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1.  INTRODUCTION 

Several studies have focused on the processes that 
modulate biological assemblages at different spatial 
scales (Sale 1977, Mora et al. 2003, Mittelbach & 
Schemske 2015, Bender et al. 2017). On a local scale, 
biological interactions such as competition and pre-
dation, for example, can regulate populations (Cantor 

et al. 2018). On a regional scale, temperature, light, 
water movement, and topography are important eco-
logical factors that regulate and filter species that 
shape a community (Pérès & Picard 1967, Riedl 1971). 
All those factors act together and with different inten-
sities to shape the seascape by limiting the distribu-
tion of species. Despite differences that act on local 
and regional scales, reef ecosystems have often been 
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explored separately for pelagic (Pinheiro et al. 2018, 
Feng et al. 2022) and benthic (Aued et al. 2018, Ash-
ton et al. 2022) compartments. However, there are im -
portant processes that take place at their interface or 
that act at different spatial scales. Thus, understand-
ing how those different compartments interact and 
what factors influence the communities at different 
scales with each other is key to understanding the 
ecology of the whole reef. 

Studies in temperate (Rosemond et al. 2001) and 
tropical (Aronson & Precht 2000, Smith et al. 2013) 
systems support the dichotomy between bottom-up 
and top-down processes, many of them at the 
 benthic–pelagic interface, and show how their bal-
ance ultimately controls reef communities. For in -
stance, microphytobenthos and macroalgae may reg-
ulate the abundance of herbivore populations, and the 
flow rate of suspended organic particles (Taylor et al. 
2018), including kelp debris (Duggins et al. 1989), 
may affect standing stocks or growth rates of sessile 
filter-feeding populations. Still, from the bottom-up 
perspective, the complex physical structure of macro-
algal canopies (Tait & Schiel 2011, Figueiredo et al. 
2020), as well as other biogenic habitats such as mus-
sel, oyster, and seagrass beds (Hulot et al. 2014), pro-
vide food and shelter for a large diversity of mobile in-
vertebrate feeders. On the other hand, top-down 
processes often consider predation of key species be -
cause their effects can cascade down through a se -
quence of different trophic levels (Paine & Vadas 
1969, Menge et al. 1994). For instance, a decline in 
shark populations may directly increase the abun-
dance of meso-predators and indirectly cause a drastic 
decrease in basal prey such as bivalves (Myers et al. 
2007). Over decades, the intensified activity of killer 
whales in the Aleutian Islands ultimately caused a de-
cline in kelp-forest cover through a cascading effect 
involving the decline of sea otters and an increase in 
grazing sea urchin populations (Estes et al. 1998). In 
the absence of top predators or herbivorous species 
(e.g. sea urchins and parrotfishes), 2 commonplace 
benthic consumers were found to play important roles 
in temperate shallow-reef habitats (Paine & Vadas 
1969, Steneck et al. 2002). Although often considered 
separate processes, bottom-up and top-down controls 
often exert simultaneous effects on reef communities. 
In an asymmetric way, Russ et al. (2021) observed that 
changes in benthic cover (a bottom-up driver) and 
fishing pressure (a top-down driver) combined led to a 
substantial shift in the composition of reef fish on is-
lands in the Philippines. 

Mechanisms controlling tropical reefs, frequently 
dominated by scleractinian corals, are generally more 

complex owing to the high diversity of species and 
biological interactions (Cantor et al. 2018). Corals and 
macroalgae comprise the main foundational species 
in the tropics (Idjadi & Edmunds 2006, Wikström & 
Kautsky 2007) and interact in several different ways 
(McCook et al. 2001). Negative allelopathy is fre quent 
and causes declines in reproductive output (Monteil 
et al. 2020), settlement rate (Fearon & Cameron 1996, 
Koh & Sweatman 2000, Vermeij et al. 2009), growth, 
and increased mortality (Tanner 1995) in neighboring 
competing species. In temperate and tropical reefs, 
drastic declines in sea urchin populations (Edmunds & 
Carpenter 2001) and herbivorous fish are often fol-
lowed by excessive macroalgal growth over corals. On 
the other hand, spikes in urchin populations may lead 
to excessive removal of calcium carbonate and whole-
reef erosion (Eakin 1996, Yeung et al. 2021). However, 
other potentially relevant processes connecting pela-
gic and benthic environments, particularly those in-
volving species-specific interactions and cryptic func-
tional groups in highly diversified tropical reefs, are 
poorly documented (Brandl et al. 2019). For instance, 
cryptobenthic fish (small species usually <5 cm) may 
play crucial roles during their larval stage as food 
sources for a variety of invertebrates and larger fish 
species and fuel the whole ecosystem (Goatley et al. 
2017, Brandl et al. 2019). 

Shallow reefs in the Southeastern Brazil Ecoregion 
(as defined in Spalding et al. 2007) share some charac-
teristics with both tropical coral reefs and temperate 
rocky systems dominated by macroalgae of different 
functional groups (Aued et al. 2018). The processes af-
fecting overall standing stocks of reef fishes and con-
trolling benthic seascapes in this region remain 
largely unknown. Abundant fish species process large 
amounts of dominant algal turfs (Francini-Filho et al. 
2010, Mendes et al. 2018); however, top-down-medi-
ated transitions to early successional algal assem-
blages, other than localized effects within damselfish 
territories (Ferreira et al. 1998), have not been verified 
to date. Indeed, field manipulations teasing apart fish 
and sea urchin effects on benthic assemblages point to 
top-down control by the latter, favoring crustose cor-
alline algae by reducing the cover of algal turfs (Cord-
eiro et al. 2020), contrary to the evidence supporting 
predominant fish effects in tropical reefs (Roff et al. 
2015). Still, low-lying algal turfs tend to dominate 
shallow reefscapes over the region, with the seasonal 
development of Sargassum spp. canopies providing 
habitat complexity during the summer (Godoy & Cou-
tinho 2002, Figueiredo et al. 2020). Algal turfs and 
canopies host highly diversified but contrasting as-
semblages of mobile fauna, with fronds of Sargassum 

42



Barreto et al.: Top-down and bottom-up processes in a marine protected area

spp. and Dichotomaria marginata facilitating a suite of 
hard-bodied invertebrates (e.g. crustaceans, mollusks, 
and echinoderms) that are preferred prey for most 
common invertebrate-feeder fish species in the region 
(Figueiredo et al. 2020). Although there are few 
studies investigating the in fluence of certain benthic 
cover characteristics on the distribution of inverte-
brates and fish in the southwestern Atlantic (Calderon 
et al. 2007, Eggertsen et al. 2017, 2020, Luza et al. 
2022), the interplay of processes operating at the in-
terfaces of reef compartments and how they modulate 
reefscapes remains an open question. 

Here, we sampled the shallow reef ecosystem along 
the main island of the Alcatrazes Archipelago, São 
Paulo State, Brazil, to explore potential processes 
linking the main compartments of reef biological 
assemblages. The spatial structure of benthic cover of 
colonial organisms (i.e. clonal colonies that live con-
nected to each other and cannot be easily isolated and 
counted as individuals), solitary organisms (i.e. orga -
nisms that live alone or in groups that can be 
counted), and reef fishes (i.e. part of the pelagic com-
munity) were assessed over 2 consecutive years by 
sampling 3 sites along the more sheltered northwest-
facing coastline of the main island, separated by sev-
eral hundred meters. We first determined what 
groups within each compartment showed consistent 
spatial structure and then made use of multiple re -
gressions to infer possible relationships among them. 
Considering that reefscapes in the region are gen-
erally dominated by macroalgal turfs and canopies 
(Aued et al. 2018) and that previous experimental 
work had not evidenced large-scale effects of benthic 
consumers (Cordeiro et al. 2020), we hypothesized 
general bottom-up control linking habitat-forming 
species (i.e. colonial organisms) to solitary organisms 
and reef fish, along with secondary top-down regula-
tion of benthic macroalgae through grazing (Fig. 1). 
Given that the Alcatrazes Archipelago is a protected 
environment, the potential functional relationships 
reported in this study could be used as a reference for 
other healthy reefs in the region. 

2.  MATERIALS AND METHODS 

2.1.  Study area 

The study was conducted in the Alcatrazes Archi-
pelago, located in southeastern Brazil, 36 km from the 
mainland (Fig. 2), within a wide transition zone under 
the influence of the Brazilian Current (warm with low 
concentrations of nutrients), the Falklands Current, 

and the South Atlantic Central Water (cold and 
nutrient-rich) (Ciotti et al. 2018). In the summer, 
intrusions of cold and nutrient-rich water from the 
Central South Atlantic contribute to the formation of 
the thermocline (see Ciotti et al. 2018), which occurs 
throughout the year but is less pronounced and at 
greater depths. In this part of the Brazilian coast, the 
climate is characterized by dry winters and hot rainy 
summers (Alvares et al. 2013, de Souza Rolim 2016). 
This archipelago is formed by the main island and 13 
other rocky outcrops, and included within 2 no-take 
areas: the Refúgio da Vida Silvestre do Arquipé-
lago  de Alcatrazes, which covers a no-take area of 
24.63 km2 (Motta et al. 2021) (Government of Brazil 
2016), and the Estação Ecológica Tupinambás (ESEC) 
(Government of Brazil 1987), restricted to reef hab-
itats that presently sustain one of the largest concen-
trations of shallow-water reef fish biomass along the 
Brazilian Province (Morais et al. 2017). 

2.2.  Field sampling 

Sampling took place during the austral summers of 
2020 and 2021 over shallow reefs of positive slope 
(10°–45°) at 3 sites along the more sheltered north-
west-facing coastline of the main island. Sampling 

43

Solitary organisms

Fishes

Benthic cover

(+)

(+)

(+)

(–)

Fig. 1. A theoretical model of trophic hypotheses. General bot-
tom-up control linking habitat-forming species (i.e. benthic 
cover of colonial organisms) to solitary organisms and fishes 
(indicated by the ‘+’ sign), along with secondary top-down 
regulation of benthic macroalgae through grazing (indicated  

by the ‘–’ sign)
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sites were Saco do Funil (FU), Jardim dos Corais (JC), 
and ESEC (Fig. 2), which are separated by at least 
1600 m. Three specific protocols were used at each 
site to sample the benthic cover of colonial organisms, 
the abundance of solitary organisms, and both the 
abundance and body size of reef fish. For all 3 reef 
compartments, replicate sampling units were pro-
cessed by SCUBA divers in a fully factorial design, en-
compassing both years, all 3 sites, and 2 depth strata 
(above and below the thermocline depth). Tempera-
ture measurements taken in situ during each sampling 
event were used to determine the depth of the thermo-
cline, which averaged 8.5 m, ranging from 8 to 10 m. In 
summer, when this study was carried out, cold and nu-
trient-rich water intrusions of the South Atlantic Cen-
tral Water contribute to the formation of the thermo-
cline, which is very common in the region and 
provides a supply of nutrients to the reefs through up-
welling (Ciotti et al. 2018). Among-site contrasts for 
the 3 components are emphasized in this study, as 

they may indicate the underlying ecological processes 
generally controlling whole-reef communities. 

2.2.1.  Benthic cover and solitary organisms 

Six 15 m replicate transects were haphazardly estab-
lished and surveyed for all level combinations of fac-
tors ‘year’, ‘site’, and ‘depth’. Benthic cover of colo nial 
organisms was estimated using the point intercept 
method (Hill & Wilkinson 2004). This method involves 
each diver recording all observed benthic groups at 
specific points spaced 0.5 m apart along a 15 m belt 
transect while swimming (n = 6 transects; Table S1 in 
the Supplement at www.int-res.com/articles/suppl/
m738p041_supp.pdf). All colo nial organisms were 
classified into 20 groups (including macroalgae, soft 
and hard coral species), and subsequently grouped 
into 12 morpho-functional groups for statistical analy-
ses (i.e. avoiding singletons; see Table 1). The extent 
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Fig. 2. Study area in the (a) Southwest Atlantic and (b) southeast coast of Brazil. The sites sampled in the Alcatrazes main Island  
are shown in (c). FU: Saco do Funil; JC: Jardim dos Corais; ESEC: Estação Ecológica Tupinambás
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of bare rock and sand was also recorded. Solitary or-
ganisms were sampled in five 1 m2 (1 × 1 m) quadrats 
along 6 belt transects of 15 m (Table S1). Each quadrat 
was spaced 3 m apart and placed on alternating sides 
along the same transects used for benthic cover sam-
pling. All solitary organisms were classified into 26 
groups and subsequently grouped into 10 groups for 
statistical analyses (see Table 1). Temperature and 
depth were re corded at the start and end of each tran-
sect using diving computers. 

2.2.2.  Reef fishes 

For fish sampling, 15 underwater visual censuses 
were conducted for each combination of factors (i.e. 
both years, 3 sites, and 2 depth strata; Table S1). 
These censuses were conducted along 40 m2 (20 × 
2 m) random belt transects (Floeter et al. 2007). From 
the reef bottom to 2 m up in the water column, fish 
were identified, counted, and their size (total body 
length, in cm) was estimated. Transects were sur-
veyed twice. Large and medium individuals with high 
mobility were recorded first, and bottom-dwelling, 
small (<10 cm), cryptobenthic and territorial individ-
uals with low mobility were counted while swimming 
on the way back. Fish were pooled in size and trophic 
groups based on body size and diet categories. Size 
categories followed modal components of the whole 
fish sample: 0–14 cm, 15–23 cm, 24–35 cm, and 
>35 cm (Fig. S1). Diet categories followed those de -
fined by Quimbayo et al. (2021): herbivores–detriti-
vores (HD; feeding on turf and filamentous algae 
and/or detritus), herbivores (MA; grazing on large 
fleshy algae and/or seagrasses), sessile invertebrate 
feeders (e.g. preying on corals, sponges, sea squirts), 
mobile benthic invertebrate feeders (MI; e.g. crabs, 
mollusks), planktivores (PL; small organisms in the 
water column), piscivores (fish and cephalopods), and 
omnivores (OM; generalists feeding on both animals 
and macroalgae). 

2.3.  Statistical analyses 

Analyses were divided into 2 stages. We first identi-
fied the main groups responsible for spatial contrasts 
and then determined whether such differences are 
temporally consistent. For those groups, we then 
searched for correlational evidence suggesting po -
tential processes controlling whole-reef assemblages. 
All statistical procedures were performed using 
PRIMER v.6.1.13 software (Clarke & Gorley 2006) and 

graphs were plotted using R v.4.0.2 (R Core Team 
2022). 

2.3.1.  Spatial contrasts 

We used linear mixed models, combining levels of 
the factors year (2020–2021), site (FU, JC, ESEC), and 
depth (above and below the thermocline) to test 
 spatial contrasts and their temporal consistency. We 
considered year as a random factor. Separate permuta-
tional analyses of variance (PERMANOVAs) (Ander -
son 2001) were run for each biological component on 
either raw (solitary organisms) or square-root trans-
formed data to reduce the influence of abundant and 
rare species (benthic cover, reef fishes) (Tichý et al. 
2020). Unrestricted permutation or raw data (9999 
times) and type III sums of squares were used. Pairwise 
testing followed omnibus analyses whenever factor 
site or its interactions with other factors were signifi-
cant. Given that we aimed to identify groups account-
able for the observed variations in spatial patterns 
among the assessed communities, rather than analyz-
ing all recorded groups within these communities 
and because the triple interaction would hold a large 
number of pairwise comparisons (12) potentially indi-
cating important spatial contrasts, a relatively high 
critical type I error rate was considered (α = 0.10). 
Similarity percentage (SIMPER) was then used to 
identify the groups responsible for among-site con-
trasts (>10% of whole dissimilarity in at least a single 
comparison). 

2.3.2.  Correlations 

Based on relevant literature in other reef systems, 
we addressed trophic or other resource-based hypo -
theses that could determine the interplay among ben-
thic foundational groups (i.e. benthic cover configur-
ing seascapes), countable invertebrates (i.e. solitary 
organisms), and reef fish. Namely, we conceived that 
seascape features would influence reef fish assem-
blages directly, or indirectly through positive bottom-
up control (e.g. facilitation; Fig. 1). Indirect impacts 
would mostly benefit carnivorous fish through the 
sustenance of abundant invertebrate populations. 
However, based on the potential effects of benthic 
grazers, trophic interactions could also result in both 
bottom and top-down control (Fig. 1). 

Correlation matrices among groups within each reef 
component were tested to set the maximum number of 
non-collinear independent variables (r < |0.7|). Step-
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wise backward multiple re gression was 
then used to identify benthic founda-
tion groups explaining the variation in 
single countable invertebrates and reef 
fish groups and to identify countable 
invertebrate groups ex plaining the vari-
ation in reef fish groups. Positive and 
negative estimate parameters would in-
dicate bottom-up and top-down control, 
respectively. In addition, we explored 
possible relationships between the 
Shannon’s H’ diversity indices of the 3 
reef compartments. 

3.  RESULTS AND DISCUSSION 

3.1.  Overall composition of  
reef compartments 

The shallow reefscape at Alcatrazes 
resembles other coastal and insular reef 
habitats along the subtropical–warm 
temperate Southwestern Atlantic (Aued 
et al. 2018). Overall, we observed that 
84% of the benthic cover was concen-
trated in 6 morpho-functional groups: 
the turf of articulated coralline algae 
was the most important (mean ± SD: 
28 ± 18.99%), followed by canopies of 
Sargassum spp. (22 ± 25%), the zoan-
thid Palythoa caribaeorum (11 ± 21%), 
filamentous algal turf (10 ± 11%), the 
brain coral Mussismilia hispida (7 ± 
7%), and a heterogenous group (not de-
scribed here) of erect macroalgae (6 ± 
7%; Table 1). Between 2011 and 2014, 
the same study area also showed a pre-
dominance of turf algae but low cover-
age of Sargassum spp. (Aued et al. 
2018), possibly because the sampling 
period occurred at the end of the 
summer season, when most species of 
this fucoid are already senescent (Szé-
chy & Paula 2000). The relative cover of 
scleractinian corals, mostly brain corals 
and to a lower extent the ten-ray star 
coral Madracis decactis (0.8 ± 2%), was 
slightly higher than at reef habitats 
along the Brazilian coast (Aued et al. 
2018). However, with the exception of a 
few quadrants, hard corals were never 
dominant and most 3D structure is pro-
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Compartments                    Groups pooled                    Mean         SD           % 
 
Cover 
Bare rock                              Barren ground                     0.278      0.928    0.278 
Corticated canopy             Other canopies                    0.556      1.480    0.556 
Cyanophyte canopy 
Filamentous canopy 
Foliose canopy 
Sargassum spp. canopy    Sargassum spp. canopy     21.71      25.478    21.71 
Madracis decactis              Madracis decactis              0.787      2.272    0.787 
Mussismilia hispida          Mussismilia hispida           6.713      6.886    6.713 
Encrusting brown              Encrusting algae                6.157      5.964    6.157 
Encrusting grey                                                                                                          
Encrusting pink                                                                                                          
Erect corticated                  Other erect algae               6.435      6.556    6.435 
Erect cyanophycean 
Erect filamentous 
Erect foliose 
Erect Sargassum spp.        Erect Sargassum spp.        6.019     10.506    6.019 
Sand                                       Sand                                        3.519      9.036    3.519 
Articulate turf                     Articulated turf                  27.685     18.986   27.685 
Filamentous turf                 Filamentous turf                 9.537     11.401    9.537 
Palythoa caribaeorum       Palythoa caribaeorum       10.602     20.611   10.602 
 
Solitary organisms 
Bunodosoma sp.                 Anemones                             0.028       0.209     0.568 
Other anemones 
Anemonia sargassensis 
Other ascidians                  Ascidians                               1.122       1.776    22.955 
Phallusia sp.                                                                                                                 
Nodipecten sp.                    Bivalves                                 0.006       0.074     0.114 
Other bivalves                                                                                                             
Mithrax sp.                           Crabs                                      0.094       0.353     1.932 
Stenorhynchus sp.                                                                                                       
Isostichopus sp.                  Cucumbers                           0.014       0.117     0.284 
Calcinus sp.                         Hermits                                  0.097       0.796     1.989 
Nudibranchs sp.                 Nudibranchs                        0.006       0.074     0.114 
Echinaster sp.                      Seastars                                  0.047       0.249     0.966 
Narcissia sp.                                                                                                                
Astraea sp.                            Snails                                      0.300       1.084     6.136 
Leucozonia sp. 
Other snails                          
Stramonita sp. 
Trachypollia sp. 
Arbacia sp.                           Urchins                                  3.175       5.066    64.943 
Astropyga sp. 
Diadema sp. 
Echinometra sp. 
Eucidaris sp. 
Lytechinus sp. 
Paracentrotus sp

Table 1. Average abundance values and respective standard deviations for 
main groups covering the reef (%) and solitary organisms (ind. m–2). Rows in  

gray shading represent the same morpho-functional group
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vided by the Sargassum spp. canopy, reaching a height 
of 30–40 cm (as in summertime, when this study was 
conducted). Barren grounds were relatively uncom-
mon (0.3 ± 0.9%), indicating that any physical disturb-
ances or consumptive effects are overwhelmed by the 
development of algal turfs and even P. caribaeorum 
(Cruz et al. 2018, Reverter et al. 2022). 

Solitary organisms mostly comprised sea urchins 
(3.17 ± 5.07 ind. m–2, 65%), followed by ascidians 
(1.12 ± 1.78 ind. m–2, 23%) and gastropod snails 
(0.30 ± 1.08 ind. m–2, 6%), which together ac -
counted for 95% of the whole sample (Table 1). The 
dominance of sea urchins, along with their rather 
clustered distribution (as indicated by a variance-to-
mean ratio of 8.11), first indicates high potential con-
sumptive effects at grazing fronts (as in Paine & 
Vadas 1969, Steneck et al. 2002, Ling et al. 2018). 

We observed 94 reef fish species belonging to 36 
families (Table S2), but only 9 species concentrated 
more than 80% of the whole fish abundance: Haemulon 
aurolineatum was the most important species (48%), 
followed by Abudefduf saxatilis (9%), Stegastes fuscus 
and Coryphopterus glaucofraenum (5% each), Haren-
gula clupeola (4%), Decapterus macarellus (3%), and 
Holocentrus adscensionis, Corypho pterus sp., Diplodus 
argenteus and Parablennius pilicornis (2% each; 
Table S2). Among the registered species, 5 are natio -
nally threatened in the vulnerable category (ICMBio 
2018): Sparisoma frondosum, S. axillare, Scarus zelin-
dae, Elacatinus figaro, and Epinephelus marginatus, 
the latter also listed internationally as Threatened 
(Pollard et al. 2018). Small and medium MI feeders 
were the most abundant trophic group, comprising up 
to 56% of the whole sample, followed by small OM 
(13%), small PL (8%), and small HD (5%; Table S2). The 
outstanding abundance observed in the Alcatrazes 
Archipelago can be associated with the long history of 
enforcement, as the area has been patrolled and used 
for military practice since the 1980s and this has re-
duced the incidence of illegal fisheries of any kind —
especially until 2008, and again from 2016 with the 
creation of the Refúgio da Vida Silvestre do Arquipé-
lago de Alcatrazes. Interestingly, and as argued below, 
there are no clear indications of strong trophic pro-
cesses linking fish trophic groups to benthic commu-
nity structure that can account for the differences ob -
served in the spatial patterns. 

3.2.  Spatial structure of reef communities in the 
Alcatrazes main island 

A temporally dynamic, mosaic-like structure de -
scribes the communities of the 3 study components —
benthic cover, solitary organisms, and reef fish 
groups — as indicated by the significant (or nearly 
significant) triple interaction of year × site × depth in 
all cases in the PERMANOVA (Table 2). Pairwise spa-
tial comparisons following omnibus permutational 
ana lyses of variance evidenced important contrasts 
be tween sampling sites for both years and at the 2 
depth strata for all components. 

For the case of benthic cover and during 2020, the 
PERMANOVA, in pairwise comparisons, showed that 
the assemblages at FU differed from those at JC (t = 
2.55, p = 0.0152) and ESEC (t = 2.41, p = 0.0166) in 
both the shallow and the deep stratum below the ther-
mocline (FU vs. JC: t = 2.10, p = 0.0071; FU vs. ESEC: 
t = 2.02, p = 0.0100). In 2020, FU differed from the 
other sites at shallow depth because relative cover of 
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Group                                      df            Pseudo-F        p (perm) 
 
Cover                                                                                          
Year                                           1                 28.47              0.0001 
Depth                                        1                  1.73               0.2919 
Site                                            2                  3.81               0.3292 
Year × depth                           1                  3.81               0.0004 
Year × site                               2                  4.52               0.0022 
Depth × site                            2                  1.10               0.4507 
Year × depth × site               2                  2.34               0.0173 
Residual                                  60 
Total                                         71 
 
Solitary organisms                                                                 
Year                                           1                  2.11               0.0608 
Depth                                        1                  4.53                0.036 
Site                                            2                 13.83              0.1735 
Year × depth                           1                  1.48               0.1424 
Year × site                               2                  2.03               0.0715 
Depth × site                            2                  2.49               0.1408 
Year × depth × site               2                  1.88               0.0516 
Residual                                  60                                               
Total                                         71                                               
 
Fish                                                                                             
Year                                           1                 12.81              0.0001 
Depth                                        1                  1.08               0.4167 
Site                                            2                  2.91               0.1643 
Year × depth                           1                  4.69               0.0001 
Year × site                               2                  4.50               0.0001 
Depth × site                            2                  0.85               0.6012 
Year × depth × site               2                  1.51               0.0723 
Residual                                 168                                              
Total                                        179

Table 2. Results of PERMANOVA analyses using Bray-Cur-
tis dissimilarities, testing the fixed effects of depth and site 
and the random temporal variation (between sampling 
years) on the abundance of main morpho-functional groups 
covering the reef, main solitary organisms, and reef-fish  

functional groups
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 Sargassum spp. canopies was much reduced, ceding 
space for the persistence of the zoanthid P. caribae-
orum, which was the most abundant morpho-func-
tional group in this site. Conversely, at JC and ESEC, 
Sargassum spp. canopies and articulated turf made up 
the bulk of all cover (70–80%). Below the thermo-
cline, FU still stood out, showing a more even contrib-
ution of cover groups. JC and ESEC, by contrast, were 
greatly dominated by Sargassum spp. canopies, 
which covered nearly 60% of the rocky surface. In 
2021, the assemblages at JC were the ones contrast-
ing with those at the other sites, both above (JC vs. 
FU: t = 2.12, p = 0.0102; JC vs. ESEC: t = 3.17, p = 
0.0020) and below the thermocline (JC vs. FU: t = 
1.87, p = 0.0213; JC vs. ESEC: t = 1.69, p = 0.0541; this 
latter at marginal significance under the usual stan-
dards, but still sufficient for our purposes of α = 0.10, 
see Section 2.3.1). Similarity percentage (SIMPER) 
analyses indicated that Sargassum spp. canopies or 

patches of erect algae combined (in 6 comparisons), 
turfs of articulated coralline algae (5), the zoanthid P. 
caribaeorum (4), and turfs of filamentous algae (1) 
were the organisms responsible for the largest con-
trasts between groups (contributions ≥10% of whole 
dissimilarity between groups; Table S3). The dy na -
mics of algal canopies and turfs seem to play a major 
role in the structure of reefscapes (Fig. 3). In addition, 
in 2021, Sargassum spp. hardly reached canopy size 
across sites, remaining only as erect algae, to a 
reduced extent, and almost fully concentrated in the 
lower depth stratum. This can suggest that productiv-
ity and growth of Sargassum spp. are favored by 
higher levels of nutrients in the water during upwel-
lings (Lapointe 1995). In the shallow reef, JC differed 
from the other sites, where turfs of articulated coral-
line algae were much more abundant (64%). The lim-
ited development of Sargassum spp. and turfs allowed 
P. caribaeorum to dominate at FU (33%) and ESEC 
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(47%). In the deeper stratum, turfs of articulate coral-
line algae were still more abundant at JC (although 
not as high as above the thermocline). This feature, 
together with a higher cover of erect Sargassum spp., 
made JC substantially different from FU and ESEC. 
These patterns suggest a competitive hierarchy, with 
Sargassum spp. ranking first, algal turfs second, and 
P. caribaeorum third, probably following an increas-
ing growth rate gradient. In 2020, when conditions 
were apparently favorable to the development of can-
opies, Sargassum spp. may have restrained the growth 
of turfs, contradicting different studies suggesting 
that algal turfs are stronger competitors (O’Brien & 
Scheibling 2018, Gorman et al. 2020). In 2021, when 
Sargassum spp. blooming was restrained, algal turfs 

be came on average more abundant, and where they 
did not, P. caribaeorum prevailed. 

The PERMANOVA in pairwise comparisons also 
evidenced a clear spatial structure of assemblages of 
solitary organisms. As for benthic cover, contrasts 
were year- and depth-specific; however, in this case, 
there is a more consistent monotonic pattern from FU 
to ESEC, with idiosyncratic differences largely attrib-
utable to the magnitude of contrasts (Fig. 4). Pairwise 
comparisons between any 2 sites were always signifi-
cant (0.0019 ≤ p ≤ 0.0206), except for FU vs. JC (t = 
1.22, p = 0.2122) and JC vs. ESEC (t = 1.19, p = 
0.2138) above the thermocline and JC vs. ESEC (t = 
0.99, p = 0.4615) below the thermocline in 2020. The 3 
groups contributing to the substantial dissimilarity 
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be tween groups according to the SIMPER analysis 
were sea urchins, ascidians, and gastropod snails 
(Table S4). The abundance of all 3 groups exhibited a 
decrease from FU to ESEC and from the shallow to 
deep stratum (Fig. 4), in this latter trend except for as-
cidians at FU (both years). It is challenging to advance 
any processes underlying such a striking pattern. One 
could speculate that current patterns, together with 
some retention at the more sheltered site (FU), might 
determine a gradient of larval supply and settlement 
rate (as in Breitburg et al. 1995, Silva et al. 2006, Maz-
zei et al. 2021) along the NE–SW axis of the island, 
but specific observational studies and experimental 
research should be conducted to test this possibility. 

Fish spatial patterns also changed from year to year 
and depth. Pairwise comparisons following the omni-
bus PERMANOVA analysis among sites were gen-
erally significant (0.0001 ≤ p ≤ 0.0366) except for 
2020 JC vs. ESEC at both the shallow (t = 1.02, p = 
0.4194) and the deep stratum (t = 1.13, p = 0.2338) 
and 2021 FU vs. ESEC at the shallow depth (t = 0.99, 
p = 0.4611). SIMPER analyses showed that the func-
tional groups responsible for large dissimilarities 
were MI (0–14 cm), MI (15–23 cm), OM (0–14 cm), 
PL (0–14 cm), and HD (0–14 cm) (Table S5). For all 
those groups, spatial abundance trends at the shallow 
reef, across sites, were inconsistent between years 
(Fig. 5). Below the thermocline, however, all groups 
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except MI (15–23 cm) tended to be more abundant at 
FU and ESEC than at JC. Regardless of feeding habit, 
smaller fish (0–14 cm) tended to be either evenly dis-
tributed (OM) or more abundant (MI, HD) below the 
thermocline, while larger fish (MI, 15–23 cm) were 
more abundant in the shallow reef. Space occupation 
may include suboptimal temperature conditions in 
the presence of conspecifics or heterospecifics, de -
pending on the cost-effectiveness of the interaction 
(Nay et al. 2021). Hence, the observed trend can be 
ex plained by competitive interactions whereby larger 
fish may be displacing smaller fish to marginal hab-
itats. However, smaller fish representative of benthic-
dwelling groups (e.g. Pomacentridae, Gobiidae, and 
Blenniidae) would not be able to migrate to shallow 
parts of the reef because of substrate availability or 
mobility restrictions irrespective of sub-optimal tem-
perature conditions. 

3.3.  Correlations suggesting ecological 
 relationships between reef components 

We did not observe any correlations between the 
Shannon’s diversity indices observed at the 3 reef 
compartments (i.e. benthic cover, solitary organisms, 
and reef fish) (Fig. S2). Except for fish and some spe-
cific cases, we did not identify the organisms to the 
species level, so correlations were made considering 
the groups of each compartment, which can encom-
pass many different species. On the other hand, we 
observed positive and negative relationships among 
certain groups (Table 3), indicating that trophic inter-

actions may underlie the spatial patterns observed in 
the area. 

As there was high collinearity between the 3 solitary 
organisms (Table 4), we selected urchins for multiple 
regressions because they are known to be important 
herbivores on reefs (Estes & Palmisano 1974, Estes et 
al. 1998, Steneck et al. 2002). Along with several other 
studies showing their control over different macro-
algae in both temperate (e.g. Steneck et al. 2002, 
Leung et al. 2014) and tropical (coral) reefs (Edmunds 
& Carpenter 2001, Idjadi et al. 2010), we observed a 
negative relationship between sea urchins and Sargas-
sum spp. cover (r2 = 0.43, p = 0.02; Fig. 6a), potentially 
indicating top-down control over Sargassum spp. 

Canopies of Sargassum spp. are structurally com-
plex habitats that shelter a great diversity of inverte-
brate prey (mostly hard-bodied groups; Figueiredo 
et al. 2020) and probably play an important role in 
whole-reef trophic dynamics. Despite their relative 
abundance in the study area (22 ± 25%), canopies of 
Sargassum spp. still occupy a lower reef space com-
pared to articulated turf (28 ± 18.99%). Over the last 
decades, there has been a decrease in Sargassum 
spp. canopies in the SW Atlantic — arguably due to 
global warming and other anthropogenic stressors —
which have been replaced by turf-forming algae 
(Gorman et al. 2020). Similar benthic species turn-
over has been observed in the Mediterranean Sea 
where canopy algae Cystoseira spp. has been re -
placed by turf-forming algae, known to be more tol-
erant to environmental disturbance (O’Brien & 
Scheibling 2018), and mussel beds due to anthropo-
genic stressors (Benedetti-Cecchi et al. 2001, Perkol-
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                            Benthic cover on urchins                                                         Benthic cover on reef fish 
                      Coeff.                t                      p                                       MI (0–14 cm)                                             MI (15–23 cm)            
                                                                                              Coeff.                   t                     p                   Coeff.                 t                       p 

 
Intercept       5.57               6.77             <0.001               140.70                4.70             0.003                   –                   –                     – 
ATC                 –                  –                   –                   –1.85              –3.40           0.014                 0.867              2.41                 0.043 
ZC                     –                  –                   –                   –1.46              –2.88           0.028                 1.046              3.14                 0.014 
SC                 –0.07           –3.74             0.006                     –                     –                  –                       –                   –                     – 
ES                     –                  –                   –                       –                     –                  –                       –                   –                     – 
FT                     –                  –                   –                       –                     –                  –                       –                   –                     – 
 
                    Mult. r2            F2.8                   p                   Mult. r2               F4.6                   p                  Mult. r2             F2.8                     p 
                      0.557             7.28               0.016                 0.556                 4.12             0.061                 0.581              7.93                 0.013

Table 3. Stepwise backward multiple regression analyses testing the overall effects of morpho-functional benthic cover on the 
abundance of solitary organisms and fishes. Significance (p < 0.05) of overall selected models and respective predictors are 
specified in bold. The cases where the predictors were not significant are indicated by dashes (–). The overall effects of benthic 
cover on the abundance of omnivorous, planktivorous, and detritivorous herbivorous fish of 0–14 cm, and the effects of the 
abundance of solitary organisms on fish abundance are not reported as no significant p-values were observed. ATC: articulated 
coralline turf; ZC: zoanthid cover; SC: Sargassum spp. canopy; ES: erect Sargassum spp.; FT: filamentous turf; MI: mobile- 

invertebrate feeders. Fish size classes follow trophic groups
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Finkel & Airoldi 2010). In tropical and temperate 
reefs, herbivory is one of the most important pro-
cesses, which can either maintain its functioning 
through the control of macroalgae and consequent 
maintenance of corals (Scheffer et al. 2001, Lee 2006, 
Myhre & Acevedo-Gutiérrez 2007) or drastically 

modify the landscape through over-
grazing (Gagnon et al. 2004, Leung et 
al. 2014). Therefore, sea urchin pop-
ulations and the ex tent of Sargassum 
spp. canopies should be carefully mon-
itored and experimentally manipu-
lated for a better understanding of this 
trophic link. 

Articulated turf added to the zoan-
thid cover (i.e. components with a sig-
nificant association in the multiple 
regression) showed a positive relation-
ship with the abundance of 15–23 cm 
fish invertebrate feeders (r2 = 0.44, p = 
0.02; Fig. 6b). We suggest indirect bot-
tom-up control, mediated by mobile 
invertebrates present in the turf (Figu -
eiredo et al. 2020). The most abundant 
fish species in this study, H. aurolin-
eatum (Table S2), and chiefly individ-
uals larger than 15 cm (included in the 
15–23 cm group of invertivores), prey 
largely on soft-bodied polychaetes 
(Pereira et al. 2015), which are especially 
abundant in algal turfs (Figueiredo et 
al. 2020). Large patches of low-lying 
turfs can thus be used as main foraging 
grounds by larger H. aurolineatum and 

adult stages of other, less abundant fishes. However, 
the strong relationship found was largely due to 2 data 
points. For more robust results, experiments with a 
larger number of replicates are needed. Such a prefer-
ence likely im pacts the distribution of smaller inverti-
vore fish (0–14 cm), which are negatively (r2 = 0.46, 

52

                                  ATC          ZC           SC          ES         FT   Sargassum spp. 
                                                                                                             (SC + ES)  
 
Benthic cover 
ATC                           –                                                                        ATC       –0.559 
ZC                          –0.023        –                                                        ZC         –0.547 
SC                          –0.514   –0.439        –                                       FT         –0.420 
ES                             0.033   –0.193   –0.375      –                                              
FT                          –0.200   –0.057   –0.413    0.111       –                                
                                                                                         
                                 URC        ASC        SNA 
 
Solitary organisms 
URC                           –                                                                                                
ASC                         0.640          –                                                                               
SNA                        0.870       0.465          –                                                              
                                                        
                                   MI                    MI                 OM                PL               HD  
                            (0–14 cm)    (15–23 cm)    (0–14 cm)  (0–14 cm)  (0–14 cm) 
 
Reef fish 
MI (0–14 cm)          –                                                                                            
MI (15–23 cm)   –0.507                –                                                                  
OM (0–14 cm)     0.442            –0.337               –                                           
PL (0–14 cm)        0.005              0.099             0.447               –                   
HD (0–14 cm)      0.358            –0.287            0.251               0.1                –

Table 4. Correlation matrix of the 3 reef compartments to identify collinearity. 
ATC: articulated coralline turf; ZC: zoanthid cover; SC: Sargassum spp. can-
opy; ES: erect Sargassum spp.; FT: filamentous turf; URC: urchins; ASC: ascid-
ians; SNA: snails; MI: mobile-invertebrate feeders; OM: omnivores; PL: plank-
tivores; HD: herbivore–detritivores. Fish size classes follow trophic groups

Fig. 6. Linear regressions between (a) sea urchins and benthic cover, and between low lying cover and (b) 15–23 cm fish inverte-
brate feeders and (c) 0–14 cm fishes invertebrate feeders. Each point represents the combination of year (2 years), sites (3 sites),  

and depth (2 classes). Dashed lines: 95% CIs



Barreto et al.: Top-down and bottom-up processes in a marine protected area

p = 0.01; Fig. 6c) associated with the low-lying cover 
made of turf algae and zoanthids. Rather than control-
ling the extent of low-lying reef cover — which seems 
impossible given the occupancy rates of turf algae 
and zoanthids and the foraging strategies and diet of 
small invertivores — smaller fish may be displaced to 
marginal habitat through interference competition. 

4.  CONCLUSIONS 

In this study, we report that reef communities in 
Alcatrazes are mainly dominated by turfs of articu-
lated coralline algae, canopies of Sargassum spp., and 
patches of the zoanthid Palythoa caribaeorum and 
suggest that the relative abundance of those dom-
inant groups is driven by complex spatial and tempo-
ral dynamics. Evidence of top-down control is, at pre-
sent, restricted to the potential grazing effects of sea 
urchins on Sargassum spp. canopies. Indirect bottom-
up effects explain concentrations of larger inverti-
vores fish (15–23 cm) on foraging low-lying grounds 
of turfs and zoanthids where prey abundance is high. 
Smaller invertivores followed the inverse trend, argu-
ably re ducing interference competition. We highlight 
the importance of long-term reef monitoring and 
experimental manipulations to further test those pro-
cesses and to detect any drivers of phase shifts, such 
as overgrazing on Sargassum spp. meadows, which 
have been declining over the last few decades over 
the study region. 
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