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1.  INTRODUCTION 

Predators in ecosystems usually have the capability 
to control the population size of organisms at lower 
trophic levels (Belgrad et al. 2023), which plays an im-
portant role in maintaining the balance of material and 
energy transfer in the food chain (Ritchie et al. 2012, 
Atkinson et al. 2017). In marine ecosystems, since pri-
mary productivity is mainly achieved through the 
photosynthesis pathway of phytoplankton (Cloern et al. 
2014, Vallina et al. 2014), it often presents the character-

istics of resource homogeneity (Olden et al. 2004), which 
satisfy the resource-dependence population dynamics 
for most high-trophic marine species (Anderson et 
al. 2012, Aldasoro-Said & Ortiz-Lorano 2021). Yet, this 
population growth pattern is susceptible to food avail-
ability (McLean et al. 2016). Food availability is the 
mechanism of bottom-up community control, re lated 
to the richness of energy pathways (MacArthur 1955) 
and network topology (Jordán & Molnár 1999). 

In subtropical coral reef areas, higher biodiversity 
brings multiple food sources, increasing food avail-
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ability for predators (Skinner et al. 2021). Meanwhile, 
in areas of northern Europe close to the Baltic Sea, 
large numbers of herring aggregations will at tract 
predators such as Atlantic cod from the North Atlantic 
seeking to obtain plenty of food (Ducrotoy & Elliott 
2008, Dziaduch 2011). In addition, for individual or-
ganisms, the complex effects of long-term genetic evo-
lution and the environment jointly created dif -
ferentiation in food habits (Price et al. 2003). For 
example, if marine fish possess the carnitine palmi-
toyltransferase I metabolic enzyme in their mitochon-
dria, this may affect their ability to metabolize fatty 
acids, thereby indirectly impacting their preference 
for high-fat foods (Leaver et al. 2008, Jin et al. 2020). 
The formation of chiA, chit1, and other related genes 
in volved in the production of chitinases, can enhance 
the ability of fish to digest crustaceans more effectively 
(Chen et al. 2021, Holen et al. 2023). This is especially 
true for fish that specifically feed on crustaceans, 
which may exhibit higher chitinase enzyme activity in 
their digestive fluids (i.e. in the gut lumen), facilitating 
more efficient digestion of chitin-rich prey (Fines & 
Holt 2010, Abro et al. 2014). Therefore, food availability 
involves 3 levels: (1) the number of species that can be 
used as food resources (Heithaus & Dill 2002); (2) the 
biomass of the species (e.g. weight, protein content) 
(Bluhm & Gradinger 2008), which reflects the maximum 
population size that the predator can maintain; and, fi-
nally, (3) an understanding of the feeding habits. 

Many population dynamics models consider food 
availability as an input parameter (Charles et al. 2004), 
such as the EcoPath model (Haputhantri et al. 2008, 
Adebola & de Mutsert 2019), which mainly mentions 
just the first 2 aspects of food availability. According 
to previous research, species with a wide range of 
feeding habits can expand their population size even 
in environments where food resources are scarce 
(Sánchez-Hernández et al. 2011). We usually call them 
an omnivorous species (Šimek et al. 2019), and the 
presence of omnivorous species  has a deep impact on 
ecosystem stability (Wootton 2017). Related research 
reported that omnivorous species increased food web 
stability within a certain interval range, while when 
this interval range was exceeded, there was a neg-
ative impact on stability (Neutel et al. 2007, Kratina et 
al. 2012). The omnivory–stability debate is one of the 
most important research hotspots in ecology (Gellner 
& McCann 2012). Based on predictions about marine 
life, there is a high probability that more generalist 
species will appear in the ocean in the future (Wilson 
et al. 2008), driving the homogenization of marine 
food webs (Clavel et al. 2011). Although nobody can 
simply assess whether the homogenization process 

will be positive or negative, one can assume that the 
structural and systemic variations in the food web will 
pose unprecedented challenges to fishery resource 
utilization and ecosystem management for human 
beings in the future (Thompson et al. 2012, Mueter et 
al. 2021). 

High-trophic organisms not only provide food re-
sources for humans but also play a role as a top-down 
control in the food web. The fishery resources utilized 
by humans mostly derive from the predators in the 
marine food web (Maxwell et al. 2013), such as the 
 Japanese hairtail Trichiurus lepturus and large yellow 
croaker Larimichthys crocea commonly distributed 
in the eastern China Sea (Hu et al. 2022, Zhu et al. 
2023). Based on carbon and nitrogen stable isotopes 
measurement, it is clear that these species possess 
trophic levels exceeding 3 (the top predator is usually 
around 4) (Wang et al. 2023). In addition, bluefin tuna 
Thunnus maccoyii (an expensive food item), which 
lives in the North Atlantic, is a natural opportunistic 
predator with its hemoglobin-rich muscle system 
(Golet et al. 2015). Additional predators such as sharks 
and whales are also present. Food availability for these 
predators requires more attention from researchers. 
Although the feeding habits of a species have evolved 
through long-term natural selection and genetics, 
they can remain relatively stable within a certain time 
range, and the latest research reveals that there is a 
correlation between feeding habit variability and cli-
mate change (Nagelkerken et al. 2020). It is an adap-
tive strategy for metapopulations or functional groups 
within the food web to respond to disturbances. At pre-
sent, with the significant trend of ecosystem homo -
genization, there is still a lack of relevant research on 
the coping strategies of marine food webs. In a homo -
genized food web, structural simplification, resource 
centralization, and functional non-redundancy are 3 
important aspects (Xu et al. 2023). Actually, these 3 
 aspects  interact with one another directly or indirectly, 
but structural homogenization mainly focuses on the 
species node topological composition, while resource 
homogenization concentrates mainly on the problem 
of resource nodes. Considering the food availability of 
predators, more evidence is needed to reveal its in-
fluence on the functional homogenization processes. 
Furthermore, the status and keystoneness changes 
in predator nodes in food webs may in turn exert a 
driving forces effect on these functional homo geni -
zation processes (Bezerra et al. 2019). Therefore, it is 
important to explore the impact of food availability on 
the network properties and functional diversity of 
marine predators. However, related research is still 
in its initial stages. 
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In this research, we aim to discuss how network-
based food availability affects the keystoneness of 
predators and functional diversity of marine food webs. 
We selected one food web which we considered as the 
research object. From a network perspective, all pred-
ator nodes in the food web were identified and divided 
into 2 types. We have quantified the functional homo -
genization degree of the food web through functional 
diversity (interaction profiled diversity, IPD). In ad-
dition, we calculated 6 topological attribute indicators 
of the network and the keystone index of predator 
nodes. As the next step, we established certain rules 
for adding or deleting a link to each predator node (as 
a change in food availability) and recalculated the 
above indicators in turn when generating a new net-
work. By analogy, we analyzed the relationship be-
tween the indicator values generated by all networks 
and food availability. Correlation analysis and other 
methods were used to further an alyze the interaction 
between food availability and network topological 
properties, the keystoneness of predator nodes, and 
network functional homogeneity. This research will 
provide methodological guidance for revealing the in-
trinsic mechanism of the homogenization of marine 
food webs and will contribute a theoretical basis for 
the effective management of marine ecosystems. 

2.  MATERIALS AND METHODS 

2.1.  Case selection 

We collected the food web using a literature review 
(www.isiknowledge.com) and an Ecopath database 
(http://ecobase.ecopath.org/). We needed to filter 
out food webs from many data sets containing com-
plete background data (i.e. a weighted predator 
matrix, species trophic levels, climate and environ-
ment data of the sampling sites, and a list of species 
information). Therefore, in order to assure that the 
simulation effect was statistically significant and the 
computer load reduced, we implemented a quanti-
tative regulation of the number of nodes and links in 
the food web. We also filtered out marine food webs 
with the number of nodes in the range of 30 to 60 
and the number of links in the range of 150 to 250. A 
detailed description of this process is shown in 
the PRISMA 2020 flow diagram in Fig. 1 (see https://
libguides.derby.ac.uk/literature-reviews/prisma-lr). 
Finally, we picked a Norwegian sea food web as our 
case study (Bentley et al. 2017). The case study food 
web contains 34 nodes and 207 links. Most of the data 
comes from the International Council for the Explora-

tion of the Sea  which records collective catches and 
assessments dating back to 1950 (http://ices.dk/
marine-data). For the relevant information, please see 
Tables S1 & S2 and Fig. S1 in the Supplement at www.
int-res.com/articles/suppl/m747p001_supp.pdf. 

2.2.  Identifying predator nodes 

Based on the network perspective, to identify the 
predator nodes in a food web, we introduced the 
predator coefficient (Pre), reflecting the proportion of 
indegree and outdegree. The equation is as follows: 

                                                                            (1) 

where ki
in represents the indegree of node i and char-

acterizes the number of prey nodes that node i needs 
to prey. ki

out represents the outdegree of node i and 
characterizes the number of predator nodes that node 
i is preyed upon by predators. As a predator node, 
there must be at least one link entering into node i, so 
the ki

in is above 0. When Pre ∈ (0,1), the node i is con-
sidered to be a predator node (P). In addition, when 
Pre = 0, the node i is considered as a top predator (T). 
Different from using trophic levels (TL) for predator 
identification, the Pre approach places emphasis on 
the structural relationship of nodes in the network. 
Thus, it is possible that Pre can identify some nodes 
that are lower in the TL but lack the predatory behav-
ior of high TL species for some reason (such as toxi-
city, concealment, or poor living environment) and 
are identified as predators or even top predators, as 
shown in Fig. 2. 

2.3.  Food availability in the food web 

Based on the network perspective, the definition of 
food availability can rely on the concept of node 
degree in network science. A food web usually can 
be regarded as a directed network. When a predator 
node i shows a predator–prey relationship with a prey 
j, it is believed that there is a link directed from node j 
to node i. Then, the in-degree ki

in of predator node i is 
equal to 1. Therefore, we can define the food avail-
ability (Ava) of node i as the probability of the prey 
node being available for predator node i. When the 
food web is a weighted network, the node weight can 
be assigned as a standardized coefficient of the total 
number or biomass of prey species. When the food 
web is a weightless network, food availability reflects 
the feeding habits of predator nodes. It depends on 
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the actual state of the food web data we are using. 
Since the situation with weights will be more compli-
cated, including edge weights and node weights, we 
only discuss the food availability in an unweighted 
network here. We will cover the calculation of food 
availability in the weighted network in subsequent 
research. The Ava equation is as follows: 

                                                                            (2) 

where Avai represents the food availability of node i. 
When node i is identified as T, F(ki

in) refers to the fully 
connected in-degrees of node i excluding node i 
itself. The total number of prey (N) satisfies N = S – 1, 

where S represents the total number of nodes in the 
food web. When node i is identified as P, F(ki,i≠T

in) 
refers to the fully connected in-degrees of node i 
excluding node i itself and all top predator (T) nodes. 
The total number of prey (N) satisfies N = S – 1 – 
N(T ), where N(T ) represents the total number of top 
predator nodes. This approach makes it easy to 
understand the structural relationship of predator 
nodes, which facilitates data analysis and the man-
agement of complex networks. 

2.4.  Network attributes 

We calculated several indices of network structure, 
characterizing the network-level and node-level topo-
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logical properties of the network, functional diversity 
in the food web, and the keystoneness of predator 
nodes. 

2.4.1.  Topological properties 

We selected 6 topological indices, as follows: 
(1) Clustering coefficient (cc). The cc is a commonly 

used topological indicator in network analysis, which 
is used to evaluate the degree of aggregation of nodes 
in the network, that is, the density of connections 
between a node’s neighbor nodes (Saramäki et al. 
2007). In this paper, we use the global cc to character-
ize the overall clustering trend of the network. 

                                                                            (3) 

where ki represents the degree of node i in an undi-
rected graph, which represents relationships between 
different species in an ecosystem without indicating 
the direction of the interaction; Ei represents the total 
number of edges that exist between all neighbors of 
node i. 

(2) Network diameter (d). Assume that dij repre-
sents the distance between any 2 nodes i and j in a 
network g. There are usually multiple edges between 
the 2 nodes, and the length of each path is usually dif-
ferent. The dij refers to the distance of the shortest 
path between i and j. d is defined as the maximum 
value of dij in the entire network. 

                                                                            (4) 

A network with a small d indicates that the species 
interaction is close to each other and information or 

energy can spread through the net-
work faster. At the same time, it will be 
more sensitive to environmental varia-
tion (Digel et al. 2014). 

(3) Network edge density (den). Den 
can evaluate the proportion of the 
number of edges in the network rel-
ative to the maximum number of pos-
sible edges, which is the one of mea-
sures of network complexity. For a 
directed network, den can be calcu-
lated by the following equation: 

                                                (5) 

where L represents the total number of 
links in a food web. 
(4) Average path length (len). Len is an 

important concept that measures the average length 
of paths between nodes in a network. It is calculated 
by using the average of the shortest path lengths 
between all pairs of nodes in the graph. Theoretical 
ecologists believe that the len is intrinsically linked to 
the total system throughflow, which indirectly affects 
ecosystem stability (Finn 1976). 

                                                                            (6) 

(5) Connectivity (C). C is an important index in food 
web analysis, which reflects the intensity of interac-
tions between species in the food web. In some cases, 
C can serve as an indirect indicator of biodiversity in 
the ecosystem (Christianen et al. 2017). 

                                                                            (7) 

(6) Connection complexity index (SC), describing 
food web stability. The SC is a metric used to measure 
the complexity of connections within a network. In 
landscape ecology, SC can be used to quantify the 
interactions complexity between different species or 
habitats (Ings et al. 2009). 

                                                                            (8) 

2.4.2.  Functional diversity 

We have developed the IPD, which serves as a mea-
sure of functional diversity or redundancy in ecosys-
tems, capturing the variability in ecosystem traits. 
Essentially, IPD is an indicator grounded in network 
theory, focusing on the functional diversity derived 
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from both positive and negative impacts of species 
interactions up to n steps (i.e. Eij,n

+, Eij,n
–). To assess 

the distinctness of these species interactions, we uti-
lize the complementary Marczewski-Steinhaus index 
(Lin et al. 2022). This method involves averaging the 
dissimilarity across 2 interaction profiles, with a 
higher IPD value indicating greater functional diver-
sity within the food web. The specific formulas used in 
this approach are as follows: 

                                                                            (9) 

                                                                         
(10) 

                                                                         
(11)

 

                                                                         (12) 

where aij,n represents the n-step effect of species i on 
species j (in this research, n = 3). dissij is utilized to 
quantify the dissimilarity of interaction profiles for 
species i and j (where a third node, u, is connected to 
nodes i and j); a large dissij reflects high dissimilarity. 
According to previous research, when IPD ≤ 0.6, one 
can assume that the food web has developed a slight 
trend of functional homo genization. When IPD ≤ 
0.4, there is an intermediate trend of functional 
homogeneity. When IPD ≤ 0.2, it can be assumed that 
serious functional homogenization has occurred in 
the food web (Xu et al. 2023). 

2.4.3.  Keystoneness 

In the approach described by Jordán et al. (2006), 
the keystone index for a species within an eco-
logical network is computed by separately evaluat-
ing the bottom-up and top-down effects. This 
method acknowledges the distinct influences that a 
species can exert through its trophic interactions, 
either as a consumer (top-down effect) or as a re -
source (bottom-up effect) (Jordán et al. 1999). By 
distinguishing these 2 types of effects, the keystone 
index provides a more nuanced understanding of a 
species’ ecological role and its significance within 
the ecosystem. 

                                                                         (13) 

                                                                         (14) 

                                                                         (15) 

where n represents the number of predators consum-
ing species i; Prey(P ) is the number of prey of the 
predator P; Kbu(P ) is the bottom-up keystone index of 
node i on its predator P; m represents the number of 
prey eaten by species i; Predator(Com) is the number 
of predators of the prey Com; Ktd(Com) is the top-
down keystone index of the prey Com , Kbu(i) and 
Ktd(i) is the top-down keystone index of species i, 
respectively. 

In addition, the keystone index also includes a 
description of direct and indirect effects (Giaco-
muzzo & Jordán  2021). Here, we also calculated the 
direct keystone index (Kdir) and indirect keystone 
index (Kindir): 

                                                                         (16) 

                                                                         (17) 

                                                                         (18) 

                                                                         (19) 

where Kbu,dir(i) represents the bottom-up direct key-
stone index of species i; Ktd,dir(i) represents the top-
down direct keystone index of species i; Kbu,indir(i) 
represents the bottom-up indirect keystone index of 
species i; Ktd,dir(i) represents the top-down indirect 
keystone index of species i; Ktd,indir(i) represents the 
top-down indirect keystone index of species i. The 
calculation approach for Ktd,dir(i) and Ktd,indir(i) are 
similar to Kbu,dir(i) and Kbu,indir(i). 

2.5.  Food web simulation 

To proceed, we need to formulate guidelines and es-
tablish different scenarios to assess the effects of food 
accessibility alterations in real marine ecosystems on 
the network topological properties, the functional di-
versity, and the keystoneness of nodes. A detailed sim-
ulation approach is shown in the following steps: 

(1) In compliance with Eq. (1), search and identify 
all predator nodes in a food web g and mark the pred-
ator nodes as ‘T ’ or ‘P ’ types based on the Pre value. 

(2) In compliance with Section 2.4, calculate the 6 
topological mathematics, the IPD, and keystone index 
of the initial network g (Eqs. 3–12). 
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(3) Randomly designate a predator node i (includ-
ing T and P node), add or delete one predator link (in-
degree) of node i each time, and recalculate the 6 
topological attributes, the IPD, and keystone index 
for the newly formed network g1. 

(4) Add or delete a predator link of node i continu-
ously, and calculate 6 topological attributes, the IPD, 
and keystone index of network g2, g3, ..., gm. Loop in 
sequence until the link to node i cannot be increased 
or decreased and the loop will be stopped. 

(5) Calculate the food availability (Ava) of each 
predator node in the m networks generated after loop-
ing m times (Eq. 2). 

We need to state that, in the original data, links 
have weights. Due to the existence of link weights, 
the impact on food availability is direct and signifi-
cant. Although we have also tried many methods, such 
as the arithmetic mean of weights, mode, median, or 
interpolation, none of them produced the ap propriate 
results. It should be noted that since we cannot effec-
tively assign an appropriate weight to the added link, 
we consider the link to be unweighted. This is also the 
reason why we used unweighted indicators in Section 
2.4. Additionally, the rules are established for loop 
termination. When deleting a link, we need to ensure 
that the predator node has at least one predator rela-
tionship. When adding a link, the T node can estab-
lish a link with any other node except itself. Further-
more, the P node can establish a link with any other 
node except itself and T nodes. 

3.  RESULTS 

As shown in Fig. 3, we can identify network-based 
predator nodes. Among 34 species nodes in the Nor-
wegian Sea food web (Fig. 3a, see also Fig. S1), we 
have identified 14 species of predators, 5 of which are 
top predators (T ) and 9 of which are common pred-
ators (P ). The details of these predator nodes are 
shown in Table 1. Most of the trophic levels of pred-
ator nodes identified by Pre are higher than 3, 
accounting for 85.71% of the total. However, about 
14.29% nodes have trophic levels lower than 3 and are 
still identified as predator nodes. This is similar to the 
situation discussed previously. As can be seen from 
Fig. 3b, the T node must be a node with a higher TL 
(>4). The P nodes are included in more TLs, but most 
of them are nodes with higher TLs (median TL = 4) 

As shown in Fig. 4, the variations in 6 network topo-
logical properties are illustrated concerning the food 
availability of predator nodes. Notably, the trends in 
C and the SC are consistent with network edge den-

sity (den). Actually, these are redundant metrics that 
express the same information. Therefore, Fig. 4 only 
shows 4 network topology indicators. Further details 
of SC and C can be found in Fig. S2 in the Supple-
ment. In Fig.  4a, the clustering coefficient (cc) 
showed a significant positive correlation with food 
availability (Ava). As the Ava of predator nodes 
increases, the clustering coefficient of the network 
increases significantly. Similar trends exist for both T 
nodes and P nodes. Through regression analysis, it is 
clarified that the slope of the fitted line for T node and 
Ava is approximately 0.0582, and the intercept is 
about 0.433 (p = 0.025, R2 = 0.798). The slope of the 
fitted line for P node and Ava is approximately 0.0576, 
and the intercept is about 0.426 (p = 0.012, R2 = 
0.729). Compared to P node, changes in food avail-
ability at T node are more sensitive to cc. As shown in 
Fig. 4b, the diameter (d) remains stable with varia-
tions in Ava. Yet, occasional fluctuations occur pri-
marily due to the random addition or removal of links 
that will generate special structure (such as the crea-
tion or loss of linkages with hub nodes). These events 
lead to variability in the network path. It is worth not-
ing that nodes with lower TLs typically exhibit nar-
rower variations in network diameter. However, this 
pattern does not satisfy the nodes with higher TLs. 
The average path length (len), does not follow a sim-
ple linear relationship either (Fig. 4c). For nodes with 
lower TLs, an increase in Ava leads to a slow decrease 
in len. Conversely, among most predator nodes, alter-
ations in Ava induce a mutation-like shift in len. Once 
this threshold is surpassed, network length experi-
ences a sudden in crease, followed by a gradual de -
cline as Ava continues to rise. For the T node, the var-
iability range occurs roughly between 0.3 and 0.6. As 
for the P node, the variability range spans approx-
imately from 0.2 to 0.6. In Fig. 4d, the den showed a 
significant linear growth relationship with Ava. The 
results of linear regression show that the slope of the 
fitted line for T node and Ava is approximately 0.0294, 
and the intercept is about 0.165 (p < 0.001, R2 = 
0.983). The slope of the fitted line for P node and Ava 
is approximately 0.0296, and the intercept is about 
0.167 (p = 0.002, R2 = 0.881). Interestingly, compared 
to high TL nodes, changes in Ava for low TL nodes will 
lead to a higher den. Similar phenomena also occur in 
C and SC (see Fig. S2). 

As shown in Fig. 5a, the IPD showed a significant 
negative correlation with Ava. It is indicated that as 
the food availability of predator nodes increases, the 
functional diversity of the network decreases sig -
nificantly. Similar trends exist for both T and P nodes. 
By regression analysis, the slope of the fitted line for 

7
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Fig. 3. Statistical plot of identified predator types versus trophic levels (TLs) in the Norwegian Sea food web. (a) TLs of different 
predator nodes; (b) relationship between node type and TL. P: predator nodes apart from top predator; T: top predator nodes. 
Horizontal line: median; upper and lower edges of the box: first quartile and third quartile, respectively. Whiskers: extended  

range of data; dots: jitter points of the data
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T  node and Ava is approximately –0.0492, and the 
intercept is about 0.669 (p < 0.001, R2 = 0.939). The 
slope of the fitted line for P node and Ava is approx-
imately –0.0463, and the intercept is about 0.659 (p = 
0.011, R2 = 0.792). Furthermore, compared to high 
TL nodes, changes in Ava for low TL nodes will lead 
to lower IPD. In Fig. 5b, there are no differences in the 
impact of the 2 predator nodes on IPD. Specifically, 
the P node exhibits lower IPD values (median = 
0.6406) with a relatively narrow range of variation 
(min. = 0.607, max. = 0.663). In contrast, the T node 
demonstrates relatively higher IPD values (median = 
0.6434) with a broader range of variation (min. = 0.615, 
max. = 0.68). In summary, for top predators, reduced 
Ava could be more conducive to the restoration of 
network functional diversity. For lower predators, 
especially for lower predators with lower TLs, the 
increase in Ava will accelerate the reduction of net-
work functional diversity, which may lead to the prob-
lem of functional homogenization in the marine 
food web. 

In addition, we also calculated the keystone values 
of the predator nodes in the m food webs obtained by 
adding or deleting links each time and counted the 
changes in different keystone indicators at the pred-
ator nodes (K, Kbu, Ktd, Kdir, and Kindir). We proceeded 
by normalizing these values to a normalized value 
between 0 and 1 and drew them into a heat map (Fig. 6). 
As shown in Fig. 6, variations in K, Kbu, and Kindir 
exhibit no significant impact on the node’s keystone-
ness, except when the food availability for the top 
predator is high. For Ktd, the food availability changes 
at the T nodes can have a significant impact. When 
Ava is greater than about 0.4, it has a greater impact 
on the top-down keystone index for the T node, and 
the normalized values of Ktd are higher than 0.8. In 
contrast, the impact on the P node is small. When Ava 
is between 0.26 and 0.38, Ktd increases to a maximum 
of approximately 0.6. This reflects that when food 
availability improves, top predators will have a higher 
top-down control effect on prey, and this control 
effect of the P node is not significant. In addition, as 
food availability increases, the Kdir of both predator 
nodes gradually rises. This indicates that each ad -
ditional link to a node exerts an influence on the prey 
nodes directly connected to it. In essence, an aug-
mentation in food availability will heighten the key-
stoneness of predator nodes within the network. 
Especially for top predators, this amplifies their top-
down control effects on the food web. 

Finally, we used the Spearman correlation coeffi-
cient to calculate the correlation between the 14 para -
meters appearing in this research and visualized them 

in the correlation matrix by using cluster analysis, as 
shown in Fig. 7. The cluster analysis divides these 
parameters into 5 categories. Among them, the para -
meters of C (corr = 0.951), SC (corr = 0.951), den 
(corr =  0.951), Kdir (corr= 0.952) and cc (cor = 0.866) 
ex hibit a statistically significant positive correlation 
with Ava (p  < 0.001). The parameters len (corr = 
0.576), d (corr = 0.431), and Ktd (corr = 0.559) show 
a moderate positive correlation with Ava (p = 0.015). 
Conversely, K (corr = 0.277), Kbu (corr = 0.272), and 
Kindir (corr = 0.316) display a weaker positive correla-
tion with Ava (p = 0.025). No statistically significant 
correlation was observed for TL  (p = 0.08). Finally, 
the parameters of IPD (corr = –0.885) exhibit a statis-
tically significant negative correlation with Ava (p = 
0.039). On the other hand, the parameters of C (corr = 
–0.198), SC (corr = –0.198), and den (corr = –0.198) 
exhibit a statistically weak negative correlation with 
TL (p = 0.012). The parameters of d (corr = 0.397), len 
(corr = 0.433), and Ktd (corr = 0.503) exhibit a statisti-
cally moderate positive correlation with TL (p  = 
0.031). Interestingly, the parameters of IPD (corr  = 
0.237) exhibit a weak positive correlation with TL (p = 
0.011). This seems to reveal a critical role of low 
trophic level predators in affecting the functional 
homogenization process of the marine food web. 

4.  DISCUSSION 

In this paper, we used the Norwegian Sea food web 
as a case study to study the intrinsic relationship 
between food availability (Ava) and 6 network topo-
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Node                     Species                       Trophic        Predator 
ID                                                                   level             types 
 
1                       Minke whales                    4341                  T 
2                 Other baleen whales             4242                  T 
3                      Toothed whales                  4688                  T 
4                                Seals                            4528                  T 
5                             Seabirds                         4255                  T 
6                            Cod (4+)                        4510                  P 
7                           Cod (1–3)                       4389                  P 
8                           Haddock1                       3741                  P 
10                             Saithe                           4455                  P 
11                 Other benthic fish                3835                  P 
14                         Mackerel                        4054                  P 
20                  Large pelagic fish                4040                  P 
25               Prawns and shrimps              2783                  P 
29          Benthic micro-organisms         2111                  P

Table. 1. The predator nodes in the selected food web case 
study (Norwegian Sea). T : top predator node; P : predator  

node; numbers in parentheses show cod age classes
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Fig. 4. Variation in different network topology indices with food availability. Figure facets represent different types of pred-
ators; scatter colors represent the trophic levels. (a) Clustering coefficient (cc); (b) diameter; (c) average path length; (d) net- 

work edge density. P: predator nodes apart from top predator; T: top predator nodes
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Fig. 4 (continued)



Mar Ecol Prog Ser 747: 1–18, 2024

logical properties, the keystoneness of predator node, 
and IPD. We established certain rules by adding or 
removing links to each predator node to simulate 

changes in food availability and to sequentially calcu-
late relevant indices to generate new networks. The 
results revealed interesting patterns in response to 

12

Fig. 5. (a) Variation in the interaction profiled diversity (IPD) index with food availability. Figure facets represent different 
types of predators; scatter colors represent the trophic levels. (b) IPD distribution under different predator node types. P: predator  

nodes apart from top predator; T: top predator nodes. Error bar indicates the extended range of data 
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changes in food availability as shown by an analysis of 
network topological properties. The clustering coeffi-
cient (cc) has a positive correlation with Ava, suggest-
ing that as the availability of food increases, the net-
work tends to have more interconnected clusters. 
This indicates that predators become more connected 
to each prey when there is higher abundance of food. 

Moreover, the average path length (len) sug-
gested that the existence of variability values, as 
shown in Fig. 4c, may be related to the threshold at 
which omnivory affects food web stability. According 
to previous research, the omnivory–stability theory 
suggests that when a species has strong omnivory, it 
will destroy the food web stability (Kratina et al. 2012, 
Wootton 2017). In freshwater ecosystems, species 
which we labeled as invasive species or alien spe-
cies that can colonize new environments in large 

numbers mostly have a wide range of feeding habits 
(Mooney & Cleland 2001, Gkenas et al. 2012). Rel-
evant studies indicate that an omnivory sub-web could 
reconstruct the network structure. In marine ecosys-
tems, species with higher omnivory and stronger 
migration abilities (i.e. the generalist species) can 
occupy relatively high ecological niches and contrib-
ute to the food web rewiring (Bartley et al. 2019). Cou-
pled with the pressure from climate change, ecosys-
tems will also undergo adaptive variability (Berec et 
al. 2010). However, weak omnivores can enhance net-
work stability to a certain extent. Strong omnivores 
are often able to exploit many different food resources, 
which gives them a broader range of nutritional 
strategies in the food web. However, when the degree 
of omnivory exceeds a certain threshold, it will lead to 
network instability. This may be due to their en -

13

Fig. 6. Heat map showing the variation of the keystone index and its components as a function of food availability. (a) K: total 
keystone index; (b) Kbu: bottom-up keystone index; (c) Ktd: top-down keystone index; (d) Kdir: direct keystone index; (e) Kindir:  

indirect keystone index
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hanced ability to control multiple species (reflected 
in the positive correlation of cc, C, SC and den). Once 
these predator nodes with strong control effects are 
affected by specific disturbances, it will affect the 
whole network. In contrast, weakly omnivorous spe-
cies may positively impact the stability of the food 
web (McLeod & Leroux 2021). The definition interval 
of weak omnivory varies for different nodes, but it is 
generally between 0.3 and 0.6. Additionally, the weak 
positive correlation between the link length (len) and 
the TL of the predator node implies that predators at 
higher trophic levels or top predators are crucial for 
maintaining the stability of the food web. On the 
other hand, indices such as den, C, and SC exhibit a 
significant linear growth relationship with average 

vulnerability (Ava). This indicates that these metrics 
are influenced by a broad range of food resources. 
However, the weak positive correlation between these 
metrics and TL suggests that predators at lower TLs 
also play a vital role in shaping the complexity of the 
network’s topological structure. 

Additionally, the analysis of functional diversity, 
measured by IPD, revealed a negative correlation 
with food availability. When new nodes (representing 
new food resources) are added to the network, the 
interaction profiles of species preying on these nodes 
will become more similar if multiple species exploit 
the same new resources. This can decrease the dis-
similarity measure, thus reducing the overall IPD. 
Conversely, if only one species preys on a new re -

Fig. 7. Correlation matrix between various indices with single-linkage 
clustering. IPD: interaction profile diversity; Kindir: indirect keystone 
index; K: total keystone index; Kbu: bottom-up keystone index; TL: 
trophic levels; Ktd: top-down keystone index; cc: clustering coefficient; 
SC: connection complexity index; den: network edge density; C: con-
nectivity; Kdir: direct keystone index; Ava: food availability; d: network  

diameter; len: average path length
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source, the interaction profile dissimilarity might 
increase. Still, this scenario is less common in highly 
interconnected networks where new resources are 
typically utilized by multiple species (Williams et al. 
2002). Our findings suggest that high food availability 
may lead to functional homogenization, particularly 
in lower predators with lower TLs. Because more spe-
cies share the same food resources, the diversity of 
unique interactions is reduced. This homogenization 
is particularly evident in lower TLs where resource 
overlap is more frequent. We expect more food avail-
ability will increase functional diversity by provid-
ing more diverse resources. However, in the context 
of our study, the observed trend toward functional 
homogenization with increased food availability can 
be attributed to the specific structure and dynamics of 
the trophic network. This may be related to the speci-
ficity of the Norwegian Sea food web. Still, it can in 
part reflect the real structural relationship in marine 
empirical food webs. 

As food resources increase, species at lower TLs 
exploit similar resources due to overlapping niches. 
This overlap reduces the differentiation in their inter-
action profiles, leading to a lower IPD. While functional 
redundancy (multiple species performing similar 
roles) enhances network resilience to perturbations, it 
also contributes to functional homogenization as spe-
cies interactions become more uniform (Schleuning 
et al. 2015). This has implications for ecosystem sta-
bility, as a decrease in functional diversity may im -
pact the ability of the food web to respond to disturb-
ances (de Bello et al. 2021). In fact, previous research 
results have hinted at this problem (Rooney & Mc -
Cann 2012). Many generalist species in the ocean are 
not the top predators (usually carnivores feeding only 
on a few large species) in a food web, but they are 
highly adaptable to environmental changes. The wide 
range of feeding habits creates high food availability 
and may rewire the food web (Bartley et al. 2019). 
According to the analysis of our modelling results, 
increased food availability for top predators can only 
result in limited enhancements in network complex-
ity, with less plasticity in network structure and func-
tion than for lower TL predators. 

Finally, the findings about the keystone index re -
vealed that food availability had an impact on the top-
down keystone index (referred to as Ktd) of predators 
(T nodes), suggesting that more food available for top 
predators had a stronger top-down effect on the food 
web. This interplay of bottom-up and top-down ef -
fects (Hunter & Price 1992) can be especially inter-
esting in the case of wasp-waist ecosystems, where 
organisms at intermediate TLs exert control in both 

directions (Cury et al. 2000). This highlights the role 
that top predators play in shaping and influencing the 
structure and dynamics of marine food webs. Further-
more, the directed keystone index (Kdir) demon-
strated that increased food availability amplified the 
importance of predator nodes. This indicates that the 
alterations in Ava can affect how predator nodes con-
trol their prey, which could potentially influence the 
stability and dynamics of the entire food web. 

To validate our findings, we conducted a simulation 
and analysis of 5 marine food webs from various re-
gions. While there were variations in the results due to 
food web structures, marine ecosystem types, climate 
characteristics and other factors, we still ob served pat-
terns. For example, the biodiversity of the Norwegian 
Sea food web is quite limited compared with warmer 
regions, which might lead to differences in homogeni-
zation mechanisms. More diverse food webs tend to 
have weaker interactions and greater modularity than 
simpler communities and are more stable (D’Alelio et 
al. 2019). In addition, some food webs showed non-
significant trends. But this does not mean that the 
key trends are irrelevant; they certainly have limita-
tions that should be addressed and explored. 

In this research, we used just one specific case, but 
we can explore possible differences with other food 
webs in order to enrich future studies. We expect 
similar results in more diverse natural systems. For 
instance, similar food webs exist in warm-temperate 
and tropical regions, which are more biodiverse. In 
shallower coastal areas with higher food availability 
and trophic groups (Angel & Ojeda 2001) or in hard-
bottom reefs (Harborne 2013) (which are known to be 
nursery areas, where juveniles are usually omni-
vores),  it is important to examine whether they fit the 
omnivory–stability hypothesis. Furthermore, future 
studies should consider incorporating weight-related 
factors such as biomass data from monitoring to 
broaden our understanding. There is a need for the 
development of modeling methods that account for 
food availability in interconnected networks. The fac-
tors influencing the homogeneity of marine food webs 
are complex and encompass climate conditions, 
oceanic physical characteristics, chemical processes 
within the oceans, biological interactions, and more. 
Thus, while taking a network-based approach is valu-
able in exploring homogeneity within food webs, it is 
only one aspect. Future research should encompass 
additional fields to gain further insights. While it may 
not be possible to draw conclusions about the 
changes occurring in real-world marine food webs 
from this study alone, it does stimulate discussions 
regarding the underlying mechanisms driving func-
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tional homogenization within these ecosystems. We 
anticipate that this study will serve as a guide for 
unraveling the mechanisms behind homogenization 
in marine food webs and provide a theoretical founda-
tion for effective ecosystem management. 

5.  CONCLUSIONS 

In this research, we discussed that network-based 
food availability affects the keystoneness of predators 
and the functional diversity of marine food webs. 
There were some conclusions drawn as follows: (1) 
The parameters of C, SC, den, and cc exhibit a signifi-
cant positive correlation with Ava, and a weak neg-
ative correlation with TL. It was shown that increased 
food availability can strengthen the topological com-
plexity in the food web. Yet, top predators have less 
plasticity in network structure than lower TL pred-
ators. (2) The existence of variability values in the 
average path length (len), may be related to the thres-
hold at which omnivory affects food web stability. 
Weakly omnivorous species may have a positive 
impact on the stability of the food web. The definition 
interval of weak omnivory differs for different nodes, 
but usually it is between 0.3 and 0.6. In addition, the 
weak positive correlation between len and the TL of 
the predator node seemed to imply that high TLs or 
top predators are important for maintaining the sta-
bility of the food web. (3) IPD exhibited a significant 
negative correlation with Ava (corr = –0.885) and a 
weak positive correlation with TL (corr = 0.237). This 
suggests that high Ava may lead to functional homo -
genization, particularly in lower predators with lower 
TLs. For top predators, reduced Ava is more condu-
cive to the restoration of network functional diversity. 
(4) Both Kdir and Ktd exhibited a positive correlation 
with Ava, and a weak positive correlation with TL 
(corr = 0.237). This indicates that increasing Ava will 
heighten the keystoneness of predator nodes within 
the network, especially for top predators, amplifying 
their top-down control effects on the food web. It 
highlights the role of top predators in shaping and 
influencing the structure and dynamics of marine 
food webs. This research will provide methodological 
guidance for revealing the intrinsic mechanism of the 
homogenization of marine food webs and contribute a 
theoretical basis for the effective management of mar-
ine ecosystems. 
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