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1.  INTRODUCTION 

Numerous human socio-economic activities (such 
as agriculture, fish farming, traffic) correspond to 
cases where humans act as ecosystem engineers, 
modulating the flow of resources to other species by 
causing physical or chemical state changes in abiotic 
or biotic materials (Jones et al. 1994, Berke 2010). 
Today, as our efforts at ecosystem engineering are 
increasingly oriented towards ameliorating and coun-
teracting anthropogenic environmental modifica-
tions, interest is growing in understanding the nature 
and consequences of the environmental impacts of 
human activities and managing these impacts to pro-

tect the well-being of humans and other life on Earth 
(Stenseth et al. 2020). Coastal ecosystems are highly 
sensitive to human ecosystem engineering and simul-
taneously highly valuable in terms of ecological func-
tions, goods and benefits for human society (Barbier 
et al. 2011). At the interface between land and sea, 
coastal ecosystems are influenced by pressures com-
ing from land, adjacent open waters, the local 
atmosphere, and human socio-economic activities, 
resulting in physical and biological restructuring 
(Brondizio et al. 2019). Ecosystem responses to envi-
ronmental changes can lead to shifts in community 
dynamics as well as in the structure and function of 
coastal ecosystems (Frid et al. 2009, Capasso et al. 

© Inter-Research 2024 · www.int-res.com*Corresponding author: mjacquot@abo.fi

Trait responses to direct drivers and  
effects on multiple macrofauna-mediated  

ecosystem functions 

M. P. Jacquot1,*, M. Snickars1, E. Bonsdorff1, M. C. Nordström1,2 
1Environmental and Marine Biology, Åbo Akademi University, Henriksgatan 2, 20500 Åbo, Finland 

2Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme,  
University of Helsinki, Viikinkaari 1, 00014 Helsinki, Finland

ABSTRACT: As humans are facing challenges related to climate change, biodiversity loss and 
increasingly threatened ecosystems, there is a need to understand human-induced pressures, 
effects and feedback processes in the marine environment. Our study therefore aimed to identify 
environmental and anthropogenic drivers for coastal macrozoobenthic communities and the impli-
cations for macrofauna-mediated ecosystem functions. A large spatial–temporal data set combin-
ing environmental and macrofaunal data allowed us to highlight exposure and human-induced 
stressors as main drivers for the macrofaunal communities in the Åland archipelago (northern Bal-
tic Sea). A eutrophication gradient from sheltered inner to exposed outer areas was associated with 
a change in species- and trait-composition, and a change in dominance from r- to K-strategists in 
the invertebrate community. Sediment properties were significant drivers in explaining macrofau-
nal structural diversity patterns. The decrease in abundance, biomass and species richness in 
muddy sediments was associated with a reduction in bioturbation and bioirrigation potential 
indices. Environmental and human-induced pressures reduced the availability of macrofauna as 
food resource for mesopredators (i.e. benthivorous fish). Our results provide a deeper understand-
ing of environment–community relationships and the interplay between biotic and abiotic ecosys-
tem components regarding human-induced pressures.  
 
KEY WORDS:  Trait-based diversity · Response and effect traits · Multiple environmental stressors · 
Zoobenthos · Spatial environment–ecological response relationships · Baltic Sea 

Resale or republication not permitted without written consent of the publisher

https://crossmark.crossref.org/dialog/?doi=10.3354/meps14593&amp;domain=pdf&amp;date_stamp=2024-06-20


Mar Ecol Prog Ser 738: 1–20, 2024

2010), e.g. affecting the ability of coastal ecosystems 
to form nurseries and feeding habitats for fish, to pro-
vide a nutrient-filtering function from land towards 
the open sea, to act as fishing grounds and to main-
tain benthic–pelagic coupling (Miller-Way & Twilley 
1996, Griffiths et al. 2017). 

Identification of inadvertent outcomes stemming 
from human ecosystem engineering within coastal 
ecosystems can be facilitated using bioindicators. 
 Living in these ecosystems, macrobenthic organisms 
(>0.5 mm) are part of intricate ecological interplay 
with their surroundings, making them compelling 
bioindicators of environmental status (Perus et al. 
2007). Given their constrained mobility, many infau-
nal organisms show a restricted capacity to avoid 
environmental and anthropogenic pressures. Con-
sequently, the infaunal community is susceptible to 
pronounced effects of anthropogenic activities in 
coastal ecosystems, including topographical destruc-
tion of benthic habitats through dredging (Thrush & 
Dayton 2002), or nutrient inputs from agriculture 
and  industry leading to eutrophication and organic 
enrichment (e.g. Bonsdorff 2021, HELCOM 2023). 
Human ecosystem engineering and environmental 
perturbations can exert notable impacts on macrofau-
nal communities, leading to reductions in abundance, 
biomass and/or diversity (Pearson & Rosenberg 1978, 
Dauer 1993). Linking changes in the environment to 
species-specific attributes is a widely employed prac-
tice, providing ecologically important insights into 
how environmental parameters influence individual 
species and entire community structures. Expanding 
our focus beyond taxonomic diversity to encompass 
trait-based characteristics of macrofaunal assem-
blages is valuable for evaluating potential ecosystem 
functions. The combination of both of these ap -
proaches is pivotal for understanding how ecosystem 
functions are affected by human ecosystem engineer-
ing and for identifying potential feedback to humans. 
Macrofaunal traits are intrinsically tied to their eco-
logical processes and ecosystem functions (Cadotte 
et al. 2011) and can be rapidly responsive to multiple 
pressures (Mouillot et al. 2013, Voß & Schäfer 2017). 
Over the last 2 decades, multiple studies have demon-
strated that the integration of taxonomic and trait-
based diversity approaches is developing our under-
standing of ecosystem function on top of supporting 
efforts for better ecosystem management and conser-
vation (Henseler et al. 2019, Villnäs et al. 2019, Jac-
quot et al. 2023). 

In addition to their role as bioindicators, macroben-
thic organisms are central to several ecosystem func-
tions, e.g. enhancing the depth of oxygen penetration 

within sediments, facilitating the remineralization of 
organic matter (Aller & Aller 1998, Jovanovic et al. 
2014) and playing a crucial part in energy transfer to 
higher trophic levels by serving as central food 
sources for epibenthic predators and demersal fish 
(Salvanes et al. 1992, Nilsen et al. 2006, Nordström 
et al. 2009). Several of the ecosystem services medi-
ated by benthic infaunal communities are threatened 
by the impacts originating from human activities. 
Investigating the responsiveness of proxies for  
macrofauna-mediated ecosystem functions to anthro-
pogenic activities allows us to gain insights into 
potential feedback for human society and economy. 
For instance, quantitative proxies for the bioturbation 
(community bioturbation potential, BPc) (Queirós et 
al. 2013) and bioirrigation (community bioirrigation 
potential, BIPc) (Renz et al. 2018) activity of commu-
nities were developed to evaluate effects of human 
engineering on physical structuring of sediment (Vill-
näs et al. 2012, 2013, Gogina et al. 2017, Tsikopoulou 
et al. 2021). 

As one of the most extensively studied ecosystems 
in the world, the Baltic Sea represents a simplified 
ecosystem providing an ‘ideal’ study area (Reusch et 
al. 2018, Meier et al. 2022, Viitasalo & Bonsdorff 
2022). The evolutionarily young age of this sea in 
combination with the predominant brackish con-
ditions results in naturally low species diversity, 
which facilitates detailed analysis of community 
changes in response to human ecosystem engineer-
ing. Processes and patterns are expected to be easier 
to understand in this simplified system compared to 
more complex ones with higher species diversity. The 
ecological interest in the Baltic Sea has been fueled 
by anthropogenic pressures on the ecosystem struc-
ture and functioning exerted by socio-economic 
activities. Since the second half of the 20th century, 
human-induced environmental changes have had 
major effects on the Baltic Sea ecosystem, leading to 
most areas of the Baltic Sea to be classified as being in 
‘moderate’, ‘poor’ or ‘bad’ ecosystem health accord-
ing to the Holistic Assessment of Ecosystem Health 
Status (HOLAS) tool (Andersen et al. 2011, 2017, 
HELCOM 2023). The long-term influence of humans, 
including pressures as well as different governance 
measures, makes the Baltic Sea a model system be -
cause the pressures that the Baltic Sea faces already 
today comprise threats that many coastal and estuar-
ine systems are, and will be, facing world-wide 
(Reusch et al. 2018). Using the coastal zoobenthos of 
this model system to understand taxonomic and func-
tional variations in response to environmental vari-
ables contributes to a more complete and general 
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understanding of coastal communities in response to 
human ecosystem engineering and the resulting 
implications for coastal ecosystem functioning. 

We studied zoobenthic communities around the 
Åland Islands (Finland), focusing on the time follow-
ing a Marenzelleria spp. Mesnil, 1896 establishment-
induced shift in community composition (Weigel et 
al. 2015). We aimed to identify environmental and 
human ecosystem engineering drivers of coastal 
macrobenthic communities and the implications for 
macrofauna-mediated ecosystem functions. The over-
all objective was to provide a deeper understanding of 
environment–community relationships and the inter-
play between biotic and abiotic ecosystem compo-
nents regarding human ecosystem engineering. In 
particular, the objectives were (1) to understand how 
zoobenthic communities are structured in terms of 
species abundances and trait-based diversity depend-
ing on environmental variables and human ecosystem 
engineering, and (2) to disentangle the relative con-
tributions of these environmental stressors to biolog-
ically mediated ecosystem processes (bioturbation 
and bioirrigation potential, as well as food availability 
for mesopredators) in coastal macroinvertebrate 
communities. To determine the spatial drivers of 
functional diversity, we compiled a large data set of 
macrofauna abundances covering the Åland Islands 
archipelago with corresponding descriptors to iden-
tify which environmental variables are driving macro-
faunal communities. 

2.  MATERIALS AND METHODS 

2.1.  Study area and data collection 

The Åland Islands are located at the junction of the 
northern Baltic Proper and the Bothnian Sea between 
Finland and Sweden (Fig. 1f). The coastal zone com-
prises over 6000 islands, forming a highly heteroge-
neous land- and seascape, with underwater habitats 
ranging from shallow, sheltered bays to exposed 
open-sea areas. Gradients in environmental drivers, 
such as water temperature, salinity, oxygen concen-
tration and organic content, can be steep from the 
inner to the outer coastal zone. Consequently, the 
Åland archipelago reflects broad environment types 
and can hence be considered a model area for under-
standing community structure and function across 
environmental gradients. 

To spatially cover a broad range of environmental 
conditions and habitats and to identify major environ-
mental drivers for macrofaunal communities (traits 

and species), data for a total of 168 stations located 
throughout the Åland archipelago (Fig. 1f) were com-
piled for a total of 708 samples. Species composition, 
abundance and biomass data for benthic macrofauna 
in addition to environmental data were collated from 
existing scientific surveys that together cover the 
Åland Islands marine area. The analysis was restricted 
to the period after 2000, as this year corresponds to a 
large-scale community shift in the zoobenthos in the 
region, shown to be mainly due to the establishment 
of Marenzelleria spp. (Weigel et al. 2016). The data 
sets were acquired from Husö Biological Station (Åbo 
Akademi University, Finland), and our selection com-
prises data from 2003 to 2022. As environmental 
descriptors, we used available data on temperature 
(°C), salinity and oxygen concentration (mg l–1) of 
bottom water (measured with a YSI multi-parameter 
probe), sediment type (sand or mud) and sediment 
organic content (%), determined by loss on ignition 
(3  h at 500°C, dry weight). The extent of exposure 
to waves and wind, depth and proximity to land are 
significant factors structuring biological communities 
(abundance, biomass, species composition) (Pihl 1986, 
Kilar & McLachlan 1989, Ricciardi & Bourget 1999). 
Based on the established exposure index for the 
Northern Baltic Sea by Isæus (2004), the EUNIS index, 
we grouped the stations a priori into sheltered, semi-
exposed and exposed sites. Fish-farm effluents have 
been shown to have an impact on both the water qual-
ity (Nordvarg & Johansson 2002) and macrofaunal 
communities (Kraufvelin et al. 2001, Nordström & 
Bonsdorff 2017) in the Åland archipelago. As a proxy 
for fish-farm pollution, we estimated the distance 
to the nearest fish farm for each station. Human eco-
system engineering was further explored based on 
the HELCOM metadata catalogue (https://metadata.
helcom.fi/) (i.e. ‘Disturbance of species due to human 
presence’, ‘Physical disturbance’, ‘Integrated eutroph-
ication status assessment’, and ‘Input of hazardous 
substances’) (for the full set of variables and comple-
mentary information, see Table S1 in the Supplement 
at www.int-res.com/articles/suppl/m738p001_supp
.pdf). Benthic samples included were all obtained in a 
standardized way, using an Ekman-Birge grab sam-
pler (289 cm2) and a 0.5 mm mesh sieve, and sampled 
material was preserved in 70% ethanol. Only stations 
with 3 to 5 replicate grab samples were included in 
the analysis. Taxonomic resolution was set at species 
level when possible and in accordance with the res-
olution of trait information available. A thorough 
taxonomic quality assurance included verification of 
taxonomy and scientific names following several 
databases: Marine Biodiversity and Ecosystem Func-
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Fig. 1. Distance-based redundancy analysis (dbRDA) resulting from macrobenthos data based on Bray-Curtis similarities (ANOVA, p = 
0.001). (a) Environmental variables with a significant influence on the distribution of sites (see Table S1 in the Supplement for ad-
ditional information). (b) Macrofaunal species present at the different sites and showing a significant influence on the distribution of 
those sites in the analysis. Possible clusters are highlighted based on (c) sediment type, (d) exposure and (e) the combination of both 
sediment type and exposure, revealed by hierarchical clustering analysis. (f) Station characteristics in sediment and wave exposure in 
the archipelago. (c,e,f) Triangles: sand; circles: mud. (d,e,f) Dark, medium and light colours represent exposed, semi-exposed and shel-
tered environments. The first 2 axes (dbRDA1 and dbRDA2) summarize 45.48% of fitted and 44.17% of the total information
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tioning (MarBEF) Data System - European Register of 
Marine Species (ERMS) (Costello et al. 2023), World 
Register of Marine Species (WoRMS Editorial Board 
2023) and the Integrated Taxonomic Information Sys-
tem (ITIS 2023). 

2.2.  Trait selection 

Traits reflect key components of functioning and 
are used as proxies for ecological processes (Törnroos 
& Bonsdorff 2012). We selected a set of fundamental 
traits reflecting key functions of zoobenthos commu-
nities within coastal ecosystems (Table 1; Table S2). 
With the selected traits, we focused on 2 main func-
tional aspects within coastal systems, namely (1) the 
quality of zoobenthos as a food resource for higher 
trophic levels, with traits reflecting production, sus-
ceptibility to predation and palatability proxies; and 
(2) the role of zoobenthos as ecosystem engineers, 
including traits related to habitat modification, bio-
turbation, spatial resource dynamics and nutrient 
cycling. Information on these traits was collected for 
the lowest possible taxonomic level from a variety of 
published sources, namely literature (e.g. Törnroos & 
Bonsdorff 2012) and online databases, such as Poly-
traits (Faulwetter et al. 2014), the Biology Traits Infor-
mation Catalogue (BIOTIC) (MarLIN 2006) and 
WoRMS (WoRMS Editorial Board 2023). As some 
species show plasticity in expression of certain trait 
categories, trait categories were scored using a 
fuzzy coding approach (Chevene et al. 1994), with a 
scoring range of 0 (no affinity) to 3 (total affinity 
towards trait category) (van der Linden et al. 2016, 
Hu et al. 2019, D’Alessandro et al. 2020). The fuzzy-
coded species-trait matrix was then abundance-
weighted using the average species abundances for 
each station. 

2.3.  Taxonomic and functional diversity 

Macrofaunal taxonomic diversity was assessed 
using the following primary community variables and 
diversity indices (Gray & Elliott 2009): abundance 
(A), biomass (B), taxonomic richness (S), Shannon’s 
diversity index (H’), Pielou’s evenness (J’) and Simp-
son’s diversity index (1–D, hereafter D). Functional 
diversity was assessed with the following 3 multi-
dimensional indices: functional richness (FRic), func-
tional evenness (FEve) and functional divergence 
(FDiv) (Villéger et al. 2008, Laliberté & Legendre 
2010). These indices were built to be complementary 

(Villéger et al. 2008) and identified as a relevant 
combination to fill the functional space of a com-
munity (Mouchet et al. 2010). FRic describes the 
amount of trait space occupied by the species within 
a community and therefore represents the number 
of trait categories expressed. FEve refers to how 
evenly species abundances are distributed between 
the expressed trait categories (low values indicating 
that some parts of niche space are under-utilized). 
FDiv defines the distribution of the abundance 
across the niche space, with a higher value indica-
ting a high degree of niche differentiation (Mason 
et al. 2005). 

2.4.  Macrofauna-mediated ecosystem functions 

2.4.1.  Estimate of community quality as food 
resource for consumers (FPc) 

Macrofauna are found at the upper layers of the 
sediment and at the water–sediment interface and 
represent an important element of benthic–pelagic 
coupling (Griffiths et al. 2017). Macrofauna species 
act as food resources for larger benthic species, epi-
fauna or demersal fish species (Rosenberg 1995). A 
species-specific energy content proxy (EC, J g–1) was 
developed by Weigel & Bonsdorff (2018) as an estima-
tion of production, susceptibility to predation, palat-
ability and quality as a food resource (prey) for con-
sumers (predators) in the ecosystem. Following optimal 
foraging theory, predators are likely to select prey 
that provide them with the highest energetic gain 
(ECi) while losing minimal energy during the catching 
and handling process (expressed hereafter with Fri, 
Epi, Lpi) (Pyke et al. 1977). Prey species with relatively 
high energy content should be preferred in cases 
where their abundances and accessibility are equal to 
those of lower-energy species. Consequently, areas 
where such high-energy prey species are easily acces-
sible would present higher food resource potential. 

For each sample, we multiplied the species-specific 
energy content (ECi, J g–1) by the mean individual 
biomass (expressed by the relation Bi/Ai, where Bi is a 
dry weight in g m–2, and Ai is abundance in ind. m–2) 
of each species within a sample and with standardized 
scores for prey vulnerability to predation based on its 
living position (Lpi), standardized scores for the abil-
ity of the species to escape based on its motility (Epi) 
and standardized scores regarding the ease of being 
ingested by the predator based on the body fragility 
(Fri). The following index gives an estimate of food 
resource potential for each species (FPi, J m–2) and for 
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Trait                                           Category                  Label           Definition                                                                   Key mechanisms and functions 
 
Feeding mode                        Scavenger                  scav            Feeding on carcasses.                                            Food acquisition, productivity,  
Response trait                       Predator                    pred            Feeding on living animals                                    turnover, proxy for energy  
(Resistance)                             Parasite                      par             Obtaining food from another animal (host)    transfer, strength of benthic– 
Effect trait                                  Miner                       min            Obtaining food through mining in e.g.            pelagic coupling, prey 
(Bioturbation)                                                                                 woody material                                                        accessibility 
                                             Scraper/grazer              graz            Feeding on leaves or other plant parts 
                                      Surface deposit feeder      sdep           Feeding on phytoplankton, litter and 
                                                                                                            organic matter in the sediment and water  
                                                                                                            column 
                                        Sub-surface deposit      subdep         Feeding on phytoplankton, litter and  
                                                     feeder                                           organic matter in the sediment and water  
                                                                                                            column 
                                        Passive suspension/         pfilt            Feeding on suspended matter or food 
                                                filter feeder                                     particles in the water column 
                                         Active suspension/          afilt            Feeding on suspended matter or food 
                                                filter feeder                                     particles in the water column 

Motility                              Motile swimmer            swim           Free-swimming                                                        Mobility, dispersal, susceptibility  
Response trait             Motile rafter/drifter          raft             Rafting on e.g. drifting algal mats                      to cropping/predation and  
(Resistance, Recovery     Motile crawler             crawl           Moving on the sediment surface                        environmental pressures 
potential)                         Motile burrower             burr            Living in burrows within the sediment 
Effect trait                      Semi-mobile tube            tub             Living in a tube 
(Food resource,                Sessile byssus               byss            Attached to the surface of a hard  
Bioturbation)                                                                                  substrate 

Environmental                   Infauna deep               deep           Living within the substrate, deeper than         Prey accessibility, susceptibility 
position                                                                                              5 cm                                                                             to cropping and predation,  
Response trait                  Infauna middle             midd           Living within the substrate between 2              productivity, elemental cycling, 
(Resistance)                                                                                     and 5 cm                                                                     space resource dynamics 
Effect trait                            Infauna top                  top             Living within the top 2 cm of the substrate 
(Food resource,                   Epibenthic                   epi             Living on the surface of the substrate 
Bioturbation)                   Bentho-pelagic             benp           Living in the water column and feeding  
                                                                                                            on the bottom 

Maximum adult                   Very small                    VS             0–0.01 g                                                                     Growth rate, productivity, elemental 
body size                                      Small                          S               0.01–0.1 g                                                                  cycling, metabolism, feeding 
Response trait                        Medium                      M              0.1–1 g                                                                       interactions 
(Resistance, Recovery           Large                          L               >1 g 
potential) 
Effect trait 
(Food resource, 
Bioturbation) 

Fragility                                      Fragile                      frag            Likely to crack as a result of physical               Prey accessibility, protection  
Response trait                                                                                impact                                                                         against predation and physical 
(Resistance)                        Intermediate                inter            Liable to suffer minor damage                            pressures, proxy for palatability, 
Effect trait                                 Robust                       rob             Unlikely to be damaged by physical                 productivity, proxy for litter 
(Food resource)                                                                             impact (e.g. hard, leathery)                                  quality, ease of ingestion and  
                                                                                                                                                                                                  decomposition 

Longevity                                Very short                 vshort          <1 yr                                                                            Life cycle/lifespan, turnover rate, 
Response trait                           Short                      short           1–2 yr                                                                         productivity, energy fixation 
(Recovery potential)               Long                       long            2–5 yr 
Effect trait                              Very long                  vlong           5–10 yr 
(Food resource) 

Reproductive                          Asexual-                    asex             Asexual, both fragmentation and budding         Reproduction, turnover, productivity 
method                                 fragmentation 
Response trait                Sexual broadcast          spawn          Fertilized eggs laid or spawned 
(Recovery potential)            spawner 
                                             Sexual brooder            brood          Egg layer/brooder                                                  Movement of resources,  

Propagule dispersal               Pelagic                   plankt          Feeding on material captured from the            decomposition, productivity,  
Response trait                 planktotrophic                                  plankton                                                                     proxy for recruitment success, 
(Recovery potential)             Pelagic                    lecito           Nourished on internal resources, yolk             elemental transport 
                                              lecithotrophic 
                                              Benthic direct             direct          Direct development of mini adults 
                                               development 

Degree of contagion              Solitary                      sol             Living alone                                                              Consumption rate, elemental 
Effect trait                                 Patchy                     patch           Living in groups (aggregated together)           cycling, decomposition 
(Food resource)                                                                             occasionally (e.g. mussels) 
                                                     Highly                      aggr            Living in groups, growing in clusters, 
                                                aggregated                                      schooling

Table 1. Traits and functional categories included in this study. See Table S2 in the Supplement for additional information  
regarding trait descriptions, relevance and hypothesized relationships with environmental factors
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the community (FPc, J m–2) at each station as follows 
(Eq. 1): 

                                                                         (1) 

For the energy estimations (ECi), we followed estab-
lished biometric conversion factors from existing lit-
erature (Brey 2001, Brey et al. 2010). Information on 
Fri, Epi and Lpi was coded following our previous trait 
selection. In cases where no species-specific data 
were available, we applied the values of the closest 
taxonomic level. 

2.4.2.  Estimate of the community bioturbation 
potential (BPc) 

A frequently used approach to assess the ecosystem 
function related to the sediment reworking activity of 
macrofauna is the community bioturbation potential 
(BPc) (Solan et al. 2004, Queirós et al. 2013). This in -
dex is used as a proxy for organic matter mineraliza-
tion, as it provides indirect information on the oxygen 
penetration within the sediment. The community bio-
turbation potential was also linked to sediment chlo-
rophyll a (Josefson et al. 2012) and total organic car-
bon (Solan et al. 2012), sediment reworking (Morys et 
al. 2017), redox metrics (Birchenough et al. 2012), bio-
geochemical cycling (Braeckman et al. 2014) and 
chemical pollution (Mazik & Elliott 2000). 

This index includes quantitative measures of spe-
cies biomass (Bi) and abundance (Ai), as well as qual-
itative considerations for mobility (Mi) and functional 
sediment reworking (Ri), 2 traits known to regulate 
biological sediment mixing, a key component of bio-
turbation (Solan et al. 2004). Information on mobility 
and sediment reworking mode was coded following 
Queirós et al. (2013) and Gogina et al. (2017). These 
data were used to estimate the species (BPi) and com-
munity (BPc) bioturbation potential, using the equat-
ion in Solan et al. (2004): 

                                                                         (2) 

2.4.3.  Estimate of the community bioirrigation 
potential (BIPc) 

To quantify the potential for solute exchange at the 
sediment–water interface, community bioirrigation 

potential (BIPc) (Renz et al. 2018) was calculated. In 
order to account for different underlying physical 
processes in mud and sand, BIPc applies different 
scores for advective systems (corresponding to medium 
sand and coarser sediment types), and for diffusive 
benthic systems (very fine and fine sand sediments, 
all other muddy and less permeable sediment types). 
Considering the sampling method adopted in this 
study, which restricts the collection to only muddy to 
fine sand sediments, the scores corresponding to dif-
fusive benthic systems were assigned to all taxa. To 
calculate BIPc, the mean individual biomass (ex -
pressed by the relation Bi/Ai, where Bi is a dry weight 
in g m–2, and Oi is abundance in ind. m–2) of each spe-
cies within a sample is multiplied by the relevant 
scores for the trait categories feeding type (FTi), bur-
row type (BTi) and depth (Li), and they are weighted in 
turn by species abundance as given in the following 
equation. Afterwards, the results are summed up 
across all species present in the sample at a particular 
station: 

                                                                         (3) 

In the cases where trait categories were deemed 
irrelevant or negligible regarding solute exchange 
across the sediment–water interface (e.g. epifauna), 
a score of ‘zero’ was assigned. Information on BTi 
modes, FTi types and Li (cm) were obtained from the 
literature (e.g. Renz et al. 2018) and databases (e.g. 
MarLIN 2006, Faulwetter et al. 2014). 

2.5.  Statistical analysis 

Known as a robust approach to identify the relative 
influence of different ecological factors in driving com-
munity assembly (Jupke & Schäfer 2020), a distance-
based redundancy analysis (dbRDA) was performed. 
This method is used for carrying out constrained ordi-
nations on data using Bray-Curtis distances (Legen-
dre & Gallagher 2001). dbRDA synthesizes the com-
plete data set of taxa abundances at different sites 
with a triplot projection (sites, stations and explaining 
factors) on 2 axes. This analysis assessed the in -
fluence of the following variables on taxa abundances 
across samples: sampling year and month, bottom-
water oxygen concentration, depth, temperature, salin-
ity, sediment type, sediment organic content, wind-
wave exposure index, water clarity, distance from fish 
farm, integrated eutrophication status, physical dis-
turbances, human presence and inputs of hazardous 
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substances (Table S1). To ensure the significance of 
the dbRDA, an ANOVA was conducted on the model 
(Legendre & Anderson 1999). Hierarchical cluster 
analysis was applied to abundance data to identify 
similarities among sites and build clusters on dbRDA 
plots. Following log10(x + 1) transformation of macro-
fauna counts, cluster analysis (group-average link-
age) was performed on a resemblance matrix of the 
transformed data based on Bray-Curtis distances. 

Identified cluster groups were further described 
with boxplots for environmental variables. Boxplots 
for univariate data were also computed with samples 
pooled in testing groups based on the hierarchical 
cluster analysis results to assess macrofaunal tax-
onomic and functional diversity. Before performing 
statistical tests on univariate characteristics of macro-
faunal α diversity (A, B, S, H’, J’, D), functional diver-
sity (FRic, FEve, FDiv) and macrofauna-mediated 
ecosystem functions (FPc, BPc, BIPc), all faunal and 
environmental variables were checked for normality 
(graphically and using an Agostino test), and fourth-
root, log(x+1) or arcsine transformed if necessary. 
If  data did not meet the assumptions for one-way 
ANOVA, a Kruskal-Wallis 1-way ANOVA by ranks 
was used. If significant differences were detected by 
the main test (p < 0.05), post hoc tests for pairwise 
multiple comparisons (Nemenyi’s test) were used to 
identify differences between pairs of stations. 

In addition to looking at species composition, com-
munity-level weighted means (CWMs) of trait values, 
representing the expressed trait categories weighted 
by abundances, were computed for each replicate and 
used to compare the trait composition between groups 
identified in the hierarchical cluster analysis. A simi-
larity percentage (SIMPER) analysis was applied to 
examine the dissimilarity between the cluster groups 
concerning species and trait composition. 

To further explore the relationship between the 
ecological traits of macrobenthos and environmental 
variables, a combination of RLQ (Dolédec et al. 1996) 
and fourth-corner analysis (Legendre et al. 1997) 
according to Dray et al. (2014) was applied. For the 
RLQ analysis, tables for environmental variables (R), 
species abundance (L) and traits (Q) were analyzed 
using Hill-Smith analysis, correspondence analysis 
(CA) and principal component analysis (PCA), re -
spectively (Dray et al. 2014). The overall significance 
of this relationship was assessed using a global Monte 
Carlo test with 49 999 random permutations of models 
2 and 4 (Dray & Legendre 2008, Dray et al. 2014). 
Model 2 tests whether the distribution of species with 
fixed traits is influenced by the environmental con-
ditions, while model 4 tests whether traits influence 

the composition of species assemblages found in sam-
ples, keeping environmental conditions fixed (Dray et 
al. 2014). In addition, because RLQ analysis cannot 
determine which traits are affected by specific envi-
ronmental variables, fourth-corner analysis, with an 
adjusted p-value (false discovery rate method, FDR) 
(Benjamini & Hochberg 1995) for multiple testing, 
was applied. Furthermore, by combining both RLQ 
and fourth-corner analysis, the significance of the 
association between environmental variables or traits 
and the RLQ axes was investigated (Dray et al. 2014). 

An automatic stepwise model building for con-
strained ordination methods was used to determine 
important predictors of the macrofaunal communities 
and to determine how much of the variation can be 
explained by predictor variables (Legendre & Ander-
son 1999, Anderson 2008). Resemblance matrices for 
the multivariate community log10(x + 1) transformed 
abundance, biomass, traits (CWMs) and macrofauna-
mediated ecosystem functions (FPi, BPi, BIPi) were 
based on Bray-Curtis similarities between samples. 
Predictors included in the analysis were sampling 
month and year, bottom-water oxygen concentration, 
depth, temperature, salinity, sediment type, organic 
content, water clarity, wind-wave exposure index and 
the distance from fish farms. 

Variance partitioning analysis (VPA) was performed 
to evaluate the contribution of human ecosystem 
engineering and abiotic factors to the variance in 
structural and functional diversity. The variables in 
VPA were selected using the ‘ordistep’ function in the 
dbRDA, and only the variables that explained signifi-
cant variation (p < 0.05) were retained. Before VPA, 
covariates were divided into 4 groups, one of which 
was human ecosystem engineering (i.e. human pres-
ence, proximity to fish farm, integrated eutrophica-
tion status, physical disturbances, inputs of hazard-
ous substances), another group included variables 
related to the physical environment (i.e. depth, tem-
perature, salinity, bottom-water oxygen concentra-
tion, wind-wave exposure index and water clarity), 
the third group comprised sediment properties (i.e. 
sediment type, organic content), and the last group 
was temporal variability (i.e. year, month). The re -
sponse variables of the structural and functional diver-
sity and the quantitative variables were log2(x + 1) 
transformed. 

All analyses were performed using the R Statistical 
Software v.4.2.2 (R Core Team 2022). The functional 
diversity indices (FRic, FEve and FDiv) were calcu-
lated using the ‘FD’ package (Laliberté & Legendre 
2010) in R based on the fuzzy coding matrix of the 
traits and the abundance of species. RLQ and fourth-

8
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corner analyses were performed in the 'ade4' R pack-
age (Dray & Dufour 2007). Both the dbRDA and VPA 
analyses were performed using the 'vegan' package 
(Oksanen et al. 2011). 

3.  RESULTS 

3.1.  Species and trait composition in relation to 
exposure and sediment properties 

Among 168 stations and 708 samples collected 
between 2003 and 2022 in the Åland archipelago, 
a total of 83 982 macrofauna individuals were identi-
fied belonging to 44 different taxa. The hierarchical 
clustering analysis conducted on abundance data 
grouped sites with similar abundances and species 
compositions and identified 4 groups depending on 
their exposure (exposed [Exp], semi-exposed [Semi] 
or sheltered [Shelt]) and sediment type (sandy [Sand] 
or muddy [Mud]): A1 (Exp/Sand), A2 (Semi/Sand), 
A3 (Semi/Mud) and B (Shelt/Mud). Clusters identi-
fied with the hierarchical cluster analysis (Fig. S1) 
were clearly highlighted in the dbRDA (Fig. 1) and 
showed the major influence of the combination of 
both sediment characteristics of stations and their 
locations in the archipelago, more specifically their 
exposure to wind and waves and to human ecosystem 
engineering factors (i.e. human presence, proxies for 
fish farm pollution, eutrophication, hazardous sub-
stances and physical disturbance). Oxygen concen -
trations also appeared as an important structuring 
factor for the macrofaunal communities. Sandy sta-
tions grouped together and formed 2 clusters split by 
wave exposure, namely A1 (Exp/Sand) and A2 (Semi/
Sand). Cluster A3 (Semi/Mud) grouped muddy and 
semi-exposed stations and cluster B (Shelt/Mud) rep-
resented muddy and sheltered stations (ANOVA on 
the dbRDA: p < 0.001). 

Each variable presented significant differences be -
tween the previously identified cluster groups (Fig. S2). 
The EUNIS index highlighted the gradient in terms 
of  wind-wave exposure, from the most exposed (A1 
[Exp/Sand]) to the most sheltered (B [Shelt/Mud]) 
(Fig. S2a). The most exposed group (A1 [Exp/Sand]) 
regrouped stations with the lowest temperatures, the 
highest salinities and the lowest exposure to human 
ecosystem engineering (i.e. the highest Secchi depth 
and distance from fish farms, the lowest eu trophication 
levels and lower human presence and physical dis-
turbances). Water clarity followed the exposure gra-
dient, with the lowest levels found in the last group 
(B [Shelt/Mud]) (Fig. S2b). This group was also the 

one  presenting the highest organic content levels 
(Fig. S2i). The highest temperatures were measured 
in group A3 (Semi/Mud) (Fig. S2g). In contrast to 
A3  and B being exclusively muddy, A1 and A2 pre-
sented sand content (Fig. S2h). Muddy stations (A3 
and B) presented higher levels of hazardous sub-
stances compared to sandy ones (A1 and A2) (Fig. S2j). 
Dissolved oxygen concentrations were higher in sandy 
groups than in muddy ones, with the lowest concen-
trations found in group B (Shelt/Mud) (Fig. S2k). 
With scores higher than 1, eutrophication status 
classifications are qualified as ‘not good’ for all 
groups, with the highest levels found in B (Shelt/
Mud) (Fig. S2c). Human presence was higher in A1 
(Exp/Sand) and A3 (Semi/Mud) (Fig. S2e), while A2 
(Semi/Sand) was subject to the highest levels of phys-
ical disturbance (Fig. S2f). 

Species composition was different in relation to 
exposure and sediment type (Fig. 1b) with a dissimi-
larity higher than 70% between each group based on 
the SIMPER analysis (Fig. 2). Exposed and sandy sta-
tions (A1) were dominated by 50% Marenzelleria 
spp., 15% Monoporeia affinis (Lindström, 1855), 15% 
Macoma balthica (Linnaeus, 1758) and 5% Mytilus 
edulis Linnaeus, 1758 (Fig. 2). Mollusks were particu-
larly abundant (60% of the total species composition) 
in semi-exposed and sandy stations (A2), with mainly 
M. balthica and Hydrobia spp. W. Hartmann, 1821. 
Semi-exposed and muddy stations (A3) were dom-
inated by 40% M. balthica, 30% Hydrobia spp., 15% 
Oligochaeta spp. Grube, 1850 and 15% Ostracoda 
spp. Latreille, 1802. Sheltered and muddy stations (B) 
showed a different set of species, with 58% Chirono-
midae spp. and 15% Oligochaeta spp. Species com -
position was mostly influenced by exposure, with 
exposed stations characterized by the high presence 
of M. affinis and Marenzelleria spp. and sheltered sta-
tions by high proportions of Chironomidae spp. Semi-
exposed groups (A2 [Semi/Sand] and A3 [Semi/Mud]) 
were characterized by high proportions of mollusks 
(M. balthica and Hydrobia spp.). Potamopyrgus antip-
odarum (J. E. Gray, 1843) was absent from highly ex -
posed and sandy stations. 

Stations grouped together by exposure and sediment 
type also showed different trait compositions, with a 
dissimilarity higher than 51% between each group 
based on the SIMPER analysis (Fig. 3). Groups A1 
(Exp/Sand) and B (Shelt/Mud) presented the highest 
dissimilarity in their trait composition (67.73%). Ex -
posed and sandy stations (A1) were dominated by 
large, fragile individuals with high and very high lon-
gevity, brooders, pelagic lecithotrophic larvae, sub-
surface and surface deposit feeders and predators, 
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burrowers, infauna (middle, deep and top) and pat-
chily distributed organisms. Sheltered and muddy 
stations (B) were dominated by medium-sized indi-
viduals with intermediate fragility, short longevity, 
spawners, benthic direct development, passive filter-
feeders and miners, crawlers, tube builders and raf-
ters/drifters, top infauna and epifauna and solitary 
organisms. Groups A2 (Semi/Sand) and A3 (Semi/
Mud) showed a higher similar trait composition with 
an intermediate trait composition, halfway between 
A1 (Exp/Sand) and B (Shelt/Mud). 

This trend is further highlighted with the RLQ anal-
ysis (Fig. 4). Deeper stations presenting higher wind-
wave exposure, higher water clarity, greater distance 
from fish farms and lower temperatures were associ-
ated with large-sized, long-lived, fragile organisms, 
predators and sub-surface deposit feeders, motile 
burrowers, with pelagic lecithotrophic propagule dis-
persal and living deeper than 5 cm within the sed-
iment; whereas stations at the opposite side of this 
spectrum were characterized by epibenthic, robust, 
medium-sized organisms, sexual broadcast spawners, 
motile crawlers and rafters, with pelagic plankto-
trophic propagule dispersal (Fig. 4a,b). Muddy sta-
tions with higher organic content, closer to fish farms 
and subject to eutrophication were significantly posi-
tively associated with miners (Fig. 4c). Stations with 
higher oxygen concentrations were characterized by 

higher levels of brooders and patchy degree of conta-
gion and presented a significant negative association 
with solitary degree of contagion and the miner feed-
ing mode (Fig. 4c). 

3.2.  Diversity patterns and macrofauna-mediated 
ecosystem functions 

Total abundance ranged from 69 to 21 142 ind. m–2 
(4013.76 ± 139.96; mean ± SE) and total bio -
mass from 0.03 to 1038.05 gDW m–2 (13.78 ± 28.47). 
Species richness ranged from 1 to 18 species at in -
dividual stations (6.70 ± 0.11). The sand content 
in fluenced macrofaunal abundance, biomass and 
species richness, with significantly higher levels in 
sandy stations (A1 [Exp/Sand] and A2 [Semi/Sand]) 
(Fig. 5a–c). The highest taxonomic diversity (H’, J’ 
and D) was highlighted in the semi-exposed muddy 
group (A3), and these diversity indices were signifi-
cantly lowest in the  sheltered muddy group (B) 
(Fig. 5d,f). The highest functional richness (FRic) 
was found in the semi-exposed and sandy group 
(A2) (Fig. 5g). Functional evenness (FEve) was 
significantly higher in mud (A3 [Semi/Mud] and 
B  [Shelt/Mud]) than in sand (A1 [Exp/Sand] and 
A2 [Semi/Sand]) (Fig. 5h). Compared to all other 
groups, A3 (Semi/Mud) presented the lowest func-
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tional divergence (FDiv) (Fig. 5i). Every macrofauna-
related ecosystem function (food resource, bio -
turbation and bioirrigation) was higher in sandy 
stations than in mud (Fig. 5j,k,l). A3 (Semi/Mud) 
presented the lowest food resource potential for 
consumers (Fig. 5j). 

3.3.  Environmental drivers 

Permutation tests highlighted 2 main driving fac-
tors for macrofaunal communities (abundance, bio-
mass, traits) and for macrofauna-mediated ecosystem 
functions related to BPi and BIPi: the wind-wave expo-
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sure and sediment type (Fig. 6a). Regarding the eco-
system function related to FPi, sediment type appeared 
as the main driver (Fig. 6a). Oxygen levels were also 

significantly one of the main drivers contributing to 
explaining traits (Fig. 6a). The combination of the sig-
nificant variables (p < 0.05) (Fig. 6) explained more 
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than 40% of the variability in abundances, biomass, 
traits, bioturbation and bioirrigation potential, and 
28.29% of the variability in food re source potential. 

When significant factors were combined into 
physical environmental descriptors, sediment prop-
erties, human ecosystem engineering and tempo-

ral variation through VPA, the phys-
ical environment and human activ-
ities were highlighted as explaining 
the main variation in macrofaunal 
communities (abundance, biomass, 
traits) and in macrofauna-mediated 
ecosystem functions (BPi, BIPi, FPi) 
(Fig. 6b). Sediment properties and 
temporal variations also contributed 
to explaining variations in abun-
dance, traits, bioturbation and bioir-
rigation potentials (Fig. 6b). 

4.  DISCUSSION 

The present study identified significant 
environmental and human ecosystem 
engineering drivers for macrobenthic 
community structure and functioning. 
This large data set allowed us to go 
deeper than previous studies in the 
area in disentangling the relative con-
tributions of environmental stressors to 
biologically mediated ecosystem pro-
cesses related to sediment reworking 
and food availability for mesopredators. 

4.1.  Macrobenthos response to  
direct drivers 

Species and trait compositions were 
very similar to the results of Weigel et 
al. (2015, 2016) after the Marenzelleria 
spp.-induced shift in the communities. 
Also consistent with other previous 
studies (Bonsdorff 2006, Laine et al. 
2007, Rousi et al. 2019), both spatial 
and temporal variables accounted 
for  the distribution of macrobenthos, 
with the spatial variables (i.e. physical 
en vironment, sediment properties and 
human ecosystem engineering) being 
more important than the temporal dy -
namics (sampling year and month). 
One important temporal event to men-

tion is the introduction of the sabellid polychaete 
Laonome xeprovala Bick & Bastrop, in Bick et al., 
2018, appearing in our data set in 2022 (Pykäri 2022), 
which could potentially become invasive as seen in 
Luga Bay, in the Gulf of Finland (Tamulyonis et al. 
2020). 
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Fig. 5. Macrofaunal (a) total abundance, (b) total biomass, (c) species richness, 
(d) Shannon’s diversity index, (e) Simpson’s diversity index, (f) Pielou’s even-
ness, (g) functional richness (FRic), (h) functional evenness (FEve), (i) func-
tional divergence (FDiv), (j) community food resource potential for consumers 
(FPc), (k) community bioturbation potential (BPc), (l) community bioirrigation 
potential (BIPc). Stations (n = 168) were grouped based on the hierarchical 
cluster analysis results. The lower and upper box boundaries indicate 1st and 
3rd quartiles, respectively. Bold horizontal lines inside boxes are medians. 
Whiskers represent minimal and maximal values (1.5× the interquartile range 
below the 1st quartile or above the 3rd quartile) and outliers are indicated 
by dots. Different lowercase letters above boxplots show significant differences  

(p < 0.05) (Kruskal-Wallis tests with Nemenyi’s post hoc tests) 
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The exposure to wind-waves and to human ecosys-
tem engineering was one of the main drivers high-
lighted for the macrofaunal communities in the Åland 
archipelago (Fig. 7). In this archipelago, the coastal 
zone comprises over 6000 islands, forming a highly het-
erogeneous land- and seascape, ranging from shallow, 
sheltered bays to exposed open-sea areas (Bonsdorff et 
al. 1996, Weigel et al. 2015). Gradients in environmental 
drivers, such as exposure to wind-waves, water tem-
perature, salinity and oxygen concentration, can there-
fore be steep from the inner/sheltered to the outer/ex-
posed coastal zone. Alongside this environmental 
gradient, a gradient in human ecosystem engineering 
is also noticeable where physical disturbance, human 
presence and inputs of hazardous substances change 
from the coast to the open sea. Higher eutrophication 

levels were evident in sheltered areas based on the 
HELCOM integrated eu trophica tion status index in 
addition to several en vironmental parameters known 
to jointly describe eutrophication (i.e. Secchi depth, or-
ganic content and bottom water oxygen). Human ac-
tivities can further be context-related, e.g. following 
different degrees of coastal ex posure and targeting 
specific activities to areas with sandy beaches, suitable 
locations for boat harbors, or depth and water quality 
needed for fish farming. Disentangling the relative ef-
fects of the physical en vironment from human-induced 
disturbances on macrofaunal communities is challeng-
ing. Repeated sampling may give insight into how 
changes in anthropogenic pressures shift the macro-
faunal community ecotone along the environmental 
gradient (Weigel et  al. 2015). In our study, data may 
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furthermore be lacking regarding human disturbances 
or pressures at deeper, more exposed sites, potentially 
skewing human impact estimates for part of the gra-
dient. Consequently, it is crucial to recognize that the 
impacts, both direct and indirect, of human ecosystem 
engineering as described in this study, are likely un-
derestimated, particularly in light of factors such as cli-
mate change. 

Macrofaunal species composition was conditioned 
by gradients from sheltered sites, characterized by e.g. 
higher temperatures, lower oxygen levels and higher 
eutrophication levels, to exposed areas being deeper 

and presenting higher water clarity and exposure to 
wind-waves, and the lowest exposure to human ecosys-
tem engineering. Exposed areas were dominated by 
Marenzelleria spp., Monoporeia affinis, Macoma bal-
thica and Mytilus edulis; semi-exposed areas were 
dominated by mollusks (M. balthica, Hydrobia spp. 
and Potamopyrgus antipodarum); and sheltered areas 
were dominated by pollution-tolerant insect larvae 
(Chironomidae spp.) (Leppäkoski 1975) (Fig. 7). De-
scribed as not sensitive to nutrient enrichment (Leppä-
koski 1975) or hypoxia (Gamenick et al. 1996), Oligo-
chaeta spp. were found in higher proportions in muddy 
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sediments with higher levels of de-oxygenation, eu-
trophication, fish farm proximity and hazardous sub-
stances. Particularly sensitive to pollution, species 
such as M. affinis and Halicryptus spinulosus von Sie-
bold, 1849 were only present in outer stations, farther 
from eutrophication and hazardous substances. 

In addition to the exposure gradient, sediment 
properties were highlighted as a significant driver in 
explaining macrofaunal structural diversity patterns 
(Fig. 7). Higher abundances, biomass and species 
richness were indeed detected in sandy sediments 
compared to muddy ones. This is consistent with re -
sults from the Finnish coast of the Gulf of Finland in 
the Baltic Sea, highlighting that the sediment type 
accounted for most of the variation in macrofaunal 
abundances (Rousi et al. 2019). 

4.2.  Effects on macrozoobenthos traits 

Completely different sets of traits were prominent 
in exposed versus sheltered areas (Fig. 7). Exposed 
areas were dominated by large, fragile individuals 
with high longevity, brooders, pelagic lecithotrophic 
larvae, sub-surface and surface deposit feeders and 
predators, burrowers, infauna (middle, deep and top) 
and patchily distributed organisms, whereas shel-
tered areas were dominated by medium-sized in -
dividuals with intermediate fragility, low longevity, 
spawners, benthic direct development, passive filter-
feeders and miners, crawlers, tube builders and raf-
ters/drifters, top infauna and epifauna, and solitary 
organisms. Semi-exposed areas showed an intermedi-
ate trait composition between sheltered and exposed 
areas, highlighting a switch in the macrofaunal trait 
composition from sheltered to exposed areas, occur-
ring gradually along the exposure gradient related to 
wind-waves and to human ecosystem engineering. 
Combining traits from both sheltered and exposed 
areas, functional richness was the highest in this tran-
sition area with intermediate exposure to wind-waves 
and human-induced pressures, which is consistent 
with the intermediate disturbance hypothesis (Wil-
kinson 1999). This change in the trait composition 
corresponds to a switch from an r-strategy in shel-
tered areas affected by eutrophication, to a K-strategy 
in exposed areas presenting a more stable environ-
ment. r-selected species with fast reproduction (plank-
totrophic larvae), short life cycle, numerous offspring 
(spawners) and smaller body size can indeed be at 
an  advantage when an ecosystem faces severe or 
frequent disturbance, such as eutrophication or pro-
longed hypoxia, while K-selected species with leci-

thotrophic larvae, late sexual maturity and fewer off-
spring (brooders) will decrease in relative abundance 
(Pearson & Rosenberg 1978, Jeschke et al. 2008). For 
example, higher proximity to fish farms was associ-
ated with a decrease in body size and an increase in 
robustness. Eutrophication also specifically affected 
traits associated with motility and feeding mode, 
resulting in higher proportions of motile rafters/drift-
ers as well as miners. Our results are consistent with 
those of Shi et al. (2023), highlighting the effects of 
eutrophication on trait composition of macrobenthic 
fauna, especially on motility and body size, and con-
cluding that macrobenthic fauna exhibited opportun-
istic traits in eutrophic areas. 

4.3.  Effects on macrofauna-mediated  
ecosystem functions 

4.3.1.  Effects on food availability for mesopredators 

Community reorganizations due to environmental 
pressures and human ecosystem engineering not only 
reshuffle species and trait compositions as observed in 
this study, but also affect species interactions and 
trophic dynamics (Tylianakis et al. 2008). What makes 
prey species suitable and/or favorable for their pred-
ators is a central question in ecology especially in re-
gard to accelerating rates of changing communities 
and shifting interactions (Harley et al. 2006, Both et al. 
2009, Schmitz & Barton 2014). In this study, we applied 
a novel index to estimate the macrofaunal community 
quality as a food resource for consumers, such as ben-
thic-feeding fish. The use of a trait-based approach 
was relevant, knowing that predators select their prey 
irrespective of taxonomic identities but based on a 
multitude of phenotypic characteristics, such as mor-
phological, behavioral and life history traits (Green & 
Côté 2014, Spitz et al. 2014, Rodríguez-Lozano et al. 
2016). Based on the relevant functional traits, this ap-
proach applied to our results succeeded in reflecting 
the optimal foraging theory: the highest index levels 
were indeed found in areas where predators are likely 
to find prey that provide them with highest energetic 
gain while losing minimal energy during the catching 
and handling process. The combination of both the 
energy content and the accessibility of the prey was 
determinant in calculated FPc: the highest values were 
associated with higher abundances and biomass in ad-
dition to large-sized, easily ingested, fragile individ-
uals (e.g. Marenzelleria spp.) in exposed sandy areas, 
whereas the lowest FPc values were found in areas with 
lower abundances and biomass in addition to smaller 
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and more robust individuals (e.g. Hydrobia spp.) in 
semi-exposed muddy areas. FPc values did not differ 
between areas with higher abundance and biomass 
with robust individuals and areas with lower abun-
dance and biomass including individuals with higher 
energy content (i.e. insect larvae) and higher acces-
sibility (epifauna). Disparities in the availability of 
macrofaunal food resources across the Åland Island 
archipelago may lead to reduced secondary produc-
tion and food provision for benthic mesopredators in 
muddy semi-exposed areas, processes known to link 
to provisioning services for humans (Rodrigues-Filho 
et al. 2023, Jacquot 2024). 

4.3.2.  Effects on sediment reworking 

Additional important ecosystem processes associ-
ated with macrofaunal communities are linked to 
their sediment bioturbation and bioirrigation capac-
ities. The differences in species and trait composition 
and in community structure highlighted in this study 
have the potential to affect bioturbation and bioirri-
gation potentials and in so doing to also impact eco-
system functioning (e.g. influencing sediment chloro-
phyll a) (Josefson et al. 2012), total organic carbon 
(Solan et al. 2012), sediment reworking (Morys et al. 
2017), redox metrics (Birchenough et al. 2012) and 
biogeochemical cycling (Braeckman et al. 2014). Our 
results showed that a reduction in bioturbation and 
bioirrigation potential indices was associated with a 
decrease in abundance, biomass and macrofaunal 
species richness. This is in line with previous studies 
showing that macrozoobenthic community structure 
influences bioturbation processes (Biles et al. 2002, 
Nasi et al. 2020). Differences in macrofaunal biotur-
bation attributes were likely due to sediment proper-
ties. Several other studies also highlighted sediment 
characteristics (i.e. grain size, organic matter content) 
as the main drivers of different bioturbation attribute 
patterns (Nasi et al. 2020, Gogina et al. 2022). In par-
ticular, the highest bioirrigation levels were related 
to invertebrates with high burrowing depths, such as 
Marenzelleria spp. found in high abundances at the 
most exposed sandy stations. Nasi et al. (2020) showed 
that such taxa enhance bioirrigation, and Hedman et 
al. (2011) highlighted Marenzelleria spp. to be a more 
efficient bioirrigator compared to other species such 
as the polychaete Hediste diversicolor (O.F. Müller, 
1776). Reduced bioturbation (BPc) and bioirrigation 
(BIPc) potentials found in muddy sediments and inner, 
more fluctuating environments, closer to human ac -
tivities in the Åland archipelago, in contrast to sandy 

outer areas, which are farther from human ecosystem 
engineering, suggest spatial variation in biogeo-
chemical processes connected to supporting services 
(Rodrigues-Filho et al. 2023, Jacquot 2024). 

5.  CONCLUSIONS 

Based on a large data set spanning 2 decades and 
communities across the Åland archipelago, the pre-
sent study (1) identified significant relationships 
between environmental descriptors and macrofaunal 
community structure and functioning, and (2) disen-
tangled the relative contributions of those environ-
mental stressors to biologically mediated ecosystem 
processes related to sediment reworking and food 
availability for mesopredators. Both spatial and tem-
poral variables accounted for the distribution of 
macrobenthos, with the main 2 drivers identified as 
the exposure to wind-waves and to human-induced 
pressures and the sediment properties. A gradient 
from inner sheltered, highly eutrophied sites to outer 
exposed areas was linked to a change in species and 
trait compositions, leading to a switch from r- to K-
strategists, also affecting the availability of macro-
fauna as a food resource for mesopredators. Our 
results also highlighted a decrease in abundance, bio-
mass and macrofaunal species richness in muddy sed-
iments compared to sandy ones, which was associated 
with a reduction in bioturbation and bioirrigation 
potential indices. In the context of the socio-ecologi-
cal crisis humanity is currently facing, our results pro-
vide a deeper understanding of environment–com-
munity relationships and the interplay between biotic 
and abiotic ecosystem components regarding human 
ecosystem engineering. 
 
 
Data availability. Original data from this study, including 
macrofaunal abundances, biomass, traits and environ -
mental variables, are available as open data via Mendeley 
Data (Jacquot et al. 2024, https://doi.org/10.17632/6wht
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