths and turning angles. The 3 null models differ 
only in the way they generate these step lengths and 
turning angles. For Brownian motion, the turning 
angle is drawn from a uniform distribution bound 
between –180 and 180°, and the step length is drawn 
from a normal distribution with mean and standard 
deviation equal to the mean and standard deviation of 
the step length distribution of the synthetic track. 
Correlated random walks and joint correlated ran-
dom walks are simulated by drawing turning angles 
and step lengths directly from the empirical distribu-
tion of the synthetic track. The difference between 
these 2 methods is that for correlated random walks, 
step length and turning angles are drawn independ-
ently, whereas for joint correlated random walks, the 

ordered pair (step length, turning angle) is drawn 
from a single step. Resulting pseudo-absence tracks 
for κ = 1 are pictured in Fig. S3 in the  Supplement 
at  www.int-res.com/articles/suppl/m732p001_supp.
pdf. 

2.4.  Statistical analysis 

Environmental data from the 3 variables were 
matched to each animal presence and pseudo-absence. 
When location uncertainty is >0, however, it is not 
clear that the value at the recorded location is repre-
sentative of the animal’s environment. To account for 
this uncertainty in animal presence data, we averaged 
the environmental variables around each location, 
assuming a 2D Gaussian error distribution (i.e. the 
closer the observation is to the estimated location, the 
stronger the weight of this observation). The standard 
deviation for the distribution was set equal to the 
position uncertainty, hence accounting for the higher 
probability of having the animal in locations close to 
the most likely position estimate while still capturing 
the environmental variability within the range. 

To test for evidence of selection, we performed 
1-sided Kolmogorov-Smirnov (KS) tests, as imple-
mented in ‘ks.tests’ of the R ‘stats’ package (R Core 
Team 2023). KS tests compare 2 cumulative distribu-
tions, with the test statistic D being the maximum dis-
tance between the 2 cumulative distributions. Here, 
the cumulative distributions correspond to the distri-
bution of environmental variables matched to pres-
ence and pseudo-absence tracks, respectively. As 
such, D can be used as a proxy to estimate selection 
strength. The null hypothesis is that the cumulative 
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distribution of the target environmental variable for 
presences is ‘not less than’ (or ‘not greater than’) the 
cumulative distribution generated from pseudo-
absences. For the ‘not less than’ test, if the null 
hypothesis is rejected, it means that the presence 
cumulative distribution function is below that of the 
pseudo-absence. The environmental variable distri-
butions are shifted toward higher values, and animals 
select for high values of the environmental variable 
(e.g. higher temperatures or areas with higher chl a 
concentration) compared to environmentally naive 
organisms. Conversely, for the ‘greater than’ test, it 
means that animals select for lower values than envi-
ronmentally naive organisms. Throughout this manu-
script and unless specified otherwise, the significance 
level is set at α = 0.05. Practically, very weak selec-
tion can, in many cases, not be distinguished statisti-
cally from no selection based on a finite sample (nor is 
it ecologically relevant). Therefore, we also imposed a 
threshold on the magnitude of the difference itself: 
we considered that animals are effectively selecting 
for higher (or lower) values of the environmental vari-
able if the test result is significant (p ≤ 0.05) and the 
test statistic D is >0.05. This threshold was chosen so 
as to decrease the rate of false-positive results in the 
absence of selection. This notion of effective selec-
tion allows us to discard false-positive results at high 
sample sizes in the absence of selection or at very 
weak selection strengths (see e.g. left columns of 
Fig. 5 and Fig. S7). 

3.  RESULTS 

3.1.  Tracks and environmental variables 

The 3 environmental products considered (SST, 
chl a concentration, and FTLE) have different spatial 
characteristics (Fig. 1). First, the SST field is smoother 
than the chl a field, which is smoother than the FTLE 
field. In the Northeast Pacific, the DCLSs of the SST 
field vary between ~50 and 800 km, while the DCLSs 
of chl a and FTLE vary between 0 and 400 km and 
between 0 and 100 km, respectively. The median 
DCLS of the 3 products in the study region captures 
the differences in their spatial variability. SST has a 
median zonal DCLS of 130 km and a meridional DCLS 
of 111 km, while chl a has median zonal and meri-
dional DCLSs of 46 and 47 km, respectively, and both 
FTLE DCLSs are 27 km. Generally, zonal DCLSs have 
higher maximum values than meridional DCLSs, even 
though the means are very similar for chl a and FTLE. 

Because of the different spatial structures of these 
variables, the tracks generated based on the environ-
mental selection of these fields are qualitatively dif-
ferent, especially at higher selection strengths (Fig. 3; 
for more samples, see Fig. S2). Tracks selecting for 
higher SST tend to be more spread and southward, 
while tracks strongly selecting for chl a and FTLE 
organize around ridges. Pseudo-absence tracks do 
not have a well-defined structure, as they are not 
cuing on any environmental variable (Fig. S3). 
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The resulting distribution of SST, chl a, and FTLE for 
tracks strongly selecting for higher values of the envi-
ronmental variables are shown in Fig. 4 (and histo-
grams of environmental variable distributions for 
tracks with different selection strengths are plotted in 
Figs. S4–S6). For high selection strengths, as ex -
pected, the distribution of presence data is shifted 
towards higher values of the environmental variable 
compared to  pseudo-absences. As κ decreases, the 
distribution of presence data shifts towards the distri-
bution of pseudo-absences, all the way to κ = 0 where 
synthetic presence and pseudo-absence points have 
very similar distributions, consistent with the fact that 
this corresponds to animals not selecting for environ-
mental variables. As σ increases (i.e. as location accu-
racy decreases), the overlap between distributions 
generated by animal presences and animal pseudo-ab-
sences increases, especially for FTLE and chl a con-
centration (Fig. 4). This is because the larger scale 

averaging means that all values are more similar to 
each other, especially for environmental products with 
lower DCLS. The statistical analysis unravels the dif-
ferences between these distributions as κ and σ vary. 

3.2.  Statistical analysis 

To understand the interplay between position un -
certainty σ, selection strength κ, and environmental 
variable DCLSs, we ran a total of 162 experiments 
(6  values of σ, 9 values of κ, 3 environmental fields 
with different DCLSs). In the following, we will focus 
on a selection of the results while describing the gen-
eral patterns. 

Fig. 5 shows the value of D for selection for higher 
values as a function of sample size (number of tracks). 
The corresponding data for selection for lower values 
is given in Fig. S7. As suggested by the probability 

density functions of environmental 
variables, the stronger the selection 
and the higher the location accuracy 
are, the higher is the test statistic. In 
ad di tion, the FTLE field with gaps did 
not reveal results qualitatively differ-
ent from the complete FTLE field 
(Figs. S7M–P & S8). 

As the sample size increases, D de -
creases and converges to a point that 
depends on the environmental vari-
able considered, the strength of the 
selection, and the location accuracy. In 
the absence of selection (κ = 0), some 
tests yield differences in distributions 
that are statistically significant results, 
yet with very small D (<0.05). 

A possibility to decrease these false-
positive results would be to decrease 
the significance level below α = 0.05. 
However, p-values usually decrease as 
sample sizes increase (Figs. S9–S16) 
and at large sample sizes, they can 
reach values as low as 10–5 in the ab -
sence of selection (e.g. Figs. S10O,P & 
S15M–P). Decreasing the level of sig-
nificance to 10–5 would strongly de -
crease the rate of false-positive results 
in the absence of selection, but it 
would also consequently increase the 
rate of false-negative results in the pre -
sence of selection with limited sample 
size or with low accuracy. For example, 
setting the significance limit to 10–5 
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would require more than 30 tracks to reliably detect 
selection for higher SST in the case of κ = 0.25, even 
when the tracks are reported with perfect accuracy 
(Fig. S9I). If the tracks have an uncertainty of 50 km, 
which is not unusual for animals tracked with ARGOS 
tags (Douglas et al. 2012), detecting selection for high 
chl a concentration requires more than 20 tracks in 
the case of strong selection (κ = 2 or more), and more 
than 80 tracks in the case of weak selection (κ = 0.25) 
(Fig. S10C,K). These very large sample sizes are very 
rare in ecological studies, and setting up such a strin-
gent threshold would hinder our ability to detect 
selection in most practical cases. The case of κ = 0 
with perfect position accuracy reveals that different 
animals following different movement models are 
likely to sample slightly different environments even 
without a selection bias. These very small differences 
show up even with very large sample sizes, but they 
are not ecologically relevant. Thus, we decided to 
evaluate effective selection here, i.e. selection with a 
p-value below 0.05, but with D ≥ 0.05. This ensures 
that statistically significant results are not wrongly 
categorized as ‘selecting’ for higher (or lower) values 
of environmental variables, while still being able to 
detect selection when it is strong enough. 

The ability to detect effective selection depends on 
sample size, selection strength, and location accuracy 
(Fig. 6; Figs. S17–S20 for selection for high values of 

environmental variables, and Figs. S21–S25 for selec-
tion for low values of environmental variables). For 
FTLEs with and without data gaps (Fig. 6I–L; Fig. S26), 
the results are similar, suggesting that the method 
is not too sensitive to incomplete data coverage. 

In the absence of selection, a large enough sample 
size allows us to confidently rule out effective selection 
(Fig. 6A,E,I). In the case of SST, using more than 
~20 tracks (or 5 years of data) allows us to rule out ef-
fective selection irrespective of the location accuracy. 
For both chl a and FTLE, the sample size needed to 
rule out selection varies between 13 and 18 tracks 
(3–4 years of data) and more than 45 tracks (~10 years 
of data) depending on location accuracy (the more un-
certain the track, the more data are needed). At the 
other extreme, when the selection is strong (κ ≥ 2), it is 
possible to detect effective environmental selection 
even with high location uncertainty and limited 
 sample size (Fig. 6D,H,L). As selection strength is 
weakened (κ = 0.75), large position uncertainty 
begins to have an impact on selection identification 
skill, at least for the variables with shorter DCLS 
(Fig. 6C,G,K). It is at weak selection strength (κ = 0.25) 
that the relationship between location accuracy, sam-
ple size, and identification skill becomes more com-
plex (Fig. 6B,F,J). For chl a and FTLE, the general pat-
tern of higher detection skills for larger sample sizes 
holds, except for cases with high position uncertainty. 
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For SST, regardless of position uncertainty, Fig. 6B 
shows the counter-intuitive pattern that smaller sam-
ple sizes allow for a more reliable identification of ef-
fective selection bias. This is a direct result of the D 
thresholding (Fig. 5B,F,J): at small selection strength, 
the SST sample distributions for presence and pseudo-
absence tracks differ only slightly for large sample 
sizes (and similarly for chl a and FTLE in cases with 
large position uncertainty). The differences are insuf-
ficient to be picked up as indicators of bias. The larger 
D-values for smaller sample sizes mean that our algo-
rithm detects selection bias. However, we caution that 
these larger values are not an indication of the 
strength of the bias but an artefact of undersampling. 

4.  DISCUSSION 

4.1.  Detecting and quantifying  
environmental selection 

In this paper, we explored our ability to detect mar-
ine animal environmental selection using KS tests, 
depending on a number of environmental and techni-

cal limitations. The ability to detect environmental 
selection depends on the DCLS of the environmental 
variable considered, on the selection strength of the 
animal, and on the sample size and accuracy of the 
tracking data set available. While we focused on SST, 
chl a, and FTLE in this study, our results are trans -
ferable to other environmental variables. Once the 
DCLSs of other variables are computed, one can refer 
to the variable with a similar DCLS in Fig. 6 to assess 
confidence in their selection results. 

Setting a threshold on the test statistic D enables us 
to detect effective selection, thus considerably de -
creasing the risk of false-positive results while moder-
ately decreasing our ability to detect very weak selec-
tion. We found that setting the D threshold to 0.05 and 
the significance threshold to 0.05 yields reliable 
selection detection (termed here effective selection), 
given enough data. The amount of data needed to 
have full confidence in a positive result depends on 
the DCLS of the investigated environmental variable, 
and can be defined as the amount of data necessary to 
fully rule out environmental selection in naive marine 
organisms (Fig. 6A,E,I). As an upper limit, more than 
10 years of daily tracking data (~3650 daily location 
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estimates) was enough to have no false-positive 
results, no matter the DCLS of the environmental 
variables investigated here. 

Another important result of this study is the pos-
sibility to quantify selection using the test statistic D 
as a proxy for selection strength. Indeed, for a given 
track accuracy, the stronger the selection strength is, 
the higher is the asymptotic D-value as sample size 
increases (Fig. 5). Provided with a large enough data 
set of animal tracks, performing KS tests on increas-
ing fractions of the data set can reveal if the test sta -
tistic obtained for the entire data set is close to a 
 converged value or not — and thus if the selection 
strength can be confidently quantified. 

4.2.  Different types of animal tracking data and 
their impact on environmental selection detection 

A major discrepancy between real animal tracking 
data sets and the presence tracks generated here is 
that observed data can have varying accuracy and are 
not necessarily evenly spaced in time. Processing the 
data with a state–space model allows us to resample 
the track evenly (Jonsen et al. 2005). However, state–
space models usually assume that animals follow cor-
related random walks without accounting for envi-
ronmental selection, thereby biasing processed data 
against selection detection. In addition, the spatial 
uncertainties associated with processed points tem-
porally far away from observed points is usually 
greater, further increasing the range of location un -
certainties within tracks. As we assumed here that 
location uncertainty was homogeneous within the 
entire data set, adapting this method to real animal 
locations may require discarding location estimates 
that are too uncertain. 

This consideration is particularly important for 
more uncertain tracking methods. Fastloc GPS tags 
provide accuracy within 700 m and most of the time 
within 50 m (Dujon et al. 2014), well below the resolu-
tion of the environmental products considered here. 
However, ARGOS and PSATs have larger error 
ranges. ARGOS tags provide locations with a quality 
location class (Douglas et al. 2012), allowing the filter-
ing of data to keep only the most precise — at the 
expense of sample size (Thomson et al. 2017). PSATs, 
because they mostly geolocate animals thanks to 
light levels and SST (even though other variables 
such as bathymetry, magnetic field, or temperature 
profiles can be used; Braun et al. 2018, Nielsen et al. 
2019, 2020), have an even wider range, with errors in 
actual positions routinely around 1° in longitude and 

latitude (Wilson et al. 2007). Yet, for highly migratory 
marine species, it appears that PSATs can perform 
better than ARGOS tags when building species distri-
bution models (using methods other than ours, such 
as generalized linear or additive mixed models, or 
boosted regression trees) using variables with high 
DCLS (Braun et al. 2023). This highlights the impor-
tance of considering the scale of the question being 
investigated. Following the results of this study, we 
recommend using either ARGOS or GPS tag records 
when investigating environmental selection in mar-
ine organisms for variables with low DCLS. In general, 
generating the most accurate location data possible is 
often the safest way to get reliable results. In particu-
lar, when limited to PSAT data because of the ecology 
of the animal, relying on manufacturer-provided geo-
location models often yields inaccurate results rel-
ative to more advanced geolocation models (Braun et 
al. 2018, Nielsen et al. 2023). More precise locations 
will naturally lead to more accurate ecological results, 
and will also enable investigating ecological ques-
tions requiring more precise data, such as the selec-
tion of environmental variables with comparatively 
lower DCLS than would be possible without these 
data. 

4.3.  Scale, resolution, and accuracy of 
 environmental variables 

In addition to the resolution at which animal loca-
tions are observed, the scale at which we acquire 
oceanographic data is important when investigating 
environmental selection. The data sets we used here 
have a fixed 9 km resolution (8 km in the case of 
FTLE), smoothing variability at smaller scales and 
making sub-mesoscale features undetectable. Spatial 
resolution can be finer if environmental data are 
acquired differently. For example, Lagrangian coher-
ent structures have been computed from high-
frequency radars from 6 km down to 500 m depending 
on the frequency used (Kim et al. 2011, Berta et al. 
2014, Oliver et al. 2019), but usually at the expense 
of spatial coverage. Spatially averaging the environ-
mental data increases spatial coverage, creating a 
trade-off between data coverage and spatial resolu-
tion. In addition to technical considerations regard-
ing this trade-off, this raises ecological questions as to 
what scale is appropriate when investigating selec-
tion of marine organisms. A larger scale may be nec-
essary to have a good spatial coverage, but may blur 
small variations that animals may use and select for. 
As it is not possible to detect selection happening at a 
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finer scale than the resolution of the data, it is impor-
tant to match the scale at which animals can move and 
the scale at which we can acquire environmental data 
as well as possible. 

The way oceanographic data are acquired dictates 
their resolution, but also their accuracy. While data 
observed in situ (and, to a lesser extent, remotely 
sensed data) have a relatively strong spatio-temporal 
accuracy, data generated by models may have lower 
accuracy. For example, the FTLEs used here were 
computed from HYCOM model outputs and not 
directly observed. Several studies have found that 
the  uncertainties in predictions of trajectories and 
Lagran gian coherent structures computed from 
HYCOM model outputs are, on average, 50 km, with 
outliers as large as 100 km (Huntley et al. 2011, Mus-
carella et al. 2015, Thoppil et al. 2021). Here, this dis-
crepancy is irrelevant as the tracks are synthetic and 
generated using the model FTLE outputs directly, but 
it is of importance when dealing with real tracks of 
animals that are cuing on actual Lagrangian struc-
tures. Incorporating the environmental data uncer-
tainty in this method will likely have the same effect 
as considering the track uncertainty — it will average 
out specific values that animals may cue on with 
background conditions, thus decreasing our ability to 
detect selection. 

Data coverage is another factor that might in -
fluence our ability to detect selection. The amount of 
missing data in this study differed for the 3 environ-
mental fields (Fig. S1). As the FTLE field is a model 
output, there were no data gaps, while there were 
some gaps in the SST and even more in the chl a 
fields. Thus, not all points could be matched to all 
environmental variables (Table 1). While the same 
number of tracks were used with all 3 variables, this 
translates into a different number of data points with 
matched environmental variables, with FTLE having 
the most data points and chl a the fewest. The number 
of data points also increases as the assumed accuracy 

of location estimates decreases, as less precise esti-
mates mean that the average is performed across a 
larger area and thus more likely to encompass exist-
ing environmental data. 

4.4.  Increasing sample size:  
beware of  heterogeneity 

Larger animal tracking data sets lead to improved 
confidence in selection detection. Therefore, it is 
tempting to aggregate data from different sources, 
geographic locations, time of the year, or even from 
different years to increase sample size. However, dis-
regarding the variability that can exist in data sets 
may yield to inaccurate results. Populations from dif-
ferent geographic areas may experience a different 
range of environmental conditions. Thus, different 
populations might be adapted to and select for differ-
ent environmental conditions — such as shark species 
living in pelagic environments and very clear waters 
in the Pacific Ocean but near the coasts in turbid envi-
ronments in the Atlantic Ocean (Merson & Pratt 2001, 
Papastamatiou et al. 2006). Animals may change be -
havior and selection strategy as they grow (ontoge-
netic niche partitioning, Grubbs 2010) or throughout 
the year, for example when they migrate to colder, 
lower latitudes (Horton et al. 2011), or when they 
move between offshore and inshore grounds with dif-
ferent productivity levels (Weng et al. 2007). Finally, 
conditions may change over time, for example as a 
result of climate change, resulting in changing ex -
perienced environmental conditions for organisms, 
such as a decrease in available prey (Meyer-Gutbrod 
et al. 2023). 

Depending on the flexibility of animal movements, 
these longer-term, multi-year changes in environmen-
tal conditions may be chosen or imposed on  marine or-
ganisms. Migrating organisms can follow specific cues 
and select for particular environmental conditions, or 
they can use memory to reproduce movement patterns 
of previous years, potentially resulting in a mismatch 
with their  optimal environmental conditions (Ab rahms 
et al. 2019, Fagan 2019). How the changing baseline 
will impact environmental selection in marine organ-
isms is yet to be determined and will depend on how 
much animals rely on memory vs. environmental cues. 
To this end, it would be useful to compare animals 
tracks not only to instantaneous environmental pro-
ducts but also to past variables and variables averaged 
at different temporal scales to understand the impor-
tance of conditions experienced in the past in shaping 
marine animals’ movements and environmental niches. 
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                                               σ 
               0 km     1 km      10 km      25 km     50 km     111 km 
 
Chl a      40.7      67.3        87.7         96.2         99.6          100 
SST        86.5      95.5        99.6         99.9          100           100 
FTLE      100       100         100           100          100           100

Table 1. Fraction (%) of animal presence location estimates 
with environmental data for different location standard error 
(σ). Each cell of this table corresponds to 72 000 data points 
(80 d tracks [n = 100] for 9 different values of the strength of 
environmental selection, κ). SST: sea surface temperature;  

FTLE: finite-time Lyapunov exponent 
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5.  CONCLUSION 

The accuracy of animal location and the spatial 
 variability in environmental variables (measured 
through DCLSs) impact our ability to detect selection 
in marine organisms. As previously shown (Pinti et al. 
2022), increasing sample size allows for more robust 
detection of environmental selection, except when se-
lection is very weak. Setting a significance level at 0.05 
and a cumulative distribution difference threshold 
level at 0.05 to detect effective selection in marine or-
ganisms significantly reduces the risk of false-positive 
results, while only increasing the risk of false-negative 
results in the case of very weak selection strength. 

The amount and accuracy of tracking data needed 
to detect selection depends on the DCLS of the envi-
ronmental variable tested. In practice, data acquired 
with Fastloc GPS (and ARGOS) tags are the most pre-
cise and thus the most efficient to use when it comes 
to detecting and quantifying selection strength, even 
though a large fraction of marine organisms do not 
surface and therefore cannot be studied with such 
technology. 

Finally, it is important to mention that we are de tec -
ting correlation but not necessarily causation. While 
we can confidently say whether organisms preferen-
tially associate with certain environmental variables 
thanks to this method, we cannot ascertain if they 
actively target these variables or variables correlated 
to them, or whether they target these conditions be -
cause of immediate cues or because of memory and 
movement patterns acquired through social learning. 
Testing for environmental selection with past envi-
ronmental conditions and at different temporal scales 
might help answer this question. 
 
Data availability. All code used to perform the analysis is 
available at https://github.com/JeromeAqua/Selection_
accuracy/. 
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