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1.  INTRODUCTION 

Recent climatic changes have had pervasive eco-
logical effects on seabirds, and climate projections 
indicate that these changes will intensify (Dias et 
al. 2019, Pistorius et al. 2023). Seabirds are often 
considered bellwethers of climate change (Hazen 
et al. 2019, Xavier et al. 2022) because they are 
well studied and have exhibited dramatic, climate-
driven changes in mortality, productivity, and dis-
tribution (Sydeman et al. 2012, Pistorius et al. 
2023). Climate change can affect seabirds directly, 
by the action of climatic variables (e.g. wind, pre-
cipitation, thermal changes) on bird physiology or 

behavior, or indirectly through trophic relations, 
species interactions, and habitat quality (Oswald & 
Arnold 2012, Sydeman et al. 2012, Pistorius et al. 
2023). Marine heatwaves have been shown to have 
strong indirect effects on seabirds through drasti-
cally reduced food availability (e.g. Piatt et al. 
2020), but since marine and terrestrial heatwaves 
can co-occur (Rodrigues et al. 2019, Pathmeswaran 
et al. 2022), there is also potential for direct heat 
stress effects on breeding seabirds, especially at 
exposed colonies in coastal areas where extreme 
air temperatures could arise during the conver-
gence of marine and terrestrial heatwaves (Rodri -
gues et al. 2019, Pathmeswaran et al. 2022). 
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Despite strong theoretical support for heat stress as 
a direct effect of climatic change for endotherms 
(Oswald & Arnold 2012, McKechnie & Wolf 2019, 
Levesque & Marshall 2021), there is relatively little 
empirical research, and indirect effects of climate 
dominate the marine biology literature (Sydeman et 
al. 2012, Jenouvrier 2013, Pistorius et al. 2023). Here, 
we provide an up-to-date synopsis of lethal and sub-
lethal heat stress effects for seabirds. We examine 
why these direct effects are generally overlooked, 
highlight known mechanisms and some key inci-
dences reported since our last review (Oswald & 
Arnold 2012), and outline research required to quan-
tify these effects. 

2.  THEORETICAL SUPPORT FOR PERVASIVE 
HEAT STRESS EFFECTS 

As endotherms, seabirds generate heat from inter-
nal metabolic processes that facilitate activity in cold 
environments. However, this creates an extra heat 
load to dissipate by physiological and behavioral ther-
moregulation once ambient temperatures rise above a 
fairly limited range (their thermoneutral zone). If am-
bient temperatures surpass thermoregulatory abilities, 
body temperature rises to the critical thermal maxima, 
at which tissue injury begins (estimated as 43−46°C 
for birds; McKechnie & Wolf 2019) and prolonged ex-
posure is lethal. Lethal body temperature ranges from 
48 to 62°C for arid-zone terrestrial birds (McKechnie 
& Wolf 2019) that live where ambient temperatures 
range from 45 to 50°C in the shade but are effectively 
much higher in full sun (e.g. 65°C operative tempe -
rature; Cunningham et al. 2021). Thus, for these spe-
cies, potentially lethal thermal maxima are often en-
countered. Although niche theory implies that lethal 
ambient temperatures should be lower for species in 
cooler areas (Porter & Kearney 2009), empirical evi-
dence indicates that upper thermal tolerance may be 
evolutionarily conserved (Araújo et al. 2013). It is 
therefore currently unclear which species might be 
most sensitive to heat stress (although see Cook et al. 
2020 and Choy et al. 2021 for examples), but high-lati-
tude species that possess adaptations to reduce heat 
loss and face disproportionate rates of climatic warm-
ing are good candidates (Nudds & Oswald 2007, Os-
wald & Arnold 2012). The importance of heat stress 
also depends on the abilities of birds to limit thermal 
loading through behaviors that minimize radiative 
heat gain; increase convective and conductive heat 
loss; and/or replenish water lost through evaporative 
cooling (Oswald & Arnold 2012). 

3.  EMPIRICAL REPORTS OF LETHAL  
HEAT STRESS 

Despite these theoretical indications that seabirds 
could experience lethal heat stress from climatic 
warming, few incidences have been reported. A 
recent report of heat mortality for Magellanic pen-
guins Spheniscus magellanicus in Argentina (Holt & 
Boersma 2022) is one of very few published records 
of large-scale, heat-related deaths for adult seabirds. 
However, this report of 264 dead adults is dwarfed by 
the mortality caused by indirect effects of climate 
change, such as marine heatwaves (e.g. Piatt et al. 
2020 estimated 1 million dead or dying common 
 murres Uria aalge from the ‘Blob’). Thus, either heat 
stress has not yet exceeded the buffering capacities 
of seabirds, or research efforts are currently insuffi-
cient to detect it. Here, we argue the latter view. 

Direct heat stress effects of climate (Fig. 1) are under-
reported for 2 reasons: they are difficult to identify and 
are easily obscured. Obvious, large-scale, heat-related 
mortality events for seabirds are comparatively rare 
and more common for chicks than adults (e.g. Salzman 
1982), but may be on the rise (e.g. Holt & Boersma 
2022, Quintana et al. 2022). Adult mortality need not be 
on a large scale to have population-level repercussions, 
as population growth is generally most sensitive to this 
rate (Jenouvrier 2013). One problem is that there is cur-
rently no benchmark, baseline level of heat mortality 
against which to measure any increase from climate 
change. For little penguins Eudyptula minor in sub-
tropical zones, incidence of heat mortality is variable 
but has been reported as averaging 1.7−5.0% of dead 
birds (Dann & Chambers 2013, Cannell et al. 2016). 
How such estimates might change across populations 
and species (both within and outside the breeding sea-
son) is unknown, but is vital for the detection of heat 
stress effects of climate change. A second challenge is 
that although attributing indirect climatic effects, such 
as starvation, competition, or predation, is relatively 
straightforward, there are no general biochemical or 
histopathological markers for avian heat mortality (Xie 
et al. 2020). Thus, attributing heat mortality (Fig. 1) 
necessarily requires exclusion of all other likely causes 
(e.g. Holt & Boersma 2022, Quintana et al. 2022). 

4.  EMPIRICAL REPORTS OF 
SUBLETHAL HEAT STRESS 

Unfortunately, similar challenges hold for detect-
ing sublethal heat stress impacts, and these can eas-
ily be lost among indirect climatic effects. Thermo -
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regulatory behaviors to ameliorate heat stress, such 
as bathing or drinking, may require trade-offs with 
other activities, such as foraging or defending territo-
ries (Oswald et al. 2008, Oswald & Arnold 2012, Cun-
ningham et al. 2021). Thus, sublethal heat stress 
exposure could have fitness consequences (Fig. 1). 
Ground-nesting seabirds are often directly exposed 
to thermal stress from solar radiation, so they use 
panting or gular-fluttering to maximize evaporative 
cooling (e.g. Hochscheid et al. 2002). However, 
breeding adults must usually leave nests to replace 
lost water, exposing chicks and eggs to heat stress, 
conspecific aggression, and predation (Oswald et al. 
2008). Heat stress can therefore compound any indi-
rect effect of climate that constrains time budgets or 
body condition (Fig. 1), such as food availability 
(Oswald et al. 2008) or parasitism (Gaston et al. 
2002), and its importance may easily be overlooked. 

Although sublethal trade-offs have been suggested 
for seabirds based on evidence from distributions 
(Oswald et al. 2011), behavioral manipulations 
(Oswald et al. 2008), remote observations (Cook et al. 

2020), and respirometry (Choy et al. 2021), because 
of the challenges of attributing heat stress effects, 
observations connecting thermal stress directly to 
demography are lacking (Fig. 1). However, Olin et al. 
(2024 in this Theme Section) finally provide this evi-
dence, linking heat stress to reduced fecundity of 
breeding common murres Uria aalge (see ‘H’ in 
Fig. 1). By using video surveillance in multiple years, 
they document desertion during intensive behavioral 
thermoregulation on hot days and subsequent loss 
of eggs or chicks. Incidences of egg/chick loss from 
heat stress comprised ~9% of breeding attempts, 
indicating that in this case, heat stress effects are 
wide-ranging and demographically important. 

5.  RESEARCH PRIORITIES 

From the available evidence, climate-driven heat 
stress effects are already occurring for seabirds 
(Fig. 1), particularly at high latitudes (Gaston et al. 
2002, Oswald et al. 2008, Olin et al. 2023), and are not 
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Fig. 1. Proposed lethal and sublethal mechanisms commonly linking (direct) heat stress effects on individual seabirds to popu-
lation demographics. Dashed grey arrows represent indirect effects of climate (e.g. resource access, biotic interactions) on 
these mechanisms, which can have synergistic, antagonistic, or additive effects with heat stress. Letters represent mechanisms 
demonstrated by direct observation or causal studies (not just correlations) in the following publications: A: Salzman (1982); B: 
Gaston et al. (2002) and Choy et al. (2021); C: Oswald et al. (2008); D: Dann & Chambers (2013); E: Cook et al. (2020); F: Holt &  

Boersma (2022); G: Quintana et al. (2022); H: Olin et al. (2024)
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insignificant (e.g. Holt & Boersma 2022, Olin et al. 
2024). They are likely additive to other direct effects 
(e.g. wind or precipitation) and also indirect conse-
quences of climate that can have important survival 
and sublethal implications. As these heat stress 
effects are likely underreported for the reasons out-
lined above, we suggest that research priorities 
should include developing indices to attribute heat 
mortality, quantifying baselines for heat mortality 
within populations, and disentangling the potential 
complexity of heat stress sensitivity and trade-offs 
and their interaction with indirect effects of climate. 
Heat shock proteins, which are thought to confer pro-
tection against protein denaturation at high tempera-
tures (McKechnie & Wolf 2019), or the increased 
mRNA expression of their genes, may offer one po-
tential avenue to develop a way to screen for heat 
mortality, although there is much natural variation 
both within and between individuals and species (Xie 
et al. 2018, Woodruff et al. 2022). Investigating heat 
stress as a possible cause of observed mortality and 
reporting its incidence (e.g. Dann & Chambers 2013, 
Cannell et al. 2016) is vital to compile baseline esti-
mates of heat mortality and understand ecological dif-
ferences that might underly heat stress sensitivities 
(e.g. body size, foraging mode, nest site selection, 
coastal/inland location, migration routes, availability 
of fresh water). Sublethal impacts can be explored us-
ing advancing technologies, such as biologging ap-
proaches (Arnold & Oswald 2018, Chmura et al. 
2018), mini weather stations or temperature arrays 
(Oswald et al. 2008, Cunningham et al. 2015), or ther-
mal imaging (Tattersall et al. 2018). Finally, even 
small changes to existing research programs, such as 
more investigators recording and analyzing video 
surveillance of nests during crucial parts of the breed-
ing season (sensu Olin et al. 2024), perhaps using in-
expensive trail cameras, could go a long way to distin-
guishing heat stress from indirect effects of climate. 
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