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1.  INTRODUCTION 

Biodiversity patterns have been at the center of eco-
logical research for decades, and the quantification of 
beta diversity forms one of the most fundamental 
issues in biogeography and ecology (Carvalho et al. 
2012). Much of the preceding research about biotic 
communities has concentrated on spatial beta diver-
sity, i.e. variation in species composition between 
sites (Whittaker 1960), while traditionally, lesser at -
tention has been paid to the temporal aspect of com-
munity change, i.e. temporal beta diversity (Magur-
ran et al. 2019). 

In aquatic ecosystems, temporal beta diversity has 
received far less attention in comparison with other 
ecosystem types (Cook et al. 2018). Following global 
climatic change, understanding the cascading con-
sequences of climate-driven shifts in biodiversity has 
become increasingly important, particularly in dyna -
mic coastal ecosystems under continuous environ-
mental perturbations (Crabot et al. 2020, Buckley et 
al. 2021). Temporal turnover describes the unidirec-
tional change in community composition from one 
point in time to another. Through simultaneous gains 
and losses, species are replaced or persist in a com-
munity because of environmental, spatial, biotic, or 
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historical constraints (Shimadzu et al. 2015). The 
effects of environmental change on taxonomic com-
munity composition are not necessarily translated 
into similar changes in functional composition, and 
vice versa (Villéger et al. 2012). Thus, as a valuable 
tool for widening the dimensions of traditional taxon-
omy-based biodiversity research, functional diversity 
estimators routinely complement taxonomic mea-
sures in ecology (Mammola et al. 2021). 

Following the tentatively growing interest in tempo-
ral beta diversity, statistical tools have been intro-
duced for monitoring species’ compositional shifts 
over time (Magurran et al. 2019). The temporal beta 
diversity index (TBI) was recently developed to mea-
sure temporal differences in community composition 
among sites at 2 separate points in time (Legendre 
2019). The index — applicable to both taxonomic and 
functional community data — measures the degree to 
which communities are differentiated from each other 
in time, ranging from 0 (no temporal differentiation) 
to 1 (complete temporal differentiation) to identify 
sites experiencing exceptional changes in community 
composition (Legendre 2019). For measuring direc-
tional change in community composition, which is 
often neglected in temporal beta diversity studies, TBI 
allows the partitioning of site-specific total dissimilar-
ity into 2 additive components, gains and losses, ac-
cording to species or traits gained and lost over time 
(Schmera et al. 2022). For assessing the drivers of 
community change at a given location, TBI can 
further be assessed for environmental variables to test 
whether changes in temporal beta diversity are driven 
by temporal changes in the local environment or ran-
dom stochastic processes (Magurran & Henderson 
2010, Baselga et al. 2015). Despite the emerging inter-
est in patterns of temporal beta diversity in various 
types of natural communities (reviewed in Buckley et 
al. 2021), studies incorporating TBI on marine biota by 
both taxonomic and trait-based approaches are still 
rare (but see Virta et al. 2020, Paquette et al. 2022). 

Being strongly responsive to environmental changes, 
microalgal diatoms (Bacillariophyceae) are at the  
lowest biological level to exhibit temporal changes 
in  taxonomic and functional composition (Soininen 
2007). Small, spatially isolated, and environmentally 
heterogeneous granitic rock pools comprising diverse 
biota exhibit a naturally dynamic transitional habitat 
at the marine–freshwater interface for testing the in-
fluence of environmental filtering on taxonomic and 
functional microbial diversity through time (Blaustein 
& Schwartz 2001, Srivastava et al. 2004). With data 
of  high temporal resolution sampled across a 5 mo 
period from 9 coastal rock pools, we aimed to investi-

gate (1) how taxonomic and functional temporal beta 
diversity (partitioned into loss and gain components) 
covary, (2) which environmental variables best explain 
taxonomic and functional temporal beta diversity, and 
(3) how temporal beta diversity is related to temporal 
environmental variation. 

2.  MATERIALS AND METHODS 

2.1.  Field sampling 

We sampled 9 brackish-water, isolated rock pools 12 
times (N = 108) at roughly 10 d intervals (with the ex-
ception of 21 days between the 9th and 10th sampling 
days) in May–September 2019 on a granitic outcrop 
in  Pihlajasaari Island (66°68’ N, 38°40’ E), ca. 2 km 
south of Helsinki on the coast of the northern Baltic 
Sea (Fig. S1 in the Supplement at www.int-res.com/
articles/suppl/m742p059_supp.pdf). In the study area, 
tidal influence is virtually absent, and changes in sea 
level are caused predominantly by wind and differences 
in air pressure (Pajunen & Pajunen 2007). Despite vary-
ing size and shape, the studied pools share a similar ge-
ology and basin structure mostly covered by a thin sed-
iment layer, and the boulders and pebbles within them 
are likely of the same geological origin. The pools were 
unshaded by vegetation and mainly rainfall-fed; the 
pools closest to the sea were occasionally influenced 
by direct inflows and salty splashes from the sea. Pool 
nutrient enrichment was likely mostly of biological 
origin, caused by decaying organism remains and fau-
nal excretions (Brendonck et al. 2016).  

We measured water pH, conductivity, and tempera-
ture in situ with a YSI Professional Plus field meter. We 
measured pool morphometrics (i.e. maximum depth, 
length, and width), and pool area was approximated by 
multiplying pool length by pool width. We collected a 
0.5 l water sample from each pool preserved at 4°C for 
the determination of total P (Finnish Standards Associ-
ation 2004) and total N (Finnish Standards Association 
1998) concentrations and a nutrient supply (i.e. N:P) 
ratio. We determined pool location by latitude and 
longitude with a GPS and measured distance from the 
sea and mean isolation as a mean Euclidean distance 
(i.e. the mean distance to 5 closest pools; Vanschoen-
winkel et al. 2007) on an aerial photograph. 

2.2.  Taxonomic data 

We sampled benthic diatoms following standard 
methodology (European Committee for Standardiza-
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tion 2003) by collecting 10 subsamples (ca. 25 cm2) 
from each pool bottom, using a toothbrush to brush 
material into a plastic container filled with pool 
water. We combined the accumulated diatom sus-
pension as a single composite sample in a plastic test 
tube in the field. The bottom of the 2 largest pools 
(Pools 6 and 9) was unreachable; therefore, only the 
pool walls were sampled, deep enough to ensure the 
frustules were permanently submerged. Between 
each sampling, the toothbrush was rinsed in pool 
water to remove at tached cells and reduce contami-
nation and taxonomical bias between the samples 
(Kelly et al. 1998). 

We preserved the samples in 98% ethanol at 4°C 
until treatment with 30% H2O2 to remove organic 
material and then mounted them on slides with 
Naphrax. A minimum of 500 valves per slide were 
counted and identified to the lowest taxonomic level 
possible (mostly species level) with a light micro-
scope (1000-fold magnification) following Krammer & 
Lange-Bertalot (1986–1991), Snoeijs (1993), Snoeijs 
& Vilbaste (1994), Snoeijs & Potapova (1995), and 
Snoeijs & Kasperovicienè (1996). From the 14 most 
sparsely celled slides from Pools 1, 5–6, and 8–9, less 
than 500 valves (<100 from 5 of the slides with a mini-
mum of 18) could be counted. We created a binomial 
site–species matrix based on species presence–
absence after the count abundances. 

2.3.  Functional data 

We classified the diatom species into 21 functional 
groups. We first divided the species into 5 size classes 
based on their biovolume (determined by cell length, 
width, thickness, and shape) and 14 life-form cate-
gories based on their morphological adaptations (i.e. 
cell motility, posture, and type of adhesion) to physi-
cal and chemical disturbance following Rimet & Bou-
chez (2012). Any taxon with various successive life 
forms was classified into multiple life-form categories 
(Berthon et al. 2011). 

We further divided the species into 4 ecological 
guilds according to their preferences for nutrient con-
centration and physical disturbance after Passy (2007) 
and Rimet & Bouchez (2012): high profile (the upper 
benthic layer in nutrient-rich, weakly disturbed hab-
itats), low profile (in highly disturbed and oligo -
trophic habitats in the base of the benthos), motile 
(nutrient-tolerant taxa with low tolerance for physical 
disturbance — but physically capable of selecting a 
suitable habitat, thus only marginally affected by dis-
turbance and resource limitation), and planktic guild 

(species morphologically adapted to lentic, less tur-
bulent environments prone to sedimentation). 

Finally, we separated between acid-tolerant (acido-
biontic or acidophilous species with pH optimum of 
<7 in Van Dam et al. 1994) and nitrogen-fixing species 
(members of the genus Epithemia capable of fixing 
atmospheric nitrogen by cyanobacterial endosym-
bionts) (Soininen et al. 2016). We created a binomial 
site–trait matrix in which each species belonging to a 
given guild was given a value of 1; otherwise, the 
value was set to 0. Most species were characterized by 
multiple traits and belonged to more than one guild. 

2.4.  Statistical analyses 

To account for temporal change in the explanatory 
variables (other than pool coordinates, isolation, and 
distance to the sea), we subtracted each variable’s 
site-specific value of an earlier sampling day from 
that of the proceeding sampling day for each consec-
utive sampling day pair (n = 11) and used these as 
model covariates (expressed with the sign ‘Δ’) in our 
analyses (except for counting environmental TBI 
based on the original environmental data). We calcu-
lated Spearman’s rank correlation coefficients and 
variation inflation factors with a threshold value of 3.0 
(Zuur et al. 2010) and examined temporal and spatial 
patterns in the data with co-plots to detect statistical 
dependence between the variables. Hence, Δtotal N, 
Δlength, Δwidth, latitude, longitude, and a 12-level 
categorical variable for sampling day were excluded 
from the statistical analyses (although sampling day 
was used as the only explanatory variable in the ordi-
nation analyses as described below). We further as -
sessed temporal autocorrelation for the environmen-
tal variables with an autocorrelation function (ACF) 
correlogram with 20 lags. 

We first quantified the TBI (Legendre 2019) to mea-
sure temporal beta diversity within the rock pool 
communities. We applied the Sørensen dissim i lar ity 
coefficient for the taxonomic and functional presence–
absence data, respectively, with 9999 permutations to 
examine whether a species assemblage at a given site 
had changed exceptionally between each of the 12 
sampling days, by first repeating the analysis for 
each consequent sampling day pair (i.e. 1–10, 11–
21,…,110–119; n = 99) and then for the entire sam-
pling period (i.e. 1–119, N = 108). We decomposed 
total taxonomic and functional TBIs (hereafter TBITax 
and TBIFunc, respectively) into loss and gain compo-
nents to assess the direction and significance  of 
change in community composition through time; i.e. 
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whether the studied communities had lost or gained 
species or traits between the consecutive sampling 
days. 

To examine whether the communities with a signif-
icant change in TBITax or TBIFunc were also experienc-
ing significant changes in environmental conditions, 
we assessed environmental TBI (hereafter TBIEnv) by 
applying Euclidean distance for a priori standard-
ized environmental data with non-negative, equally 
weighted variables (Legendre 2019). For all TBI in -
dices, we used p-values of paired t-tests and corrected 
for multiple testing to express the significance of the 
temporal change in community composition. 

We used linear regression models with a beta error 
distribution (Ferrari & Cribari-Neto 2004) to examine 
the factors best explaining variation in TBITax and 
TBIFunc. We first fit all models both with and without 
a 9-level random factor for the study site (Wood 2006) 
to account for possible spatial dependence in the 
data. Due to high model complexity and low variance 
in the grouping factor for the study site (results not 
shown), we decided to use generalized linear models 
(GLMs; McCullagh & Nelder 1983) with only the 
fixed effect part, without any random structure. We 
further applied a beta regression model to investigate 
whether variation in TBITax and TBIFunc could be ex -
plained by variation in TBIEnv. Due to an overall better 
model fit, we chose to use the sampling site as a ran-
dom intercept and TBIEnv as a fixed term, as in gener-
alized linear mixed models (GLMMs; Zuur et al. 
2009). Since possible temporal dependence in the 
data was linked to the variable sampling day that 
models within- rather than between-group depen-
dence when applied as a random factor in a GLMM 
(Zuur et al. 2009), we did not include this 12-level cat-
egorical covariate in the random structure (or in the 
fixed part due to collinearity with the other covari-
ates) of our regression models. 

Prior to running the regression models, all con-
tinuous covariates were standardized. Since the beta 
distribution can only deal with values larger than 0, 
we added a constant (with the formula [x × (N − 1) 
+ 0.5] / N) to TBIFunc with a few values equaling 0.0. 
We used quadratic terms for the explanatory vari-
ables with a unimodal relationship with the re -
sponse variables; otherwise, only first-level terms 
were used. The covariates were removed from the 
full models by  a backward stepwise method, and 
the model with the lowest Akaike information crit-
erion value (Akaike 1973) was considered the best. 
The explanatory power of the covariates in the 
reduced regression models was assessed by the 
likelihood ratio test and either pseudo-R2 (for the 

GLMs) or Nakagawa’s R2 (for the GLMMs; Naka-
gawa & Schielzeth 2013); the statistical significance 
of the variables was based on Pearson’s chi-squared 
test. 

The regression models were validated following the 
protocol proposed by Zuur & Ieno (2016). We as -
sessed model independence by plotting the residuals 
against the fitted values and against the covariates both 
included in and excluded from each of our models. 
We checked the significance of any non-linear pat-
tern between the model residuals and a covariate with 
generalized additive models (Hastie & Tibshirani 1990). 
We assessed spatial independence of the residuals by 
Moran’s I (Moran 1950) with 5 distance classes and 
Bonferroni-corrected p-values for the correlation co -
efficients (Legendre & Legendre 2012); for detecting 
temporal autocorrelation, we used ACF correlograms 
with 20 lags. 

Lastly, we applied a distance-based redundancy 
analysis (dbRDA; Legendre & Anderson 1999) to par-
tition variation in the taxonomic and functional 
community composition, according to sampling day 
(N = 108). We used the square-rooted Sørensen dis-
similarity matrix as an input in a principal coordinate 
analysis (Gower 1966); the resulting matrix was then 
used as a response variable in a dbRDA, constrained 
by a 12-level factor representing the consecutive sam-
pling days. The statistical significance of the explana-
tory variable and ordination axes was as sessed using 
an F-test with 999 permutations. 

All statistical analyses were conducted in R v.3.6.2 
(R Core Team 2022), using R source code provided in 
Zuur et al. (2009), primarily with packages ‘adespa-
tial’ (Dray et al. 2021), ‘betareg’ (Cribari-Neto & Zeileis 
2010), ‘glmmTMB’ (Brooks et al. 2017), and ‘vegan’ 
(Oksanen et al. 2019). 

3.  RESULTS 

Most of the total of 299 detected species (including 
subspecies; per-pool range: 10–62, mean: 26) of 78 
genera were classified as non-colonials (81.4%), 
mobile (75.1%), and motile (45.5%), with the most 
abundant taxa being Nitzschia microcephala (37.9%), 
Achnanthidium minutissimum (9.3%), and Navicula 
perminuta (6.1%). 

The rock pools were generally small (mean area: 
<7 m2) and shallow (<0.5 m deep), with a large range 
in overall Δconductivity (|2–20 780| μS cm–1) and 
 Δtotal P (|0.2–1095| μg l–1) (Table S1). The pools fol-
lowed clear gradients in water conductivity (rs = 
−0.38, p < 0.0001), pool area (rs = 0.45, p < 0.0001), and 
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depth (rs = 0.55, p < 0.0001) along increasing distance 
to the sea, and in water pH (rs = 0.26, p = 0.006), con-
ductivity (rs = 0.44, p < 0.0001), and depth (rs = −0.27) 
with increasing pool isolation. ΔTemperature (rs = 
−0.46) and Δdepth (rs = 0.21, p = 0.040) were signifi-
cantly associated with sampling day, while temporal 
variation in various physicochemical variables scaled 
significantly with Δdepth and Δarea. Significant tem-
poral autocorrelation for several lags was found for 
water pH, conductivity, and temperature (Fig. S2). 
TBITax was significantly related to both TBIFunc (rs = 
0.37, p < 0.001) and TBIEnv (rs = −0.43, p < 0.0001). TBITax 
and TBIEnv were further related to pool distance from 
the sea (rs = 0.32, p < 0.001 and −0.34, p < 0.001, re-
spectively), while TBIFunc was correlated with Δtem-
perature (rs = −0.22, p = 0.029) and pool isolation 
(rs = −0.32, p = 0.002), and TBIEnv was correlated with 
sampling site (rs = −0.22, p = 0.029) (Table S2). 

The TBITax was considerably high (range: 0.23–0.68; 
mean: 0.44), practically always exceeding TBIFunc 
(range: 0.0–0.24; mean: 0.08) (Table S3). Mean TBITax 
was highest in Pool 1 and lowest in Pool 2, and mean 
TBIFunc was highest in Pool 6 and lowest in Pool 8. The 
highest TBITax was recorded in Pool 1 between sam-
pling days 8 and 9, and the highest TBIFunc was in Pool 
6 between sampling days 7 and 8, both characterized 
by a significant change in total dissimilarity; at the lo-
west, TBITax was in Pool 4 between sampling days 11 
and 12, and TBIFunc was in Pools 2 and 8 between sam-
pling days 1–2 and 4–5, respectively. At the mini-
mum, the taxonomic composition on 
the last sampling day was only 23% 
(mean: 0.37), similar to that on the first 
day in Pool 1, whereas in Pool 5, up to 
100% similarity (mean: 0.92) was ob-
served for the functional community 
composition considering the entire 
study period (i.e. Days 1–119); how -
ever, these long-term changes in total 
dissimilarity were non-significant. 

Overall, mean TBI and its compo-
nents (i.e. losses and gains) were 
rather similar yet consistently higher 
for  TBITax than for TBIFunc. Both mean 
 TBITax (range: 0.4–0.49) and mean 
 TBIFunc (range: 0.07–0.12) peaked 
between sampling days 8 and 9, fol-
lowed by a downward trend toward 
the end of the study period (Fig. 1). 
The loss component slightly dom-
inated changes in both mean TBITax 
and TBIFunc. For mean TBITax, the di -
rection of overall change regardless of 

site was significantly negative between sampling 
days 1 and 2; for mean TBIFunc, the direction of 
change was significantly negative from sampling 
days 1 to 2 and positive from days 9–10. For TBITax, 
temporal and within-pool variability was always 
higher than for TBIFunc (Fig. S3). At the site level, 
maximum gains nearly equaled maximum losses for 
both TBITax and TBIFunc. Species gains dominated 
significant changes in TBITax in Pools 1 (character-
ized by the highest gains of 0.64) and 5 between sam-
pling days 8–9 and 4–5, respectively; in Pool 9, the 
maximum species losses (0.62) outweighed gains 
between sampling days 5 and 6. For TBIFunc, signifi-
cant dominance of gains (with a recorded maximum 
of 0.18) was found for Pool 6 between sampling days 
7 and 8 (Table S3). 

The majority of the 9 pools — especially Pools 2 and 
3 — were characterized by notable changes in the 
physicochemical variables and in TBIEnv. However, 
for Pool 1, the environmental variability was minimal. 
A significant increase in TBIEnv up to the recorded 
maximum (7.43) was found for Pool 2 between sam-
pling days 8–9 and 9–10, and for Pool 3 between sam-
pling days 4 and 5; the lowest TBIEnv (1.09) was found 
in Pool 5 between sampling days 9 and 10 (Table S3). 

According to the best approximating regression 
models, variation in both TBITax and TBIFunc was signif-
icantly (TBITax p < 0.05, TBIFunc p = 0.003) explained by 
a negative unimodal relationship with pool isolation, 
and either a concave-up (for TBITax; p < 0.001), or a 
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concave-down (for TBIFunc; p = 0.034) relationship 
with pool distance to the sea. TBIFunc was further lin-
early related to ΔN:P ratio (p = 0.021), Δconductivity 
(p = 0.006), and Δtemperature (p = 0.04) and neg-
atively unimodally to Δarea (p = 0.035) (Fig. 2, 
Table 1). For both GLMs, significant temporal auto-
correlation was found for one lag (Fig. S4). The 

GLMMs showed a significant negative (p < 0.001) 
relationship between TBIEnv and TBITax; for TBIFunc, no 
significant relationship with TBIEnv was found (Fig. 3, 
Table 2). 

In the dbRDA, sampling day was significant (p < 
0.05) in explaining 11 and 13% of the temporal varia-
tion in taxonomic and functional community compo-
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sition, respectively (Table S4). The first sampling day 
was distinctive in taxonomic composition, as were 
sampling days 7–9 and 10–12; the rest of the tax-
onomic and all functional communities were more 
uniformly located in the ordination space in relation 
to each other, with little temporal variation across the 
studied pools (Fig. 4). 

4.  DISCUSSION 

4.1.  Taxonomic versus functional temporal  
beta diversity 

The studied communities were characterized by 
relatively high temporal differentiation and sharp 
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Model            Coefficient               Estimate                    SE               df              LRT               Pr(>Chi)                 AIC             Pseudo-R2 
 
TBITax              (Intercept)              −0.43078                0.07203                                                                                  −185.8                0.18 
                           Isolation                −0.09440                0.04342           1              4.6027            0.03192* 
                          Isolation2                   0.08270                0.03475           1              5.4991            0.01903*                                                
                     Distance to sea             0.18503                0.04790           1            13.9834            0.00018***                                            
                    Distance to sea2             0.12525                0.04618           1              7.0752            0.00782**                                              
TBIFunc            (Intercept)              −2.34832                0.08693                                                                                  −379.2                0.36 
                             Total P                     0.08557                0.05092           1              2.7631            0.09646                                                  
                                N:P                        0.11438                0.04814           1              5.3140            0.02116*                                                
                       Conductivity            −0.15320                0.05325           1              7.6018            0.00583**                                              
                       Temperature            −0.09906                0.04751           1              4.2322            0.03966*                                                
                               Area                    −0.01347                0.03856           1              0.1204            0.72865 
                              Area2                       0.02676                0.01201           1              4.4261            0.03539*                                                
                           Isolation                −0.16111                0.05167           1              8.8823            0.00288**                                              
                           Isolation                   0.06245                0.04022           1              2.3373            0.12631 
                     Distance to sea             0.06371                0.05433           1              1.3462            0.24594 
                    Distance to sea2         −0.12019                0.05726           1              4.4895            0.03410*

Table 1. Generalized linear model for the taxonomic (TBITax) and functional (TBIFunc) temporal beta diversity indices, explained by 
temporal change in the environmental variables between the 12 sampling days. Quadratic terms (coefficients marked with 2) were 
used for the explanatory variables with a unimodal relationship with the response variables. Model selection was based on the 
Akaike information criterion (AIC); pseudo-R2 was attained by re-fitting the reduced model with the ‘betareg’ function. Statistical  

significance of the covariates is based on the likelihood ratio test (LRT); *p < 0.05; **p < 0.01; ***p < 0.001
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variation in the response variables for an average site, including a fitted Loess smoothing curve with 95% confidence interval  

(gray shading). Hollow circles: observed relationship between the response variable and the covariate (N = 99)
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alterations in taxonomic composition, with up to 70% 
of the species replaced from one time point to the 
other. Most of this replacement was non-significant 
and due to species loss. Despite similar patterns with 
TBITax, mean and total TBIFunc were lower and more 
stable over time. Similar patterns in temporal beta 
diversity have emerged for other taxa and habitats 
(e.g. Villéger et al. 2012, Virta et al. 2020, Paquette et 
al. 2022), referring to taxonomically diverse yet func-
tionally complementary species. This functional re -
dundancy, associated with unstable taxonomic com-
position, resulted in the low functional diversity 
change indicative of weak functional response to 
environmental disturbance through time (Boersma et 

al. 2014). Typical of harsh habitats, taxa replacements 
largely cover few functionally similar, temporally 
dominant traits, buffering against the taxonomic vari-
ability (Villéger et al. 2012, Crabot et al. 2020). Thus, 
rapid shifts in taxonomic diversity may not affect trait 
diversity in functionally redundant communities 
(Cadotte et al. 2011). 

4.2.  Taxonomic and functional TBI versus 
 environmental variables 

The TBIEnv scaled significantly with TBITax in the 
GLMM while having no relationship with TBIFunc. How -
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Model        Coefficient                 Estimate                    SE                 df              LRT               Pr(>Chi)            AIC             R2
c            R2

m 
 
TBITax          (Intercept)                −0.22586               0.03819                                                                               −189.7         0.78           0.75 
                         TBIEnv                     −0.16632               0.04747             1            11.9280         0.00055***                                                     
TBIFunc        (Intercept)                −2.41605               0.10020                                                                               −358.0         0.28           0.03 
                         TBIEnv                     −0.05560               0.06470             1             0.7313              0.39250                                                         
                        TBIEnv

2                      0.05233               0.03245             1             2.3746              0.12330

Table 2. Generalized linear mixed models for the taxonomic (TBITax) and functional (TBIFunc) temporal beta diversity indices, 
explained by the environmental temporal beta diversity index (TBIEnv). Quadratic term (TBIEnv

2) was used for the explanatory vari-
able with a unimodal relationship with the response variable. Model selection was based on the Akaike information criterion 
(AIC); the explanatory power of the entire model and the fixed effects was assessed by conditional (R2

c) and marginal (R2
m) Naka-

gawa’s R2 values, respectively. The statistical significance of the covariates is based on the likelihood ratio test (LRT); *p < 0.05;  
**p < 0.01; ***p < 0.001

Fig. 4. Canonical ordination plot obtained by the distance-based redundancy analysis for the Sorensen dissimilarity index cal-
culated for the (a) taxonomic and (b) functional data from the 9 sites, constrained by a factor representing the 12 sampling days.  

The colored ellipses cover 60% of the sites (hollow circles; N = 108) of each sampling day (numbered 1–12)
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ever, several pool physicochemical variables performed 
well in explaining TBIFunc in the GLM, as TBIFunc was 
highest in pools with variable areas, decreasing water 
conductivity and temperature, and an increasing N:P 
ratio, indicative of functional adaptations toward 
shifting physicochemistry, lower water temperatures 
nearer the sea, or alternating water volume (Boersma 
et al. 2014, Camara et al. 2021). In contrast, TBITax was 
predominantly associated with pool location. This 
agrees with studies relating taxonomic diversity more 
strongly with spatial than environmental gradients in 
response to local dispersal processes (Erős et al. 
2009), whereas the linkage between environmental 
variation and functional diversity has been better cap-
tured by trait-based methods (Mouillot et al. 2013, 
Stenger-Kovács et al. 2020). Through functional traits 
covering polyphyletic groups of species sharing simi-
lar ecological preferences, species keep pace with 
local environmental changes (Zhang et al. 2019). 
However, changes in taxonomic composition do not 
necessarily involve concomitant changes in func-
tional configuration: although these 2 metrics may 
covary to some extent, they may differ in their drivers 
(Zhang et al. 2019, Aarnio & Soininen 2021). 

4.3.  Taxonomic and functional TBI versus  
spatial variables 

Both TBITax and TBIFunc scaled negatively unimo-
dally with pool isolation. According to the theory of 
island biogeography (MacArthur & Wilson 1967), 
temporal variation in community composition de -
pends on species gained and lost through time. In 
the least isolated pools, the constant inflow of spe-
cies and traits likely maintains temporal instability in 
the communities connected by stronger passive dis-
persal, whereas in the most isolated pools, the com-
pensation of taxonomic or functional losses by new 
colonizers is hindered by their weaker accessibility 
(Borthagaray et al. 2023). At intermediate isolation, 
instead, the distance between neighboring sites is 
probably short enough not to restrict immigration in 
high quantities yet far enough to prevent most spo-
radic appearances of the temporally rarest taxa, 
maintaining low TBITax and TBIFunc. In frequently dis-
turbed habitats, such as our pool communities, such 
stochastic dispersal-related processes may have pro-
found effects on beta diversity (Vanschoenwinkel et 
al. 2013). 

The explanation above could also apply to the U-
shaped relationship between TBITax and pool distance 
from the sea. The pools nearest the shore were often 

in direct contact with the sea through salty inflows, 
promoting passive dispersal. Thus, the aggregation of 
species from the sea likely prevents temporal tax-
onomic homogenization, as species are occasionally 
present in several pools yet largely absent from all 
pools (Adler 2004). Contrastingly, the pools farthest 
from the sea lose species at a rate higher than immi -
gration of new species, increasing their TBITax. These 
views are partly supported by a significant negative 
correlation between pool isolation and functional 
gains, and a significant positive correlation between 
pool distance from the sea and taxonomic losses in 
our study system. The peaking TBIFunc halfway inland 
likely stems from the negative correlation between 
water conductivity and pool distance from the sea. 
Coastal diatoms are greatly impacted by water con-
ductivity (Virta et al. 2020, Teittinen et al. 2021). At 
intermediate conductivities in transition from mostly 
marine to freshwater pools, a wider salinity gradient 
may enable the survival of different functional groups 
either adapted to certain salinities or occasionally 
expanding their niche over suboptimal conditions, 
adding to the TBIFunc of these weakly saline pools 
(Schröder et al. 2015). At the opposite ends of the dis-
tance gradient, several species may perform similar 
ecological functions adapted to these conductivity 
extremes, impeding functional temporal turnover 
due to redundant traits (Baselga et al. 2015, Camara et 
al. 2021). Previous studies have shown that taxonomic 
and functional diatom diversity scales significantly 
with distance to the shore among correspondingly 
local-scale rock pool communities (Aarnio & Soininen 
2021, Teittinen et al. 2021). 

4.4.  Taxonomic and functional TBI versus 
 environmental TBI 

At the site level, a significant increase in TBITax 
was mostly attributable to temporarily sharply peak-
ing species gains or losses, while a moderate in -
crease in gains affected significant changes in TBIFunc 
values. However, the pools with a significant change 
in either TBITax or TBIFunc did not coincide with the 
pools of exceptional environmental change at any 
point in time. Contrastingly, the sites with sig -
nificant environmental change showed only moder-
ate, non-significant changes in TBITax and TBIFunc. 
Similar results have emerged in studies examining 
the link between TBI and environmental change, 
with sites of low temporal diversity dissociated with 
trends in the abiotic environment (Galvanese et al. 
2022). However, significant gains in TBITax and TBIFunc 
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ap peared to be associated with steep temporary de -
clines in water conductivity and pool area, whereas 
the dominance of species losses for TBITax seemed to 
be linked to expanded pool area and a generally 
stable environment. Overall, the pools with signifi-
cant and the most abrupt change in TBIEnv had vari-
able water physicochemistry (i.e. nutrient concentra-
tions, conductivity, and pH). 

The observed significant negative relationship be -
tween TBIEnv and TBITax further contrasts with studies 
reporting higher beta diversity in habitats with high 
environmental heterogeneity (Astorga et al. 2014). 
This is partly supported by the weak covariance 
between TBITax and the temporal gradient. Habitat 
heterogeneity is maintained by spatiotemporal varia-
tion in the abiotic environment. These environmental 
disturbances drive local community dynamics and 
species composition by maintaining a temporal mosaic 
of abiotic resources (Myers et al. 2015). Strong envi-
ronmental variability may thus increase biotic diver-
sity by favoring opportunistic species with temporally 
divergent niches, preventing competitive ex clusions 
and temporal dominance by generalists (Anderies & 
Beisner 2000, Shurin 2007). 

However, severe disturbances may also homoge-
nize communities, resulting in lower beta diversity 
(Hawkins et al. 2015). For example, significant changes 
in resource supply may reduce temporal beta diver-
sity by filtering out species with a lowered resistance 
toward extreme environmental conditions (Lamy et 
al.  2015). In our pools, the taxonomic composition 
converged over time according to the dbRDA results, 
supporting the idea of the homogenizing effect of en-
vironmental disturbances. Recent aquatic studies 
found similar signs of decreasing temporal beta diver-
sity despite environmental heterogeneity (Lopes et 
al.  2017, Lindholm et al. 2021). Diatom diversity is 
strongly influenced by spatiotemporal environmen-
tal oscillations (Verleyen et al. 2009). In small and 
shallow rock pools, the buffering capacity against 
physicochemical disturbances is often low (Jocque et 
al. 2010). Thus, short-term environmental variation 
may have significant and temporally varying effects 
on diatom diversity, as, e.g. the local microclimate 
such as wind, precipitation, and air temperature may 
directly affect water depth, wave exposure, desicca-
tion, and other physicochemical conditions (Dethier 
1984). For coastal microbial communities, strikingly 
fast turnover rates have been discovered due to sharp 
transitions in environmental variability (Wu et al. 
2016, Martin-Platero et al. 2018). 

We found site-specific temporal trends but no sys-
tematic change in overall community composition or 

environmental dissimilarity. In other aquatic eco -
systems, environmental disturbances have been sim-
ilarly linked with rapid site-level compositional shifts 
masked by the overall temporal beta diversity pat-
tern (Cereghetti & Altermatt 2023). Regardless of 
pronounced site-specific shifts in gains and losses, 
species replacements were moderate, resembling that 
ob served for other aquatic communities (Lindholm 
et  al. 2021). Despite the observed overall balance 
be tween species gains and losses, these minor 
changes may result in notable differences in commu-
nity dissimilarity over a longer timescale. Disturbed 
habitats with high environmental autocorrelation 
tend to exhibit higher short-term than long-term bio-
tic instability, introducing randomness to turnover 
(Korhonen et al. 2010, Crabot et al. 2020). Thus, 
although the studied communities showed temporal 
differences in TBITax and TBIFunc on a scale of individ-
ual pools and between subsequent points in time, the 
causes remain uncertain. While our models found 
factors in fluencing TBITax and TBIFunc, we could not 
link temporal beta diversity to a single factor — more 
so, random stochastic community events likely acted 
in concert with environmental variability in filter-
ing  species into the local communities (Baselga et 
al. 2015). 

We acknowledge that our pool communities were 
sampled over a limited time span, mostly during the 
summer season characterized by fast seasonal succes-
sive changes in the microalgal communities, which 
likely contributed to the taxonomic and functional 
diversity. Increasing UV radiation and temperature 
during the summer enhance benthic primary produc-
tivity and biomass accumulation through intensified 
photosynthetic activity in the microphytobenthos 
(Serôdio & Catarino 1999). Accounting for this sea-
sonality by extending the sampling period into earlier 
spring and later autumn might have resulted in more 
pronounced temporal differences across the studied 
communities, depending on the season and the cur-
rent biomass accumulation rate. We also note that 
biotic interactions were not considered in this study, 
yet herbivory and competition are known to structure 
rock pool communities (Jocque et al. 2010). Short-
lived diatoms also exhibit delayed responses to 
fluctuating water physicochemistry: thus, environ-
mental perturbations may alter local biota in a lagged 
manner that may not be observed through snapshot 
sampling (Buckley et al. 2021). Moreover, seasonality 
and excessively general or partly correlated func-
tional guilds (e.g. colonial and high profile) may have 
influenced TBIFunc (Villéger et al. 2008, Ricotta et al. 
2021, Zhang et al. 2021). 
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5.  CONCLUSIONS 

We applied TBI to study taxonomic and functional 
differentiation along with environmental variation 
within 9 rock pool communities sampled 12 times over 
a 5 mo period on a coastal rocky outcrop. We found sig-
nificant site-specific temporal turnover but no clear 
trend in overall temporal beta diversity.  TBITax was oc-
casionally high, always outweighing TBIFunc. While the 
indices were successfully ex plained by different envi-
ronmental factors in the re gression models, only TBITax 
was significantly related to TBIEnv. The pools with sig-
nificant TBIEnv did not, however, coincide with the 
pools experiencing significant TBITax or TBIFunc. Thus, 
we conclude that temporal changes in our pool com-
munities were probably driven by rapid environmental 
oscillations such as short-term microclimatic variations 
together with random stochastic processes, resulting in 
inconsistency to the observed patterns in temporal 
beta diversity. As most temporal community research 
still relies on short time series with few temporal repli-
cates, especially for microorganisms, future studies 
should preferably consider finer temporal scales and 
longer time series to understand the effects of rapid en-
vironmental alterations and stochastic processes across 
highly dynamic microbial communities (Dornelas et al. 
2013, Baselga et al. 2015, Buckley et al. 2021). 
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