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1.  INTRODUCTION 

Shelf seas are regions of shallow water (<200 m 
depth) adjacent to the coastline that sit upon the con-
tinental shelf. Such seas are dynamic environments 
that support high levels of biodiversity and represent 
important areas for many marine species including 

seabirds (Baylis et al. 2019). However, shelf seas are 
also subject to multiple anthropogenic pressures, 
such as fishing (Grémillet et al. 2018), the develop-
ment of offshore renewables (Bailey et al. 2014) and 
climate change (Holt et al. 2010). Therefore, a crucial 
part of marine spatial planning and conservation is to 
identify and understand the key factors influencing 
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seabird distributions and movement patterns (Emb -
ling et al. 2012, Wakefield et al. 2017). 

Within shelf seas, a variety of habitat features 
influences the spatio-temporal distribution of marine 
megafauna and their prey (Cox et al. 2018). For exam-
ple, bio-physical processes can act to generate rel-
atively consistent areas of high productivity which 
attract prey species and hence top predators (Schnei -
der 1982, Yen et al. 2006). One important biophysical 
process in shelf seas is the development of seasonal 
temperature stratification between late spring and 
autumn (Simpson 1981, Simpson & Sharples 2012). 
Increased solar irradiation heats up the surface of the 
water, generating a layer of warm, well-lit, but often 
nutrient-poor, water and a deeper, darker layer of 
colder, nutrient-rich water. These layers of warm sur-
face water and colder deeper water are divided by a 
thin, seasonal thermocline, within which water tem-
perature changes rapidly. Tidal mixing fronts occur at 
the interface between mixed and stratified waters and 
are typically marked by high levels of productivity 
that may arise from enhancement of local primary 
production, changes in prey behaviour, or prey trans-
port and aggregation at frontal areas, due to the 
action of tidal currents (Hunt et al. 1999, Vlietstra et 
al. 2005, Waggitt et al. 2018). 

The importance of tidal mixing fronts as key for -
aging locations has been identified across different 
oceanic regions for a wide range of seabird species, 
encompassing species with different foraging modes 
(Bost et al. 2009, Hamer et al. 2009). Many species 
appear to direct at least some of their foraging trips to 
the location of fronts, sometimes travelling substan-
tial distances (Russell et al. 1999, Dean et al. 2015). In 
some studies, annual reproductive success was also 
associated with the timing and strength of seasonal 
stratification (Carroll et al. 2015) or the location of 
fronts (Hátún et al. 2017). As a result, tidal mixing 
fronts have been identified as a dynamic feature that 
could aid in the identification of marine protected 
areas (MPAs; Miller & Christodoulou 2014, Scales et 
al. 2014). However, as dynamic features, tidal fronts 
vary in strength and location across multiple tem -
poral scales, including inter-annually, seasonally, 
throughout the spring–neap cycle, in response to 
local weather conditions (wind-induced overturning) 
and even throughout the course of the tidal cycle 
(Simpson 1981, Belkin 2021). For example, the timing 
and strength of stratification may be impacted by 
warming global temperatures (Sharples et al. 2020). 
Similarly, marine renewables may alter water stratifi-
cation by extracting energy from the ecosystem (e.g. 
wind or tide power) and therefore reducing the level 

of water column mixing (De Dominicis et al. 2017). On 
the other hand, renewable structures themselves may 
promote local mixing within the water column (Car-
penter et al. 2016). Therefore, human impacts such as 
climate change and marine renewable development 
are likely to influence stratification patterns now and 
into the future, which may, in turn, alter seabird 
 distributions. 

To better understand how seabirds utilise tidal 
fronts, it is necessary to take into consideration how 
they respond to changes in the availability of this hab-
itat feature across relevant spatio-temporal scales. 
Given the dynamic nature of tidal mixing fronts, there 
is likely to be substantial variation in how different 
populations and individuals use such features (Trevail 
et al. 2021). At the broadest scale, seabird colonies 
will differ in their proximity to established mixing 
fronts, and this will shape habitat usage (Christensen-
Dalsgaard et al. 2018). Even within a colony, different 
individuals may forage in distinct locations with dif-
ferent frontal characteristics (Wakefield et al. 2015, 
Cleasby et al. 2019). Functional response modelling is 
one means to understand how species’ habitat usage 
patterns change due to shifts in the underlying 
 characteristics and availability of different habitats 
(Mysterud & Ims 1998). Such models represent an ex -
tension to existing species distribution models (Mat -
thio poulos et al. 2011) and are based on the idea that 
habitat usage is shaped by the relative availability of 
different habitats (Holbrook et al. 2019). Functional 
responses can play an important role in ecosystem 
management and conservation (e.g. Herfindal et al. 
2009, Wakefield et al. 2017), particularly in hetero -
geneous and dynamic environments (Paton & Mat-
thiopoulos 2016) such as shelf seas by allowing pat-
terns of habitat use to shift as conditions change. 
Crucially, this would assist in the design of more 
dynamic MPAs (Game et al. 2009, Pinsky et al. 2020) 
and contribute to a better understanding of how 
anticipated anthropogenic impacts such as climate 
change or installation of marine renewables will change 
water stratification patterns and hence expected sea-
bird distributions. 

In the present study, we used long-term tracking 
data sets collected over multiple years (2010–2015) to 
understand how breeding black-legged kittiwakes 
Rissa tridactyla (hereafter ‘kittiwakes’) utilise dyna -
mic tidal front habitats within the North Sea. The 
North Sea is a well-studied shelf sea surrounded by 
high densities of human populations (Emeis et al. 
2015), subject to high anthropogenic impacts (Moul-
lec et al. 2021) and characterised by multiple tidal 
mixing fronts (Appendix 1d in UK OESEA3 2016). The 

176



Cleasby et al.: Functional responses of kittiwakes to fronts

Dogger Bank, a large sandbank, separates the North 
Sea into 2 broad areas to the north and south (Emeis et 
al. 2015). The southern North Sea is typically shallow 
(<50 m), and in most areas, water is mixed year round 
due to the influence of winds and tides. In contrast, 
the northern North Sea contains deeper areas (>50 m) 
and is subject to stratification during the summer 
(Pohlmann 1996), though in shallower areas, the water 
column may remain mixed (Pingree & Griffiths 1978). 
The North Sea is also home to important numbers of 
kittiwakes including multiple special protected areas 
(SPAs) designated to protect important kittiwake 
breeding colonies. No tably, most of the major UK kit-
tiwake colonies on the North Sea coast are located 
within or close to the northern section of the North 
Sea. Kittiwakes have experienced large declines in re-
cent years throughout their range (Eaton et al. 2015, 
Johansen et al. 2020). Currently, the species is listed 
as Vulnerable on The IUCN Red List of Threatened 
Species (BirdLife International 2024) and oc curs on 
the OSPAR List of Threatened and/or Declining Spe-
cies (OSPAR 2023). 

Kittiwakes have previously been shown to forage 
on or around tidal mixing fronts and, as surface 
feeders, may require bio-physical processes such as 
tidal mixing fronts to drive prey aggregations to the 
surface (Chivers et al. 2012). For example, environ-
mental covariates associated with kittiwake habitat 
selection are often descriptors of properties of the 
water column (such as sea surface temperature [SST] 
or measures of stratification) or linked to processes 
such as turbulent mixing, which may enhance pro-
duction at lower trophic levels or make prey more 
accessible at the surface (Wakefield et al. 2017, 
Stempniewicz et al. 2021). As such, kittiwakes are 
thought to be vulnerable to changes in stratification 
patterns, with subsequent impacts upon their annual 
reproductive success in the North Sea (Scott et al. 
2006, Carroll et al. 2015). Therefore, understanding 
how patterns of habitat usage change in relation to 
tidal front activity is a key component of spatial con-
servation management for the species (Scales et al. 
2014, Ruffino et al. 2023), especially given the number 
of marine developments planned within the North 
Sea and the impact of climate change. However, while 
previous research has examined kittiwake functional 
responses to some aspects of tidal front behaviour 
(Wakefield et al. 2017), assessment of the influence of 
dynamic covariates such as SST and front gradient 
were based on average conditions during the summer 
months across a 5 yr period. Therefore, information 
on the spatio-temporal variation in such dynamic 
variables was lost, and such models may subsequently 

struggle to capture shifts in habitat usage in response 
to changing habitat characteristics. Advances in both 
habitat selection modelling procedures and the de -
velopment of new remote sensing tools with finer 
spatio-temporal resolutions now provide a means to 
address this issue (Belkin 2021). 

The aims of the current study were to generate 
functional responses of breeding kittiwakes originat-
ing from 10 UK North Sea colonies to a suite of dyna -
mic environmental covariates (surface chlorophyll a 
[chl a], front strength, distance to nearest front and 
SST) related to tidal front behaviour. We aimed to 
construct habitat selection models that can incorpo-
rate potential non-linearity in kittiwake responses to 
habitat variables and are conducted at a finer spatio-
temporal scale than previously achieved to reflect the 
dynamic nature of tidal fronts and subsequent seabird 
respon ses. Given the established importance of tidal 
fronts to a range of marine predators, including kitti-
wakes, we predicted that kittiwakes will tend to select 
areas of habitat that are closer to fronts and character-
ised by higher front strength. Based on previous 
research, we also predicted that kittiwakes will target 
areas of cooler water (lower SST) and higher chloro-
phyll concentrations (Robertson et al. 2014, Wake-
field et al. 2017, Trevail et al. 2021). Furthermore, we 
predicted that responses to each covariate will be 
non-linear, and that habitat usage will be influenced 
by the prevailing habitat availability. 

2.  MATERIALS AND METHODS 

2.1.  Tracking data collection 

Fieldwork was conducted at 10 kittiwake colonies 
located along North Sea coast of Great Britain during 
May–July over the period 2010–2015. Colony loca-
tions ranged from Flamborough Head (54.1161° N, 
0.0839° W) in the south to Fair Isle (59.5339° N, 
1.6333° W) in the north (Fig. 1). This range encom-
passes many of the major kittiwake colonies along the 
UK North Sea coast. However, there are kittiwake 
colonies farther south (e.g. East Anglia, Kent) and 
farther north (Shetland Islands archipelago) that were 
not sampled here. More details on colony locations, 
colony sizes, tracking dates and sample sizes are 
available in Table S1 in the Supplement at www.int-
res.com/articles/suppl/m740p175_supp.pdf.  

Kittiwakes were trapped on nesting ledges at the 
breeding colony using a noose pole during either the 
late incubation or early chick-rearing stage. We tem-
porarily attached a modified i-GotU GT-120 (Mobile 
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Action Technology) GPS logger to a bird’s back or tail 
with Tesa tape. GPS loggers were set to record at 100 s 
intervals. The loggers deployed weighed either 
17.4 ± 0.07 g (mean ± SE) or 15.0 ± 0.18 g, repre-
senting 4.5 or 4.2% of a kittiwake’s body mass, 
respectively. Device mass exceeded 3% of body mass 
which, after consideration, was deemed to be accept-
able since deployments were typically short in dura-
tion. We previously found little evidence of device 
effects on a range of trip summary metrics (including 
maximum foraging distance from the colony and trip 
duration) or change in body mass when comparing 
kittiwakes carrying regular (17.4 g) or lighter (15.0 g) 
GPS loggers across the North Sea colonies studied 
here (Cleasby et al. 2020, but also see Heggøy et al. 
2015). In addition, we found little difference in colony 
attendance patterns between kittiwakes tagged dur-

ing this study in North Yorkshire and birds tagged 
with lighter GPS tags (8.5  g) in 2017 (Cleasby et al. 
2020). Devices were deployed for periods of 1–9 d, 
after which birds were recaptured and the loggers 
removed. No individual birds were tracked in more 
than 1 year of the study. For more details on field data 
collection, see Wakefield et al. (2017). 

2.2.  Behavioural segmentation of tracking data 

All data processing and analysis steps were con-
ducted in the R Environment (R Version 4.2.1; R Core 
Team 2022). GPS data were screened for errors, and 
only trips >1 km from the colony and comprising 
more than 10 observations were classed as foraging 
trips, using the R package ‘track2kba’ (Beal et al. 
2021; for more details, see Cleasby et al. 2024). We 
used hidden Markov models (HMMs) to classify kitti-
wake tracking data into 3 distinct modes, which we 
termed ‘resting’, ‘foraging’ and ‘transit’, based on 
step lengths and turn angles obtained from tracking 
data. The choice to identify 3 foraging modes was 
based on prior experience with kittiwake tracking 
data that suggested the HMMs can usually distin-
guish 3 clear behaviours in such data (Trevail et al. 
2021, Bogdanova et al. 2022). Similarly, based on prior 
findings, we set up HMM design matrices such that 
step lengths tended to be smallest when resting, 
intermediate during foraging and highest during 
transit (resting > foraging > transit). Likewise, turn 
angles were set up as transit > foraging to suggest 
more direct flight during transit compared to forag-
ing. HMMs identified a putative foraging mode typi-
fied by intermediate step lengths and greater turning 
angles than those observed during resting or transit 
(see Fig. S1). In addition, we included an effect of time 
of day in our HMMs using a cosinor function for 
cyclical data to account for our assumption that rest-
ing behaviour should be more common during hours 
of darkness (Fig. S2). All HMMs were performed 
using the ‘momentuHMM’ R package (McClintock & 
Michelot 2018). Subsequently, the habitat usage 
models constructed (see Section 2.4) were based only 
on those observed locations classified as foraging. 

2.3.  Environmental data 

We created functional response models for 4 covari-
ates related to tidal front activity: surface chl a con-
centration, front strength and distance to the nearest 
front and SST. SST and chl a are commonly used in 
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Fig. 1. Locations of tracked black-legged kittiwake colonies 
(blue circles) and GPS tracking observations (red lines) in 
the North Sea. Foraging tracks are plotted using a semi-
opaque colour to highlight areas with a higher density of 
tracking locations. Colony names are displayed on the map; 
in instances when 2 colonies were located close together, 
colonies are labelled together with the more northerly 
 colony listed first. More details on colony names, locations 
and tracking sample sizes are given in Table S1 in the  

Supplement
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front detection algorithms to derive information on 
front metrics such as front strength or persistence 
(Belkin 2021). Moreover, SST and chl a are often used 
to identify areas of higher productivity for marine spe-
cies (Isaksson et al. 2023) as well as other features of 
water column-mixing such as localised upwellings 
and vertical mixing (Miller et al. 2015). Consequently, 
the inclusions of information on SST and chl a along-
side frontal metrics can improve the performance of 
species distribution models (Miller et al. 2015). 

High-resolution SST and chl a data were obtained 
via a data request to the NERC Earth Observation 
Data Acquisition and Analysis Service (NEODAAS). 
SST data were based on the Multiscale Ultrahigh Res-
olution (MUR) multisensory product and processed 
via NEODAAS. The spatio-temporal resolution of SST 
data was 1 km2 at daily intervals. Chl a data from 
NEODAAS were based on the CMEMS OC5 chloro-
phyll product (Tilstone et al. 2021). Initially, we ob-
tained daily chl a data, but this was characterised by 
high levels of cloud cover on certain days and there-
fore missing values. Instead, we used chl a data calcu-
lated at weekly intervals with a 1 km2 spatial resolu-
tion. Composite ocean front maps from AVHRR SST 
were created to obtain measures of thermal front gra-
dient magnitude (front strength, °C/km) and the dis-
tance to the nearest front in 1 km cells throughout the 
North Sea study area (Miller 2009). Composite front 
maps were based on a 7 d moving window that in-
cluded the day on which tracking locations were ob-
served as well as the preceding 6 d in order to mini-
mise missing data due to cloud cover. Thus, front 
maps were updated daily. Time windows were struc-
tured in this way because we felt it was reasonable to 
assume birds could have some prior knowledge of an 
area but not future knowledge of conditions. Front 
metrics of strength and distance were then calculated 
according to Miller et al. (2015). Front strength was 
obtained by applying a Gaussian smoothing filter (σ = 
5 pixels) to a map of the mean gradient magnitude 
values. It is designed to provide a local neighbourhood 
average of frontal activity and is useful for identifying 
persistent, stable frontal features (Suberg et al. 2019). 
Front distance quantifies the distance from any loca-
tion within the defined study area to the closest front 
identified using a simplified version of the front 
strength maps via a custom simplification algorithm 
(P. I. Miller unpubl. data). To visualise changes in fron-
tal activity across the spatio-temporal extent of our 
study, Hovmöller diagrams showing changes in front 
strength throughout the course of each tracking period 
across the years studied are presented in Fig. S3. Such 
plots highlight the seasonal progression on front de-

velopment and differences in frontal activity across 
the range of latitudes studied. Finally, for each colony, 
we calculated distance by sea on a 500 m grid using 
the ‘gdistance’ R package (van Etten 2012) to account 
for distance from the colony, which is a key movement 
constraint on central-place foragers. 

2.4.  Habitat selection models and 
functional responses 

We used a resource selection function (RSF) ap -
proach to model kittiwake distributions using the 
‘amt’ R package (Signer et al. 2019). RSFs compare 
covariates associated with locations where the animal 
was observed with covariates associated with ran-
domly selected locations within a spatial domain 
wherein any location is assumed to be equally avail-
able to the animal. Defining the area available to an 
animal is therefore key to modelling inference and 
interpretation (Johnson 1980, Northrup et al. 2022). 
Here, the area deemed as available to each bird was 
set using a minimum convex polygon (MCP) that con-
tained all tracking observations (both foraging and 
non-foraging) from a given bird, with an additional 
10  km buffer around this MCP. We used such a 
buffer to ensure we could sample points in a radius 
around observed points even if they occurred close to 
the edge of an MCP. A value of 10 km has previously 
been identified as the average scale of area-restricted 
search for kittiwakes across a range of UK colonies, 
including the North Sea colonies studied here 
(Cleasby et al. 2020). For each observed foraging 
location included within our RSFs, we generated a set 
of n = 40 available points. Available points were 
chosen randomly and allowed to fall anywhere within 
the space deemed available to a particular individual 
and were given a matching timestamp to the observa-
tion point with which they were paired. Such time-
stamp matching was required because within the 
same year, even individuals tracked from the same 
colony may have been tracked over a different period 
of days. We extracted data on the environmental 
covariates listed above based on both spatial coordi-
nates of observed and available points as well as the 
date on which they occurred. This approach allows 
individuals, even those from the same colony, to 
experience differing levels of habitat availability (De 
Groeve et al. 2020). We adopted this approach here 
because (1) individuals tracked at the same colony do 
not necessarily visit the same areas and hence experi-
ence different environments (Matthiopoulos 2022). 
However, models fitted at larger spatial scales (e.g. 
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colony-level home range) will tend to average across 
the responses of individuals that occupy regions with 
different habitat compositions (Paton & Matthiopou-
los 2016); (2) environmental conditions change both 
annually and seasonally so that even birds consis-
tently visiting the same geographic area will not ex -
perience the same habitat as the breeding season pro-
gresses or across years. Based on the definitions of 
spatial scale provided by Johnson (1980), our defini-
tion of availability at the individual level therefore fits 
within third-order selection or the selection of habitat 
components within an individual’s foraging range. 
Boxplots showing the environmental conditions at 
available points for each individual and across each 
colony are displayed in Figs. S4–S47. 

We fitted RSFs using logistic regression and as -
signed arbitrarily large weights, w = 1000, to available 
locations and a weight of w = 1 to all observed forag-
ing locations. This weighting scheme helps ensure 
that coefficient estimates from a logistic regression 
will converge to the estimates given by an inhomoge-
neous Poisson process (IPP), a process that underpins 
various species distribution modelling approaches 
(Warton & Shepherd 2010). Rather than fit environ-
mental covariates as linear coefficients, we allowed 
for non-linear responses to covariates via the use of 
radial basis functions (RBFs). RBFs are often used, 
particularly in machine learning settings, to model 
non-linear regression responses. An RBF is a function 
whose points are defined as distance (often Euclidean 
distance) from an origin, such that ø(x) = ø(|| x ||), or a 
given point, called a centre (c), such that ø(x) = ø(|| x 
– c ||). Basis functions will be radially symmetric 
about these centre points. In practice, RBFs are often 
used as a collection or set to build up functional 
approximations, where a function can be represented 
as linear combinations of the associated, centered RBFs 
(Adcock et al. preprint doi:10.48550/arXiv.2211.
12598). Such RBFs can be viewed as a class of spline 
and can be interpreted as roughness-minimising 
splines (Hickernell & Hon 1999). Here we use a stand-
ard RBF form (Bishop 1995, see also Aldossari et al. 
2022): 
 
 
            

(1)
 

where γi denotes the coefficients of a generalised 
functional response (GFR) to x environmental covari-
ates (x1, x2 ... xj); δ2

j, m represents a coefficient of γi (x) 
for the mth power of the jth covariate; ξj, m is the centre 
of the mth basis function for the j th covariate, and σ2

j, m 
is a bandwidth parameter that controls the smooth-
ness of the RBF. Here we set the centres of the RBFs 

ξj, m as the 5, 25, 50, 75, and 95% quantiles of the j th 
environmental covariate, giving a total of m = 5 basis 
functions per covariate. The bandwidth parameter 
σ2

j, m was then set as the largest of the differences cal-
culated between consecutive quantiles (see Aldossari 
et al. 2022). 

Functional responses were assessed by examining 
the relationship between habitat usage and habitat 
availability over a specified spatio-temporal extent 
(Matthiopoulos et al. 2011). Specifically, non-linear 
basis functions for the j th environmental covariate 
were fitted along with a 2-way interaction with the 
corresponding estimate of habitat availability of the 
j th environmental covariate. Habitat availability was 
summarized as the mean value of the j th environmen-
tal covariate over an individual’s putatively available 
foraging range (defined using individual-level MCPs, 
see above) across the dates a given individual was 
tracked (Figs. S48–S51). Thus, each individual in the 
study experienced a unique value of habitat availabil-
ity for each environmental covariate based on the 
unique spatio-temporal footprint of their own ob -
served tracking data. 

While we did not account for spatial autocorrelation 
in our study for the sake of model tractability, each 
model included distance from the colony as a spatial 
predictor, fitted using m = 5 RBFs, to account for the 
mechanistic constraints of central-place foraging on 
habitat accessibility. In addition, we also included a 2-
way interaction between each of the m = 5 basis func-
tions relating to distance from the colony and log10 col-
ony size. An interaction between distance from the 
colony and colony size was included because colony 
size is often positively correlated with foraging range 
in seabirds (Jovani et al. 2016, Cleasby et al. 2024). 
Colony size estimates were taken from Mitchell et al. 
(2004) and further processed as de scribed by Wake-
field et al. (2017). Because our data set included multi-
ple measures of habitat use from the same individual 
and multiple individuals from the same colony, we also 
included random intercepts for individual identity and 
colony identity within our models. Following Muff et 
al. (2020), these random intercepts were assigned a 
large, fixed value. Initially, we also tried to incorporate 
random slopes for each environmental covariate con-
sidered by allowing for random slopes in each of the 
m = 5 basis functions that described the response to 
that particular covariate. However, models with ran-
dom slopes failed to converge, and we restricted our-
selves to the random intercept-only models. To further 
account for the lack of independence of observations 
from the same individual, we used cluster-level boot-
strapping to resample individuals and generate more 
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robust standard errors for each of the coefficients in 
our models (Fieberg et al. 2020). 

Initially, we ran one over-arching habitat selection 
model that included functional responses for all of the 
environmental covariates examined. However, while 
correlations between each of these covariates were not 
particularly strong, we found evidence of con curvity 
between front strength and distance to the nearest 
front. Front strength tended to be higher close to 
fronts and declined with distance to the front (Fig. S52). 
Therefore, we ran 2 habitat models: one which in-
cluded chlorophyll concentration, distance to the nea-
rest front and SST as covariates and another which in-
cluded chlorophyll concentration, front strength and 
SST. As the model which included distance to nearest 
front had lower Akaike’s information criterion (AIC) 
scores, we report the results from this model when dis-
cussing results relating to chlorophyll concentration, 
distance to nearest front and SST. However, we still re-
port results relating to front strength which are based 
on the model with the best (lowest) AIC score when 
this covariate was used rather than distance to the nea-
rest front. In addition, although initial models were 
constructed with m = 5 basis functions for each envi-
ronmental covariate (as described above), we used 
model AIC scores to evaluate if simpler models with 
fewer basis functions performed better (Aldossari 
2023). We present results based on the model with the 
lowest AIC score. Results of these models are visual-
ised using plots of relative selection strength (RSS) 
calculated following Avgar et al. (2017). 

2.5.  Model validation via used-habitat 
calibration plots 

We validated the performance of our habitat 
models via used-habitat calibration (UHC) plots (Fie-
berg et al. 2018). By comparing model predictions to 
out-of-sample data, such procedures can help iden-
tify various issues with species distribution models 
(SDMs), including missing co variates, non-linearity 
and multicollinearity. Briefly, we used 10-fold cross-
validation to generate different testing and training 
data sets from our entire data set. We then summa-
rized the distribution of each environmental covariate 
across the kth test data sets using kernel density esti-
mators. The RSFs described above were then fitted to 
the kth training set and stored. Both the model coeffi-
cients β̂ and the model variance-covariance matrix 
cov  (β̂) were stored. Next, n = 500 random samples 
from were drawn from a multivariate normal distribu-
tion defined by β̂ and cov  (β̂) to estimate the relative 

probability of selection for the test data. The relative 
probability of selection was used to draw a weighted 
random sample of observations from the test data. For 
each simulation, the distribution of the environmental 
covariates associated with the points selected was 
summarized using kernel density estimators. We then 
compared the observed distribution of environmental 
covariates at used points in the test data set with a 
95% simulation envelope built using the predictions 
from our n = 500 simulations. UHC plots are pre-
sented in Text S1, Figs. S53–S57. 

3.  RESULTS 

3.1.  Chlorophyll concentration 

GFRs showed that kittiwake responses to surface 
chlorophyll concentration were influenced by the 
average chlorophyll levels across the available envi-
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Fig. 2. Generalised functional responses of breeding black-
legged kittiwakes to surface chlorophyll concentration. Rel-
ative selection strength (RSS) was calculated by comparing 
selection strength between a putative location (x1) when 
chlorophyll concentration was set at its mean value across all 
available points within the current study to a vector of loca-
tions (x2) over which chlorophyll concentration values 
ranged from the minimum observed to the upper 99% quan-
tile observed. The values of all other covariates in the model 
were held constant at their mean values. RSS responses are 
shown at different levels of habitat availability to visualise 
the interaction between habitat availability and nonlinear 
basis functions. Curves show response when average chloro-
phyll concentration is set at the average level observed 
across all individual-level minimum convex polygons in the 
study or ±1 SD (Fig. S48). Curves based on fitted model 
coefficients with a corresponding 95% confidence envelope



ronment (Fig. 2). When average chlorophyll levels 
were low, habitat usage was greater in areas with 
higher chlorophyll concentrations. However, when 
average chlorophyll concentrations were at the high-
est values, the opposite occurred, and habitat use was 
directed towards areas with lower chlorophyll con-
centrations. The best fitting model for chlorophyll 
concentration was identified as the one in which the 
response to chlorophyll was modelled using RBFs 
with m = 5 centres. Coefficients for all habitat selec-
tion models including that relating to chlorophyll 
concentration are presented in Table S2. 

3.2.  Front strength 

Kittiwake responses to front strength were 
influenced by the average level of front strength in 
the available environment (Fig. 3; Table S3). When 
average front strength values were high, we observed 
an increase in usage of areas with higher front 
strength. Under such conditions, habitat usage 
peaked at values of front strength of ~0.006 based on 
estimated RSS values before declining slightly. 
Therefore, usage is greatest at relatively high values 
of front strength but not at the most extreme values. 
However, RSS values were close to 1.0 and estimated 
with relatively high uncertainty throughout the range 
of front strength examined. In addition, as average 
front strength in the available environment de -
creased, responses to front strength flattened. The 
best fitting model for front was identified as one in 

which the response to front strength was modelled 
using RBFs with m = 2 centres occurring at the 50 and 
75% quantile of this covariate (Table S3). 

3.3.  Distance to nearest front 

We observed non-linear responses between kitti-
wake habitat usage and the distance to the nearest 
front, which were also influenced by the availability of 
such habitat (Fig. 4). When the average distance to the 
nearest front was lower, habitat usage peaked in areas 
close to the front (<10 km) or in areas farther from 
fronts (>30 km). However, when the average distance 
to the nearest front was higher, and fronts were there-
fore farther away, there was no increase in the usage of 
areas close to a front. The best fitting model for dis-
tance to the nearest front was identified as the one in 
which the response to distance to front was modelled 
using RBFs with m = 3 centres occurring at the 25, 50 
and 75% quantile of this covariate (Table S2). 

3.4.  SST 

Kittiwake responses to SST were non-linear and 
dependent on the average SST level across the avail-
able environment (Fig. 5). In general, regardless of 
the prevailing availability of SST, we saw clear evi -
dence of selection of regions with cooler SST. The 
estimated RSSs in this case were typically large rel-
ative to those observed for the other environmental 
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Fig. 3. As in Fig. 2, but for front strength (also see Fig. S49)
Fig. 4. As in Fig. 2, but for distance to the nearest front (also  

see Fig. S50)



covariates we examined (Fig. S5, Table S2). Prefer-
ences for cooler water temperatures appeared slightly 
weaker when average SST was lower. For example, 
when average SST was lower, while we observed a 
peak in habitat usage at lower SSTs, this occurred 
alongside an additional smaller peak in habitat usage 
in areas of warmer water (SST >14°C, Fig. S58). In 
contrast, when average SST was high, we observed a 
stronger increase in habitat usage solely at lower SST 
values (<11.5°C, Fig. S58). The best fitting model for 
SST was identified as the one in which the response to 
SST was modelled using RBFs with m = 5 centres. 

3.5.  Distance from the colony 

The best fitting model for distance from the colony 
was identified as that which included m = 5 centres 
and incorporated a 2-way interaction between basis 
functions and log10 colony size (Table S2). The main 
reason for including distance from the colony within 
our models was to account for the constraints that 
central-place foraging places on the accessibility of 
areas farther from the colony rather than direct inter-
pretation of this covariate. Nevertheless, model pre-
dictions showed that usage declined with distance to 
the colony and that this decline was steeper for larger 
colonies (Fig. S59). However, we also observed a peak 
in usage of areas at 160–180 km from the colony, 

which may have reflected birds foraging at the distal 
point of longer foraging trips. 

4.  DISCUSSION 

4.1.  Kittiwake functional responses to habitat 

The importance of tidal mixing fronts as relatively 
predictable and productive habitats at which marine 
predators congregate has been established in a variety 
of species across multiple, distinct sea regions (Bost et 
al. 2009, Bailey & Thompson 2010, Scales et al. 2014, 
Miller et al. 2015). In kittiwakes specifically, several 
studies have previously shown associations between 
frontal activity and habitat use (e.g. Durazo et al. 1998, 
Markones 2007, Scott et al. 2010, Embling et al. 2012). 
Our results support these findings by demonstrating 
how kittiwakes foraging in the North Sea responded to 
environmental covariates related to tidal fronts and 
shifts in their spatio-temporal availability. 

Kittiwakes showed a non-linear functional response 
to distance to the nearest front. In this case, we ob-
served peaks in habitat usage in areas close to fronts 
(<10 km), along with higher levels of usage in areas 
farther from fronts (30–50 km) when the average dis-
tance to the nearest front was relatively low. Given the 
previous evidence regarding the importance of tidal 
fronts to marine predators (Bost et al. 2009), the use of 
areas closer to fronts when fronts were relatively close 
and therefore accessible was in line with initial predic-
tions. The reasons behind the usage of areas farther 
from fronts is less clear. In some situations, birds may 
still be utilising tidal fronts even if they are not forag-
ing directly at the location of a front. For example, 
there is variation within and between seabird species 
regarding how close to and on which side of a front 
(mixed or stratified) to forage (Schneider 1982, Durazo 
et al. 1998, Russell et al. 1999, Scott et al. 2010, 
Cleasby et al. 2015, Cox et al. 2016). Furthermore, in 
stratified regions farther (15–50 km) from mixing 
fronts, the spring–neap cycle is thought to lead to 
periodicity in primary production and carbon flux 
(Sharples 2008). Therefore, birds may still be respond-
ing to the action of tidal fronts even if they are not for-
aging directly at front boundaries. One way to ex-
amine the role of the spring–neap cycle would be to 
incorporate the relative position in the spring–neap 
cycle when investigating habitat selection (e.g. Cox et 
al. 2017). However, because the GPS deployments in 
the current study were typically of short duration, we 
were unable to sample across the entire spring–neap 
cycle in any year at any colony. 

Fig. 5. As in Fig. 2, but for sea surface temperature; here, x2 
ranged from the minimum observed to the maximum 
observed (also see Fig. S51). A plot with a modified y-axis 
with a reduced upper limit is available in Fig. S58 to better  

visualise responses on the right-hand side of the plot
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We also observed slight peaks in habitat usage 
when average levels of front strength were higher. In 
this case, when areas of frontal activity were more 
available, regions with lower front strength were less 
likely to be used. Kittiwake preferences for front 
strength peaked at a value of ~0.006 before declining 
slightly. For context, a front strength of 0.006 repre-
sents the 70% quantile of front strength values ob -
served in the current data set. This supports previous 
findings that kittiwakes prefer areas of moderate 
rather than maximum stratification (Scott et al. 2010). 
However, it should also be borne in mind that RSS 
values for front strength were close to 1.0. Moreover, 
when average levels of front strength were low or the 
average distance to the nearest front was high, kitti-
wake responses to both covariates were relatively flat. 
Thus, when frontal habitats are less available, birds 
may switch to targeting other features. 

The importance of accounting for spatio-temporal 
variation in habitat availability is apparent when com-
paring conditions across years and/or across col-
onies. At some locations or for certain individuals, 
areas of higher front strength were not encountered 
in certain years, constraining the ability of birds to 
forage in frontal areas (Fig. S5). In such circum-
stances, the lack of available front habitat could alter 
kittiwake habitat usage patterns. Likewise, while 
fronts were generally located close to colonies, sug-
gesting they were readily accessible, in a few cases 
the typical distance to the nearest front was quite far. 
For example, for birds from Coquet Island, the me -
dian distance to the nearest front was 87 km in 2011 
but only 21 km in the following year (Fig. S6). In such 
a case, birds may either choose to occasionally forage 
farther from the colony to access profitable environ-
mental conditions related to persistent fronts (Russell 
et al. 1999, Dean et al. 2015) or to direct their efforts 
towards other habitats (Cox et al. 2018). In such cases, 
seabird distributions could change markedly from 
year to year. 

Kittiwake responses to SST showed peaks of usage 
in both cooler water and warmer waters, with lower 
usage of areas of more intermediate temperatures. 
In  kittiwakes, higher levels of habitat use in cooler, 
mixed waters have previously been reported (Robert-
son et al. 2014, Trevail et al. 2021). Here, selection of 
areas with cooler SST was demonstrated by the large 
RSS values calculated for this covariate, which were 
far larger than for any other covariate considered. 
Although relative rather than absolute values, they 
nevertheless highlight the degree of selection of such 
areas and the importance of SST. Moreover, func-
tional responses demonstrated how, as average SSTs 

increased, habitat usage was predicted to increas-
ingly shift towards cooler waters. In cooler waters, 
cold-adapted plankton species may be larger and 
more nutritious, with beneficial effects that could cas-
cade up local marine food webs (Beaugrand et al. 
2002). Higher temperatures may also be detrimental 
to the growth, recruitment, and spawning stock bio-
mass of lesser sandeels Ammodytes marinus, a key kit-
tiwake prey species (Arnott & Ruxton 2002, Carroll et 
al. 2017). Further highlighting the importance of 
cooler, mixed waters, kittiwake productivity has been 
shown to be positively associated with cooler SST at 
some breeding colonies (Frederiksen et al. 2005, Car-
roll et al. 2015). 

A preference for foraging in areas with higher SSTs 
when average SST levels were lower may indicate 
birds foraging on the warmer, stratified sides of mix-
ing fronts. In general, average SST levels are likely to 
increase throughout the summer and may also reflect 
areas of higher stratification at seasonal time scales 
due to the influence of solar heating (Scott et al. 2006, 
Sharples et al. 2020). Therefore, while kittiwakes may 
utilise areas of moderate stratification, they appear to 
increasingly shift to using areas of cooler water as 
average SST levels, and hence the degree of stratifica-
tion, increase. Such behaviour will result in birds 
shifting their habitat usage patterns both seasonally 
and across years as environmental conditions related 
to frontal activity change (Robertson et al. 2014, 
Cleasby et al. 2015, Bertrand et al. 2021). However, it 
should be borne in mind that RSS values associated 
with the use of areas with warmer SSTs were not at the 
magnitude for cooler SSTs. Thus, while certain con-
ditions may favour the use of such areas, they were 
still not as strongly selected as cooler regions. 

Kittiwakes tended to use areas of higher chlorophyll 
concentration when the average chlorophyll concen-
tration in the area available to them for foraging was 
low. Chlorophyll concentration is frequently used as a 
measure of phytoplankton abundance, which provides 
the basis for marine food webs on which top predators 
such as seabirds rely (Suryan et al. 2012). Therefore, 
kittiwakes may be foraging in patches of high near-
surface chlorophyll, indicative of higher primary 
 production at such locations. Positive relationships 
between kittiwake abundance and chlorophyll con-
centration have also been observed in other studies, 
including some based in the North Sea (Scott et al. 
2010, Chivers et al. 2013, Robertson et al. 2014). Ho-
wever, it is less clear what drove the higher usage of 
areas with lower chlorophyll when mean chlorophyll 
levels were higher. Chlorophyll concentration tends to 
be higher in coastal areas in the northern North Sea 
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(Peters et al. 2005). Therefore, greater usage of areas 
with lower chlorophyll could be driven by birds tend-
ing to forage away from the coastline in offshore areas 
(Grémillet et al. 2008), even though chlorophyll levels 
themselves are higher in coastal waters. This relation-
ship would be most apparent in birds that typically for-
aged in inshore areas, as this would result in their 
available habitat being characterised by a higher mean 
chlorophyll concentration. In addition, the highest 
levels of chlorophyll concentration observed in this 
study largely occurred in the southern North Sea, 
south of the Flamborough front. In the current data 
set, we only occasionally observed birds from Filey 
and Flamborough foraging to the south of the Humber 
estuary (Fig. 1). Thus, our results could, in part, be 
driven by birds from the most southerly colonies in our 
data set tending to avoid foraging in the mixed waters 
of the southern North Sea. The relatively low use of 
such areas may also reflect a mechanistic constraint on 
foraging range when feeding young chicks. For exam-
ple, tracking data from Flamborough Head in 2017 
(Wischnewski et al. 2017) showed kittiwakes foraging 
more extensively farther south than we observed here. 
However, Wischnewski et al. (2017) deployed tags on 
individuals for a longer period (up to 29 d) than in the 
current study. Thus, our findings may not reflect the 
strength of habitat associations throughout the entire 
breeding period, particularly as the magnitude of cen-
tral-place constraints also varies throughout the breed-
ing cycle. More broadly, associations between chloro-
phyll abundance and zooplankton biomass can 
become de-coupled (Díaz-Astudillo et al. 2022). Con-
sequently, areas of lower chlorophyll may not always 
reflect prey abundance available for predators at 
higher trophic levels (Grémillet et al. 2008). 

4.2.  Conservation implications 

The predictability of oceanographic features is 
thought to shape the movement patterns of many mar-
ine predators, with habitat usage directed towards 
areas where favourable conditions persist over time 
versus more ephemeral food patches (Scales et al. 
2014). Tidal mixing fronts represent one such feature, 
as they are highly productive regions whose location is 
shaped by the relatively predictable influences of the 
tides and bathymetry (Belkin 2021). As such, fronts 
have been cited as dynamic ocean features that could 
help to identify ecologically important areas suitable 
for designation as marine protected areas (MPAs) or 
other conservation measures (Miller & Christodoulou 
2014, Scales et al. 2014). Indeed, the location of tidal 

fronts underpins the development of recent UK MPAs 
such as the Irish Sea Front SPA (https://jncc.gov.uk/
our-work/irish-sea-front-spa/, accessed on 24 March 
2023). The results presented here demonstrate the im-
portance of such areas to kittiwakes and highlight how 
key marine habitat features such as persistent fronts 
could be used for MPA identification. How ever, func-
tional response models also show how, as oceano-
graphic features associated with foraging vary over 
space and time, the usefulness of specific areas for for-
aging will likewise shift. For greater resilience of MPA 
design, the dynamic nature of such features and re-
sulting pattern of space use in seabirds (or other spe-
cies) should therefore be considered (Game et al. 2009, 
Chivers et al. 2013, Isaksson et al. 2023). 

In this context, climate change is likely to play a 
key role in shaping kittiwake habitat usage in the 
future as the number and intensity of physical bio-
physical processes and, consequently, kittiwake dis-
tribution patterns are altered. For example, seasonal 
stratification could occur earlier in the spring and last 
for longer, with stratification being stronger and the 
location of tidal mixing fronts shifting slightly in 
response to climate change (Holt et al. 2010, Sharples 
et al. 2020). The growing number of offshore renew-
able installations may also impact tidal front habitats 
because the addition of such structures can have 
important impacts on levels of water column mixing 
and the distribution of phytoplankton (Carpenter et 
al. 2016, De Dominicis et al. 2017, Scott 2022). In each 
case, the kittiwake functional responses reported 
suggest that habitat usage will shift in response to 
such changes, which highlights the vulnerability of 
this species to potential changes in North Sea stratifi-
cation patterns and climate change in general (Burthe 
et al. 2014, Carroll et al. 2015). Given the planned in -
crease in offshore renewables, it will become increas-
ingly important to understand impacts on water 
 stratification patterns when planning future offshore 
developments (Medina-Lopez et al. 2021). 

North Sea SSTs are expected to rise under various 
climate change scenarios (Dieterich et al. 2019). 
Based on our results, we would expect kittiwake hab-
itat usage to increasingly shift towards areas of cooler 
SST in the future despite such habitat becoming less 
available. As a result, kittiwakes may either be forced 
into smaller pockets of preferred habitat (Bonnet-
Lebrun et al. 2022) or increase foraging ranges to find 
suitable habitat (Osborne et al. 2020). However, there 
are limits to how much flexibility kittiwakes have to 
buffer against increasing SSTs before key demo-
graphic parameters, such as breeding success, begin 
to decline (Schlener et al. 2024). 
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4.3.  Extensions to habitat modelling 

The use of GFRs allows us to condition habitat 
usage upon a given definition of habitat availability 
and therefore account for shifts in habitat use as con-
ditions change (Matthiopoulos et al. 2011). To a de -
gree, the work presented here represents an exten-
sion of the modelling approach of Wakefield et al. 
(2017), who used GFRs to predict kittiwake habitat 
usage at the UK scale using multiple environmental 
covariates, including SST and front strength, which 
were also examined here. However, in that study, the 
environment available to birds was defined as a covar-
iate’s mean in the waters accessible to that colony. 
Moreover, environmental covariates themselves were 
averaged over the 5 yr period of the study (summer 
2010–2015). Consequently, information on environ-
mental variability experienced between years or be -
tween individuals from the same colony foraging over 
different spatio-temporal extents was not incorpo-
rated. Averaging over such a broad spatio-temporal 
extent will also tend to average across the responses 
of different individuals in regions of contrasting hab-
itat characteristics, leading to a flattening of model 
coefficients (Paton & Matthiopoulos 2016). Here, we 
have been able to incorporate this additional varia-
tion, allowing us to assess kittiwake responses over 
a range of different environmental conditions at much 
finer spatio-temporal scales. For example, while Wake -
field et al. (2017) found a negative association be -
tween SST and habitat usage (as we did here), they 
did not retain a term for the interaction between SST 
and its availability. However, our findings suggest 
that not only is kittiwake habitat usage positively 
associated with lower SSTs but also that this tendency 
tends to be stronger in habitats where average SST 
levels are higher. Moreover, we also incorporate new 
information on the distance to fronts, which was 
not previously considered but highlights the impor-
tance of areas close to fronts when this habitat is more 
available. 

Our results also differ somewhat from those of Tre-
vail et al. (2021), who reported that kittiwakes selec -
ted areas of weaker front strength and areas located 
farther from fronts. In part, we believe this is because 
the GFR approach allowed us to account for differ-
ences in environmental condition experienced by dif-
ferent individuals as outlined above. In addition, the 
use of RBFs gave additional insight into the non-
 linearity of observed functional responses, whereas 
Trevail et al. (2021) were restricted to examining lin-
ear relationships. However, our UHCs suggested that 
capturing non-linearity is important, and UHCs 

based on assuming simpler, linear relationships may 
not achieve this as well, even when including random 
slopes to account for between-individual variation. 

The rapid growth in habitat modelling techniques 
means there is scope to extend the GFR approach 
further. Unlike Wakefield et al. (2017), the models 
presented here were not designed to generate predic-
tive spatial distributions but rather to focus on spe-
cific covariates linked to tidal fronts. Nevertheless, 
they could be developed for such purposes via newly 
proposed machine learning methods (Aldossari et al. 
2022). In particular, the use of RBFs, which are com-
monly used in machine learning processes, should 
facilitate this. One aspect of using RBFs is choosing 
the number and location of the centres used. In most 
cases, a small number of centres or knots (3–5) such 
as we used here is sufficient to model a non-linear re -
lationship without much risk of over-fitting (Schuster 
et al. 2022). In addition, we used a relatively simple 
placement of centres across a uniform set of data 
quantiles, mirroring the placement of knots typical 
of  many spline fitting procedures (Aarts et al. 2008, 
Perperoglou et al. 2019). Based on our UHC plots, we 
judged that our approach was sufficient to capture 
the non-linear patterns of usage seen in our data. 
However, using a machine learning approach, it 
would be possible to tune the exact number and 
placement of RBF centres. 

Similarly, our models only considered 2-way inter-
actions between a given environmental covariate and 
its own estimated availability. Our reasoning was that 
the habitat selection response to a given covariate 
would be most closely linked to the availability of that 
same covariate rather than another. We chose to do 
this for simplicity and ease of interpretation. How -
ever, a full GFR approach could involve fitting inter-
actions between all of the environmental covariates 
considered here as well as interactions with the de -
fined availability of each covariate. Likewise, models 
could be extended further by the addition of more 
covariates, although UHC plots did not highlight 
severe discrepancies that suggested the responses we 
observed were being driven by an important, missing 
covariate. Nevertheless, given the temporal scale on 
which remote sensing data are now available, it 
should be possible to develop seasonal and even daily 
habitat usage maps using a broader suite of covari-
ates. Advances in tracking technology and data 
logger miniaturisation allowing for longer tagging 
deployments on individual birds could also assess 
how seabird habitat usage alters throughout the 
breeding season as fronts develop, or across the 
spring–neap tidal cycle (Scott et al. 2013). 
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Here, our model included random intercept terms 
for individual identity and colony given we had multi-
ple measures at both levels, although the variance of 
these random intercepts was fixed at an arbitrarily 
large value (Muff et al. 2020). Models in which we 
attempted to include additional random slopes had a 
high computation time and failed to converge. In part, 
this may have arisen because random slopes were 
applied across the entire set of basis functions for a 
given covariate, resulting in estimation of multiple 
random slopes. However, model convergence also 
remained an issue when modelling covariates using 
simple, linear terms and fitting individual-level ran-
dom slopes whenever we included an interaction 
between a covariate and that covariate’s estimated 
availability (which was calculated at the individual 
level). Ultimately, we decided that a non-linear GRF 
performed well in describing non-linear patterns in 
habitat usage based on UHC plots, hence its applica-
tion here. As such, our results should be seen as pop-
ulation-level functional responses which may mask 
individual variation caused individuals whose own 
response deviates from the population-level response 
(Newediuk et al. 2022). It has been suggested that 
individual variation in selection function coefficients 
could be assessed by sampling an individual over a 
longer time frame encompassing more environmental 
conditions (Northrup et al. 2022). Given the short 
timeframe of GPS tracking in the current study, we 
did not attempt this, but with longer tracking deploy-
ments or a study designed to track the same individ-
ual across multiple years, such an approach would be 
more feasible. 

While tidal fronts may represent an important for-
aging habitat for kittiwakes, exactly how birds use 
such an environment was not examined here. How -
ever, the exact nature of prey availability is likely to 
differ depending on which side of the tidal front birds 
forage. For example, prey density was higher and 
prey were more aggregated at shallower depths in 
mixed water in the Celtic Sea, but the probability of 
prey encounters was greater in stratified waters for 
common guillemot Uria aalge and Manx shearwater 
Puffinus puffinus (Waggitt et al. 2018). Similarly, in 
short-tailed shearwaters P. tenuirostris, dense patches 
of euphausiids near the sea surface on the stratified 
side of mixing fronts represented an important food 
source (Vlietstra et al. 2005). Therefore, kittiwakes 
may utilise different foraging strategies and target 
different prey species when foraging in mixed versus 
stratified waters, as seen in other species (Cleasby 
et al. 2015, Cox et al. 2016). To address such issues, 
more information is required on spatio-temporal vari-

ation in the prey species consumed across the kitti-
wake colonies examined here throughout the course 
of the breeding season. Ideally, data on the distribu-
tion of key prey species would also be available at suf-
ficient spatio-temporal resolutions, which is not the 
case currently (Ruffino et al. 2023). Similarly, because 
birds were not sexed in the current study, we do not 
know if there were differences between males and fe -
males in habitat use as has been seen in other species 
that forage in tidal front habitats (Cleasby et al. 2015). 

5.  CONCLUSIONS 

Functional responses of kittiwakes to a suite of 
environmental covariates highlight the importance of 
dynamic tidal front habitats for this species. Kittiwake 
responses to such features varied as their availability 
changed. However, when the relative availability of 
frontal habitat was high (i.e. the average distance to 
fronts was low), we observed peaks in habitat usage 
close to tidal fronts. Kittiwakes also tended to forage 
in cooler waters with lower SSTs. Additionally, their 
preference for areas with lower SST increased as the 
average SST across the foraging area available to 
them rose. More broadly, the results highlight the 
dynamic and non-linear nature of seabird re sponses 
to frontal habitats as conditions change. Con-
sequently, the timing and development of fronts both 
across different years or seasonally within a year 
(Sharples et al. 2006) as well as the influence of the 
spring–neap cycle could have a marked influence on 
the availability of frontal habitats and subsequent 
seabird habitat use patterns in shelf seas. Therefore, 
when using fronts or similar features for MPA design, 
their dynamic nature should be taken into account. 
For similar reasons, human activities such as marine 
renewable installation or longer-term processes such 
as climate change that alter stratification patterns 
could influence seabird habitat use and at-sea distri-
butions. As a surface-feeding species that may rely 
upon the actions of tidal fronts to aggregate prey 
in  shallower depths, kittiwakes may be particularly 
vulnerable to changes in stratification patterns. 
However, given associations between other marine 
predators and tidal fronts, our results are likely rel-
evant to a range of different species that utilise tidal 
fronts. 
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