
MARINE ECOLOGY PROGRESS SERIES 
Mar Ecol Prog Ser

Vol. 748: 17–31, 2024 
https://doi.org/10.3354/meps14715 Published November 7

1.  INTRODUCTION 

Kelp forests are one of the most productive ecosys-
tems on Earth (Mann 1973). Their high productivity 
provides abundant food for species that graze 
directly on the anchored kelps, filter-feed on sus-
pended kelp-associated particulate organic material, 
or prey on kelp-associated organisms (Norderhaug 
et al. 2005, Christie et al. 2009, O’Brien & Scheibling 

2016). Large amounts of detached drifting kelp are 
also transported to adjacent or distant habitats, 
where they become a primary food source. Their de -
composition by microorganisms establishes diverse 
detritivores and consumers, which significantly in -
creases secondary production (Bustamante et al. 
1995, Krumhansl & Scheibling 2012). Kelp forests 
provide complex biogenic habitats (Christie et al. 
2009, Thomsen et al. 2010, Teagle et al. 2017), which 
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impact the physical conditions of their environment 
(Eckman et al. 1989, Wernberg et al. 2005, Krause-
Jensen et al. 2016). They provide ecosystem goods 
and services that are of increasing importance to 
human society (Vásquez et al. 2014, Bennett et al. 
2016). Kelp forests have also emerged as a promising 
solution to combat ocean warming through blue car-
bon strategies. Several studies have demonstrated 
their potential (including those of Krause-Jensen & 
Duarte 2016, Duarte et al. 2017, Krause-Jensen et al. 
2018, Froehlich et al. 2019, Filbee-Dexter & Wern-
berg 2020). However, a recent global analysis found 
that 38% of the world’s kelp forests have declined 
over the past 5 decades (Krumhansl et al. 2016). 
Along temperate and subarctic coastlines, phase 
shifts from kelp forests to barrens have resulted from 
sea urchin overgrazing (North & Pearse 1970, Chap-
man 1981, Andrew & Underwood 1993, Johnson et 
al. 2005, 2011, Ling 2008). Physiological stress 
caused by the increase of water temperature and/or 
nutrient-poor conditions resulting from large-scale 
oceanographic changes, ocean warming, and marine 
heatwaves has also led to phase shifts in warm tem-
perate coastlines (Harrold & Reed 1985, Steneck et 
al. 2002, Pehlke & Bartsch 2008, Díez et al. 2012, Fil-
bee-Dexter & Scheibling 2014, Ling et al. 2015, 
Wernberg et al. 2016, Rogers-Bennett & Catton 
2019). Intensive herbivory of native or new-arrival 
fishes has been identified as a contributing factor to 
these shifts (Vergés et al. 2014a,b, 2016). 

In Japan, Eisenia bicyclis is found in the Pacific 
Ocean from northern to central Honshu and eastern 
Shikoku to the Seto Inland Sea as well as in the Sea of 
Japan in southern Honshu. This species creates for-
ests on rocky reefs between the intertidal fringe and 
the upper subtidal zone (Kamiya 2012). These forests 
are prolific primary producers, exhibiting high pro-
ductivity at a rate of 20 kg m–2 yr–1 (Yoshida 1970). 
Feeding on E. bicyclis enhances the somatic and/or 
go na dal growth of the sea urchin Mesocentrotus 
nudus (Sano et al. 2001, Agatsuma et al. 2005) and 
growth of the abalone Haliotis discus hannai (Uki et 
al. 1986) in the subtidal reefs of the Pacific off Miyagi 
and Fukushima Prefectures of Tohoku (northeastern 
Honshu). These enhancements result in an increase 
in the fishery production of these animals. 

The genus Eisenia and the closely related genus 
Ecklonia (Rothman et al. 2015, Kawai et al. 2020) con-
sist of 7 and 9 species, respectively (Guiry & Guiry 
2023). Among them, Ecklonia radiata is distributed 
around the southern half of Australia, from southern 
Queensland to Western Australia (Wernberg et al. 
2019). It has recently experienced a significant de -

cline due to a marine heatwave (Smale & Wernberg 
2013, Wernberg et al. 2016) and the invasion of tropi-
cal herbivorous fishes (Vergés et al. 2016, Zarco-
Perello et al. 2017). The disappearance of Ecklonia 
cava, E. kurome, E. radicosa, and Eisenia bicyclis in 
southern and western Japan has been attributed to 
ocean warming and/or an increase in the size of the 
herbivorous fish population and their grazing effects 
(Serisawa et al. 2004, Tanaka et al. 2012, Kiyomoto et 
al. 2013, 2021, Terada et al. 2016, 2021, Kumagai et al. 
2018). However, little is currently known about the 
destruction of Eisenia and Ecklonia kelps caused by 
overgrazing from sea urchins, except for E. radiata 
(Ling 2008, Ling et al. 2009, Marzloff et al. 2013, Krie-
gisch et al. 2016). 

The population dynamics of E. bicyclis have been 
studied extensively over 4 decades off Tomarihama 
(38°21’ N, 141°32’ E) along the Oshika Peninsula in 
Miyagi Prefecture. The abundance of juvenile kelp 
varies annually, increasing from February to July 
when water temperatures are low (Taniguchi et al. 
1986, 1987, Taniguchi & Kito 1988). This coincides 
with the first intrusion of the Oyashio Current, which 
brings low water temperatures and high nutrient con-
centrations into the coastal onshore waters (Mizuno 
1984, Okuda 1986). Nutrient-rich conditions improve 
the growth of the gametophytes of Laminariales and 
thereby enhance successful reproduction (Hoffmann 
et al. 1984, Ladah & Zertuche-González 2007, Carney 
& Edwards 2010). Furthermore, the expansion of 
adult forests the following year is linked to juveniles 
becoming established on deeper sea floors across the 
lower fringe (Taniguchi et al. 1987). At present, the 
surface water temperatures have increased (Japan 
Metrological Agency 2023a), and the Oyashio Cur-
rent has weakened in the Pacific Ocean off Tohoku 
(Mensah & Ohshima 2021, Miyama et al. 2021). The 
effects of these physical oceanographic changes on 
the recruitment of kelp and the abundance of kelp 
juveniles and adults are unknown. 

In a study of an E. bicyclis forest growing along 2 
prominent hidden reefs facing the southern shore of 
Nojima Island (38°40’ N, 141°30’ E) in Shizugawa 
Bay, Miyagi Prefecture, widespread damage to this 
forest due to overgrazing by the sea urchin M. nudus 
has been recorded since 2011 due to high juvenile 
recruitment and subsequent population explosion  
(Agatsuma et al. 2018). Consequently, kelp holdfasts 
re mained only until May 2015, leading to a phase 
shift from a kelp forest to a barren area (Agatsuma et 
al. 2018, 2019, Y. Agatsuma pers. obs.). 

Concerning such shifts between alternative stable 
states (Connell & Sousa 1983, Knowlton 1992), one of 
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the most frequently observed phase shifts in shallow 
subtidal temperate reefs is the transition from kelp 
forests to barrens dominated by crustose coralline 
algae (CCA; Rhodophyta: Corallinophycidae). This 
shift is a result of sea urchin overgrazing (Steneck et 
al. 2002). To restore kelp forests, sea urchin popula-
tions must be reduced to levels significantly below the 
threshold at which overgrazing occurs. This is due to 
the hysteresis effect (Ling et al. 2009, 2015, Filbee-
Dexter & Scheibling 2014, Steneck & Johnson 2014) 
and a discontinuous phase shift (Scheffer et al. 2001, 
Scheffer & Carpenter 2003). However, the exact thres-
hold density and biomass of M. nudus required to 
trigger the destruction of an E. bicyclis forest is cur-
rently unknown. Muraoka (2008) reported that inten-
sive grazing by dense populations of M. nudus near 
the lower fringe of E. bicyclis forest hindered the 
growth of juvenile sporophytes off Tomarihama. How -
ever, the density of sea urchins required to en able the 
successful recruitment of kelp juveniles has yet to be 
determined. Several studies have demonstrated that 
kelp forests can be restored by removing sea urchins 
(Chapman 1981, Johnson & Mann 1988, Williams et 
al. 2021). On the Japan Sea coast of southwestern 
Hokka ido, where barren areas have persisted for 
~40 yr, the removal of dense populations of M. nudus 
resulted in the growth of a Sargassum confusum forest 
on a previously barren site (Agatsuma et al. 1997). Off 
the coast of Rishiri Island in the Sea of Japan, the re-
moval of sea urchins M. nudus and Strongylocentrotus 
intermedius resulted in a climax community of Sac-
charina japonica var. ochotensis forest (Agatsuma 
1999). However, the possible effects on reforestation 
of E. bicyclis by removing M. nudus are untested. 

The present study aims to (1) estimate the threshold 
density and biomass of M. nudus required to trigger 
the phase shift from E. bicyclis forest to a barren, (2) 
clarify the recovery process to adult kelp forest in 
relation to sea urchin abundance by continuously 
removing the sea urchins, and (3) estimate the sea 
urchin abundance required for successful recruit-
ment of kelp juveniles and indicate the key season for 
successful reversion to E. bicyclis forest. 

2.  MATERIALS AND METHODS 

2.1.  Study area and experimental design 

Along the southern shore of Nojima Island in Shizu-
gawa Bay, Miyagi Prefecture, 3 permanent experi-
mental transects were selected: an area with boulders 
on a flat reef (E1; 20 m long and 2 m wide) and 2 promi-

nent hidden reefs (E2 and E3; 15 m long and 2 m wide) 
covered with CCA (Fig. 1). Transects E2 and E3 are in 
the same area where the process of degradation of an 
Eisenia bicyclis forest due to grazing by Mesocentrotus 
nudus had been observed (Agatsuma et al. 2019). 

The 3 experimental transects E1, E2, and E3 were 
marked using a 50 m fiberglass line with a scale 
(Quick Winder YSL3-50, TJM DESIGN) placed in the 
center of the transects on 30 July, 25 June, and 30 
July, respectively, in 2015. U-shaped stainless-steel 
markers were embedded and anchored to the seafloor 
using an epoxy adhesive at 5 m intervals along the 
line, where water depth was measured using a dive 
computer (IQ1204 DC Solar LINK, TUSA). These 
water depths were calculated at the level of the shallo-
west water according to the tide table at Ofunato, 
Iwate Prefecture (39°01’ N, 141°45’ E) near Shizugawa 
Bay (Japan Meteorological Agency 2023b). Three 
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Fig. 1. Shizugawa Bay, showing experimental (E1, E2, and 
E3) and control (C1, C2, and C3) transects. Dashed line: area 
where sea urchins were removed. Open circles: locations of  

the 2 data loggers
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control transects (C1, 5 m long and 2 m wide; C2 and 
C3, 10 m long and 2 m wide) were deployed on flat 
reefs with CCA-covered boulders adjacent to the ex-
perimental transects, oriented in a northwesterly di-
rection (Fig. 1). Water depths were measured on 4 
September 2015, using the same methods as for the 
experimental transects. The transect installations and 
water depth measurements were performed by 
SCUBA diving. 

The water depths of E1, E2, and E3 were 0.8–3.1, 
1.7–3.2, and 0.5–2.2 m, respectively; and those of 
C1, C2, and C3 were 0.5–2.9, 0.4–3.1, and 1.3–
3.5 m, re spectively, indicating slightly steeper slopes 
compared to the experimental transects (Fig. S1 in 
the Supplement at www.int-res.com/articles/suppl/
m748p017_supp.pdf). 

2.2.  Sea urchin and kelp abundance before sea 
urchin removal 

Concurrently with measuring water depths of the 
experimental transects, the density of individuals 
(ind. m–2) of M. nudus and E. bicyclis was surveyed 
using a 1 × 1 m quadrat. The survey of sea urchin den-
sity extended from 15–30 m in E2 and 15–20 m in E3. 
This was because density was observed to increase at 
deeper sites. To confirm the density of kelp according 
to holdfast only, the kelp surveys at E2 and E3 were 
extended to 20 and 30 m, respectively. The quadrat 
was positioned to the right and left of the line set 
along the U-shaped markers from the start and rolled 
in consecutive steps down the transect. The number 
of individuals of M. nudus and E. bicyclis was counted 
per quadrat. 

According to Yoshida (1970), E. bicyclis sporophytes 
undergo distinct developmental stages. After recruit-
ment, they have only one central blade in the first-
stage juvenile (FSJ), followed by the formation of sev-
eral lateral blades in the second-stage juvenile (SSJ). 
Agatsuma et al. (2019) classified thallus herbivore 
damage to adult kelps into 4 different types, with or 
without sea urchin grazing marks: entire (undamaged) 
thallus; thallus without fronds (branches, stipe, and 
holdfast intact); thallus without fronds and branches 
(stipe and holdfast intact); and holdfast only without 
fronds, branches, and stipe. The number of individuals 
per quadrat were recorded on aqua-notes. A total of 
140 quadrats was surveyed for data on both sea urchin 
density and kelp density, in addition to the 0–20 m 
range surveyed in E1. A total of 207 sea urchins were 
collected from the quadrats positioned to the right of 
the center of each transect at 5 m intervals from 0–

20 m on E1 and E3, and up to 30 m on E2 (n = 17 quad-
rats). The test diameters (TD) of the sea urchins were 
measured by using a vernier caliper (0.1 mm accuracy) 
aboard a research fishing vessel. 

The threshold density of sea urchins required to 
trigger the phase shift from E. bicyclis forest to 
barren was calculated by averaging the density of 
sea ur chins in the 101 quadrats positioned below the 
lower fringe of the forest of kelp, except for stipes 
and branches only, and holdfasts only. The threshold 
biomass of sea urchins was calculated using an 
equation developed by Fuji (1967) which correlates 
their biomass and TD with body weight (BW). Fuji 
(1967) found no statistically significant differences 
in this relationship throughout the year and sug-
gested that seasonal changes in gonad size were 
being compensated by coelomic fluid content. The 
equation used is BW = aTDb, which was logarithmi-
cally transformed to log(BW) = log(a) + b(logTD). 
The coefficients a and b were calculated by substi-
tuting the measured TD and BW using a vernier cal-
iper (0.1 mm accuracy) and an electronic balance 
(0.1 g accuracy), respectively. These measurements 
were taken from a sample of 111 individuals ran-
domly selected from the experimental area on 4 Sep-
tember 2015 and demarcated by a broken line in 
Fig. 1. The diameters of 207 individuals collected in 
17 quadrats were then converted to BW using the 
equation provided. The mean biomass (g m–2) was 
then determined and threshold biomass was esti-
mated. These estimates were assessed by comparison 
with previously published papers. 

2.3.  Sea urchin and kelp densities during 
sea urchin removal 

On 4 September 2015, removal of M. nudus from the 
experimental area began (Fig. 1). Over the course of 
3.8 yr until 20 June 2019, sea urchins were removed 
from the experimental area 22 times with the partici-
pation of 1–5 divers each time. The duration of each 
removal varied from 25–728 min (Table 1). The 
removed sea urchins were transported to Shizugawa 
Fish Market (Fig. 1) via a research fishing vessel. The 
biomass was measured using a digital weight scale 
(100 g accuracy). The biomass of the sea urchins 
removed was 2299 kg in total, and it exceeded 100 kg 
in September 2015, December 2015, November 2016, 
May 2018, November 2018, and March 2019 (Table 1). 

Surveys of sea urchin and kelp densities were con-
ducted along the experimental transects (E1: 0–20 
m; E2 and E3: 0–15 m) and the control transects, 
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using the same method as before sea urchin removal, 
starting on 30 September 2015. Sea urchin densities 
at the 15–20 m plot (PL) of E1 were not surveyed in 
October 2015. Only juvenile kelp was surveyed on 
30 September 2015 as well as in December 2015, and 
in January, February, April, and May 2016. The sur-
vey was conducted 8 times from 30 September 2015 
to June 2019 at the control transects (C1: 0–5 m; C2 
and C3: 0–10 m), excluding C1 and C2 in October 
2015. The densities of M. nudus and E. bicyclis juve-
niles (FSJ and SSJ) and adults were calculated by 
PL at 5 m intervals (n = 10 quadrats) in both the 
experimental and control transects before and after 
the removal of sea urchins. Sea urchins were col-
lected simultaneously with their density survey at 
both the experimental and control transects. The TD 
of all sea ur chins collected from the experimental 
transects, as well as randomly collected sea urchins 
from the control transects, was measured aboard a 
research fishing vessel using a vernier caliper with 
an accuracy of 0.1 mm. 

To demonstrate the relationship between the den-
sities of kelp juveniles and sea urchins, the densities 

of FSJ and SSJ at different sea urchin densities in 
the experimental transects during the research sur-
vey were analyzed among 4 seasons: winter (Janu-
ary–March), spring (April–June), summer (July–
September), and autumn (October–December). 

2.4.  Water temperature 

Water temperature was measured every 15 min 
using 2 data loggers (HOBO UA-002-64, Onset) at -
tached to each of 2 small concrete blocks resting on 
the sea floor at a depth of 1.5 m near the 0 m point of 
E2 from 29 July 2015 to 12 May 2018 (Fig. 1). The 
mean daily water temperature was calculated from a 
data logger retrieved on alternate days and was calcu-
lated as the mean of 96 measurements each day. The 
maximum temperatures were 24.2°C in August 2015, 
24.1°C in September 2016, and 22.7 °C in August 
2017. The minimum temperatures were 8.2°C in 
March 2016, 7.6°C in February 2017, and 8.2°C in 
February 2018 (Fig. 2A). 

Daily sea surface temperature (SST) at Enoshima 
fishing port (38°24’ N, 141°36’ E), located near Shizu-
gawa Bay in Onagawa, Miyagi Prefecture, was calcu-
lated from hourly measurements taken from 1 Janu-
ary to 30 June in 2016–2019. Additionally, the mean 
SST from 1989–2018 was also calculated (Japan Fish-
eries Research and Education Agency 2023). During 
March–April 2016, 2017, and 2018, SST was higher 
than the mean, with a peak of >3°C in 2018 (10.6°C at 
Enoshima fishing port; Fig. 2B), coincident with the 
value at Nojima (Fig. 2A). SST decreased from 7.7°C 
in late March to 5.3°C in early April 2019 (Fig. 2C), 
which was >2°C lower than the mean temperature 
over the past 30 yr (Fig. 2B). 

2.5.  Statistical analysis 

Pearson’s correlation coefficient was used to statisti-
cally analyze the correlation between log-transformed 
sea urchin TD and BW. Factors affecting the densities 
of M. nudus and FSJ, SSJ, and adults of E. bicyclis were 
analyzed using a generalized linear mixed model 
(GLMM). In the analyses, date and treatment were set 
as fixed effects and transect and PL were set as random 
effects. The densities of FSJ and SSJ at different sea 
urchin densities among 4 seasons in the experimental 
transects were analyzed using 2-way ANOVA with 
aligned rank transform (ART) be cause the normality of 
these density data was not detected by the Shapiro-
Wilk W-test (Wobbrock et al. 2011). Subsequently, the 
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Date                           Biomass       Number           Total dive 
                                        (kg)           of divers      duration (min) 
 
4 Sep 2015*               467.75                5                        728 
30 Sep 2015               170.70                2                        220 
21 Oct 2015                 39.30                1                         70 
2 Dec 2015                 137.10                3                        210 
12 Jan 2016                  63.80                5                        175 
4 Feb 2016                   51.60                5                        154 
23 Mar 2016                  0                      0                          0 
19 May 2016               27.30                2                         72 
5 Aug 2016                  52.55                3                        105 
28 Sep 2016                 96.80                5                        247 
27 Oct 2016                 29.60                1                         60 
2 Nov 2016*              259.20                3                        335 
28 Nov 2016                76.20                4                        185 
5 Jan 2017                    49.00                3                        115 
24 Mar 2017                  5.30                2                         25 
5 Jun 2017                   41.50                3                        135 
29 Aug 2017                79.30                4                        260 
26 Oct 2017*               84.00                2                        170 
29 Nov 2017                42.20                4                        150 
14 May 2018             112.40                4                        225 
20 Aug 2018                47.10                3                        122 
13 Nov 2018*            197.20                4                        516 
15 Mar 2019*            119.30                5                        252 
20 Jun 2019                 50.10                3                        100 
Total                          2299.3

Table 1. Biomass of Mesocentrotus nudus removed from the 
experimental area by SCUBA diving. Sea urchins were re-
moved after completion of the sea urchin and kelp density 
survey, except on 23 March 2016. Asterisks indicate dates 
when sea urchin removal was conducted without the survey
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significances of the data without ART were analyzed 
by the Steel-Dwass multiple comparison test. All re-
search survey density data used were pooled for the 
analyses. All statistical analyses were performed with 
R v.4.4.0 (R Core Team 2023) using the packages 
‘lme4’, ‘lmerTest’, and ‘ARTool’. 

3.  RESULTS 

3.1.  Threshold of sea urchin density and biomass 

The mean (±SE) density of sea urchins in the 101 
quadrats located below the lower fringe of the kelp 
forest was 15.5 ± 0.9 ind. m–2. This density indicates 
the threshold density of Mesocentrotus nudus re -
quired to trigger the phase shift from Eisenia bicyclis 
forest to barren. There was a statistically significant 
positive correlation between TD and BW (r2 = 0.8941, 
p < 0.0001). The equation to calculate BW was: 

                             BW = 0.0011 × TD2.8101                        (1) 

Using this equation, the threshold biomass was esti-
mated to be 712.0 ± 59.6 g m–2. 

3.2.  Sea urchin and kelp densities before and 
during sea urchin removal 

Fig. 3 shows the mean densities of sea urchins and 
kelp with different types of damage due to sea urchin 
grazing by PL at 5 m intervals along the experimental 
transects before sea urchin removal. Sea urchin graz-
ing marks were found on all E. bicyclis. The mean sea 
urchin densities at the 0–5 m PL of E1 and E2 and the 
0–10 m PL of E3 were <10 ind. m–2. Notably, the den-
sities exceeded 20 at the 15–20 m PL of E2. No juve-
nile kelp were found along any of the transects. At E1 
and E3, entire adult E. bicyclis plants grew from the 
0–10 m PL. At E2, these were limited to the 0–5 m PL, 
with damage forms of ‘thallus without fronds’, ‘stipe 
and holdfast only’, and ‘holdfast only’. The latter was 
also found at the 15–20 m PL of E2 and at the 25–30 m 
PL of E3, indicating adult kelp growth prior to sea 
urchin grazing. No ‘holdfast only’ damage was found 
in the 10–20 m PL of E1. 

The results of the GLMM analysis of factors affect-
ing the densities of M. nudus are shown in Table 2. 
Generally, positive effects on sea urchin densities 
and their significant increase were found in autumn 
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Fig. 2. (A) Daily water temperature at the experimental site during the research survey. (B) Deviations from the 30 yr mean be-
tween 1989 and 2018 (dashed line) from January to June in 2016, 2017, 2018, and 2019 at Enoshima fishing port, Onagawa,  

Miyagi Prefecture. (C) Daily sea surface temperature in 2019 at Enoshima
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in 2015 and 2016, particularly in October 2016, but 
also in spring and summer in 2017, 2018, and 2019. 
Sea urchin densities differed significantly between 
treatments of the experimental and control transects 
(p < 0.01). 

Changes in sea urchin densities during sea urchin 
removal along the experimental and control transects 
are shown in Fig. S2 and Table S1. At the 0–5 m PLs of 
E1, E2, and E3, the densities were generally low 
(<0.8 ind. m–2). At the PLs of 5–10, 10–15, and 15–
20 m of E1, the densities sharply increased to >20 ind. 
m–2 in September and October 2016 and then re -
mained high. At the 5–10 m PLs of E2 and E3, the 
densities were low (<1.7 ind. m–2). In October 2016, 
the densities at the 10–15 m PLs of E2 and E3 in -
creased to >12.0 ind. m–2. In C2 and C3, the densities 
at the 5–10 m PLs were higher than those at the 0–
5 m PL. Occasionally, the densities exceeded 30 ind. 
m–2 at the 5–10 m PL of C2 and C3. 

The results of GLMM analysis of factors affecting 
the densities of FSJ, SSJ, and adult E. bicyclis are 
shown in Table 3. Generally, there were positive 
effects on FSJ densities and negative effects on SSJ 
and adult densities. The adult densities significantly 
decreased in most months. The densities of FSJ and 

SSJ significantly increased and decreased, respec-
tively, except for 1–3 months in autumn and winter. 
Significant differences in the densities between treat-
ments were found in FSJ (p < 0.01) and adult E. bicy-
clis (p < 0.05), but not in SSJ (p > 0.05). 

Changes in densities of FSJ, SSJ, and adult E. bicy-
clis along the experimental and control transects are 
shown in Figs. S3 and Table S2. During the research 
survey, no adults grew at the 10–15 and 15–20 m 
PLs of E1, where FSJ densities were low. No SSJ 
grew at the 15–20 m PL. At the 0–5 and 5–10 m PLs, 
FSJ frequently occurred, but the densities of SSJ 
were low. Notably, the density of adults in May 2018 
(3.1 ind. m–2) was high at the 0–5 m PL. In E2, FSJ 
and SSJ grew at the 0–5 and 5–10 m PLs until 
October 2016. After that, the density of SSJ in -
creased until December 2016 or January 2017. Adult 
densities at the 5–10 m PL were high from October 
2016 to June 2019 but did not exceed 4.0 ind. m–2. In 
E3, adult densities at the 0–5 m PL were high and 
greatly variable. The FSJ densities were highest 
(>4.0 ind. m–2) in September and October 2016, fol-
lowed by the high occurrence of SSJ in November 
2016 and January 2017 (~5 ind. m–2). Adult density 
increased (>6.0 ind. m–2) in January 2017. High den-

23

Fig. 3. Mean (+SE) densities of (A) Mesocentrotus nudus and (B) Eisenia bicyclis with different types of damage due to sea 
urchin grazing along the experimental transects (E1, E2, and E3) before sea urchin removal. Densities are expressed by plot at  

5 m intervals using a 1 × 1 m quadrat (n = 10 quadrats). E2 and E3 are extended over 15 m
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sities of FSJ and SSJ recurred until November 2017, 
resulting in high adult density in May 2018. Simi-
larly, adult density at the 5–10 m PL of E3 was high 
in May 2018. At the 10–15 m PLs of E2 and E3, the 
densities of FSJ and SSJ as well as subsequent adult 
densities were low. In June 2019, the densities of FSJ 
were highest at the 0–5 and 5–10 m PLs of E1 
(>9.0 ind. m–2) and E3 (> 5.0 ind. m–2), which showed 
a significant large effect during the research survey 
(Table 3). 

FSJ, SSJ, and adult kelp occurred at the 0–5 m PL of 
C1 and C2 but disappeared from December 2015 and/
or April 2016. At the 0–5 m PL of C3, FSJ and SSJ dis-
appeared after April 2016. From April 2016 to June 
2019, adult densities decreased. No FSJ, SSJ, or 
adults grew at the 5–10 m PL of C2 and C3. 

3.3.  Densities of juvenile kelp and sea urchins 

The densities of FSJ and SSJ at different sea urchin 
densities in each of the 4 seasons in the experimental 
transects, and the significances among sea urchin den-
sities and seasons, are shown in Fig. 4 and Table 4. A 
significant difference in FSJ densities was found 
among seasons (F3,1937 = 3.240, p < 0.01) but not 
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Fixed effects          Estimate         SE               t                   p 
 
Intercept                   20.51            2.61           7.86         <0.001 
30 Sep 2015                1.35            0.83           1.63            0.102 
21 Oct 2015                2.01            0.88           2.28            0.023 
2 Dec 2015                  0.62            0.83           0.75            0.455 
4 Feb 2016               –1.02            0.89       –1.14            0.254 
23 Mar 2016            –0.76            0.90       –0.84            0.400 
20 Apr 2016                0.17            0.83           0.21            0.834 
19 May 2016               0.28            0.90           0.32            0.752 
5 Aug 2016                  0.82            0.90           0.91            0.363 
28 Sep 2016                3.57            0.90           3.98         <0.001 
27 Oct 2016                6.83            0.83           8.19         <0.001 
28 Nov 2016               0.69            0.90           0.76            0.447 
5 Jan 2017                   2.12            0.90           2.34            0.023 
24 Mar 2017                1.19            0.92           1.29            0.196 
5 Jun 2017                   3.23            0.83           3.89         <0.001 
29 Aug 2017                2.45            0.90           2.73            0.003 
29 Nov 2017               2.11            0.90           2.34            0.023 
14 May 2018               3.33            0.90           3.71         <0.001 
20 Aug 2018                2.46            0.90           2.74            0.003 
20 Jun 2019                3.21            0.83           3.86         <0.001 
Treatment             –19.09            2.87       –6.65            0.003 
Random effects     Variance         SD 
                                                               
Transect                    12.05            3.47                
Plot                               8.60            2.93

Table 2. Generalized linear mixed model (GLMM) analysis 
of factors affecting the density of Mesocentrotus nudus.  

Significant p-values (p < 0.05) in bold

                                                     FSJ                                                        SSJ                                                          Adult                     
Fixed effects        Estimate     SE           t              p             Estimate     SE           t               p               Estimate     SE          t               p 
 
Intercept               –1.51         0.53   –2.88      0.021              0.49        0.32       1.54        0.151                0.23        0.66       0.34        0.740 
30 Sep 2015              1.61         0.30       5.34    <0.001          –1.01        0.18   –5.79     <0.001            –0.28        0.33   –0.86        0.393 
21 Oct 2015              1.45         0.32       4.54    <0.001          –1.06        0.19   –5.71     <0.001            –1.82        0.24   –7.69     <0.001 
2 Dec 2015               0.80         0.30       2.65      0.003          –0.65        0.18   –3.69     <0.001                                                 
4 Feb 2016                0.02         0.32       0.07      0.944          –0.09        0.19   –0.48        0.632                                                 
23 Mar 2016             0.09         0.33       0.28      0.778          –0.20        0.19   –1.07        0.283            –1.98        0.28   –7.11     <0.001 
20 Apr 2016              0.65         0.30       2.15      0.022          –0.60        0.18   –3.43     <0.001            –0.74        0.33   –2.24        0.025 
19 May 2016            1.56         0.33       4.80    <0.001          –0.85        0.19   –4.44     <0.001                                                 
5 Aug 2016               1.97         0.33       6.03    <0.001          –0.71        0.19   –3.69     <0.001            –1.20        0.24   –4.95     <0.001 
28 Sep 2016              1.07         0.33       3.30    <0.001          –0.55        0.19   –2.90        0.003            –1.42        0.24   –5.94     <0.001 
27 Oct 2016              0.79         0.30       2.62      0.003          –0.42        0.18   –2.39        0.017            –1.39        0.23   –6.17     <0.001 
28 Nov 2016             0.14         0.33       0.44      0.660              0.35        0.19       1.83        0.068            –1.45        0.24   –6.02     <0.001 
5 Jan 2017            –0.07         0.33   –0.22      0.826              0.29        0.19       1.50        0.133            –0.62        0.24   –2.6          0.010 
24 Mar 2017             0.09         0.33       0.28      0.778          –0.34        0.19   –1.77        0.076            –1.12        0.24   –4.67     <0.001 
5 Jun 2017                0.63         0.30       2.11      0.021          –0.89        0.18   –5.08     <0.001            –0.82        0.23   –3.63     <0.001 
29 Aug 2017             1.02         0.33       3.14      0.003          –0.99        0.19   –5.21     <0.001            –0.57        0.24   –2.38        0.018 
29 Nov 2017             0.38         0.33       1.16      0.245          –0.26        0.19   –1.34        0.179            –0.72        0.24   –3.01        0.003 
14 May 2018            0.06         0.33       0.19      0.851          –0.87        0.19   –4.57     <0.001                                                 
20 Aug 2018             0.01         0.33       0.03      0.975          –0.91        0.19   –4.78     <0.001            –0.18        0.24   –0.76        0.445 
20 Jun 2019              2.13         0.30       7.09    <0.001          –0.97        0.18   –5.51     <0.001            –0.49        0.23   –2.19        0.029 
Treatment                1.45         0.30       4.77      0.005              0.6          0.25       2.41        0.062                1.99        0.53       3.74        0.015 
Random effects   Variance     SD                                          Variance    SD                                            Variance    SD 
                                                          
Transect                    0.10         0.31                                             0.08        0.28                                                0.38        0.62                          
Plot                             0.64         0.80                                             0.18        0.42                                                0.99        0.99

Table 3. Generalized linear mixed model analysis of factors affecting the density of first- and second-stage juveniles (FSJ and  
SSJ, respectively) and adults of Eisenia bicyclis. Significant p-values (p < 0.05) in bold
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among sea urchin densities (F18,1937 = 1.341, p > 0.05). 
In SSJ, significant differences were found among sea 
urchin densities (F(8,1937 = 8.914, p < 0.001) and 

seasons (F3,1937 = 20.408, p < 0.001). 
There were significant inter actions be-
tween sea ur chin densities and seasons 
for FSJ (F36,1937 = 1.828, p < 0.01) and 
SSJ (F36,1937 =2.059, p < 0.001). From a 
post hoc test, when sea urchins were 
ab sent, the density of FSJ during 
winter  (January–March) was signifi-
cantly lower than in other seasons (p < 
0.01). When sea urchin density was 0 
or 1 ind. m–2 during spring, summer, 
and autumn (October–December), 
FSJ density was consistently >1.0 ind. 
m–2. The densities of FSJ during 
summer and autumn decreased signifi-
cantly with an in crease in sea urchin 
densities from 0–3 ind. m–2 (p < 0.05). 
In contrast, the densities during spring 
were occasionally elevated (>1.5 ind. 
m–2) when sea urchin densities ex-
ceeded 3 ind. m–2, which resembled 
those observed at the 0–10 m PL of E1 
in June 2019. In contrast to FSJ, the 
density of SSJ during winter was sig-
nificantly higher than during spring 
(April–June) and summer (July–Sep-
tember) (p < 0.01). When sea ur chins 
were absent, the density of SSJ during 
autumn was significantly higher than 
that in spring (p < 0.05). 

3.4.  Sea urchin body size 

The frequency distributions of TD 
for M. nudus in the experimental 

transects before and during sea urchin removal as 
well as in the control transects are shown in Figs. S4 
& S5. In the experimental transects, except for Feb-
ruary–April 2016 when the number sampled was 
small, sea urchins with a TD of 40–50 mm were the 
most abundant (41.6–64.9%), while those of 35–40 
and 50–55 mm varied. Small individuals with a TD 
of 10–20 mm were observed in June and August 
2017 and in June 2019. In the control transects, 
except for October 2015 when the sample number 
was small, sea urchins with a TD of 40–50 mm were 
abundant (31.8–54.3%), but in June 2019, their pre-
dominance shifted to 50–60 mm (54.3%), as rel-
atively few sea urchins with a TD of <40 mm were 
recorded. At both the experimental and control 
sites, there were only a few individuals with a TD of 
>60 mm. 
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Fig. 4. Mean (+SE) densities of juvenile Eisenia bicyclis at different densities of 
Mesocentrotus nudus in each of 4 seasons in the experimental transects during 
sea urchin removal. Kelp juveniles were divided into first and second stages 
(FSJ and SSJ, respectively). ‘n’ indicates the number of 1 × 1 m quadrats. Upper-
case and lowercase letters indicate significant differences in the densities of FSJ 
and SSJ among sea urchin densities and among the 4 seasons, respectively (p < 
0.05). Sea urchin densities are adopted with >4 quadrats. Data obtained from 1–
4 quadrats are indicated as asterisks, excluded from n, and are not illustrated

                                                                        df        F             p 
 
FSJ      Sea urchin density                        18    1.341       0.152 
            Season                                               3     3.240       0.021 
            Sea urchin density × season     36    1.828       0.002  
SSJ      Sea urchin density                        18    8.914    <0.001 
            Season                                               3   20.408    <0.001 
            Sea urchin density × season     36    2.059    <0.001

Table 4. Two-way ANOVA with aligned rank transform of 
the densities of first- and second-stage juveniles (FSJ and 
SSJ, respectively) of Eisenia bicyclis at different sea urchin 
densities among 4 seasons in the experimental transects.  

Significant p-values (p < 0.05) in bold
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4.  DISCUSSION 

4.1.  Threshold density and biomass of 
 Mesocentrotus nudus for kelp forest destruction 

This investigation determined the threshold density 
(15.5 ind. m–2) and biomass of Mesocentrotus nudus 
(712.0 g m–2) required to trigger the phase shift from 
an Eisenia bicyclis forest to a barren state. Filbee-
Dexter & Scheibling (2014) evaluated the threshold 
densities and biomass of sea urchins required to 
trigger the phase shift from kelp to a barren state (for-
ward shift) and vice versa (reverse shift) in 6 regions: 
Alaska and California, USA; Chile; Nova Scotia, Can-
ada; Norway; and Tasmania, Australia. In these re-
gions, the threshold density of sea urchins required to 
trigger the forward shift was 72 ind. m–2 for Strongylo-
centrotus polyacanthus herbivory on Laminaria denti -
gena, L. yezo ensis, and other kelp species in Alaska 
(Konar & Estes 2003). The threshold densities for S. 
droe bachi ensis amongst L. longicruris and L. digitata 
in Nova Scotia were 31–65 and 45–75 ind. m–2, respec-
tively (Breen & Mann 1976, Chapman 1981, Scheibling 
et al. 1999, Lauzon-Guay & Scheib ling 2007) and 45–75 
on L. hyperborea in Norway (Hagen 1995, Leinaas & 
Christie 1996, Sjøtun et al. 1998). The densities of Cen-
trostephanu rodgersii and Heliocidaris erythrogramma 
in an E. radiata kelp forest were 4–10 ind. m–2 in Tas-
mania (Ling 2008, Ling et al. 2009, Marzloff et al. 2013) 
and 8 ind. m–2 in Victoria, Australia (Kriegisch et al. 
2016). Threshold densities of sea urchins in Alaska, 
Nova Scotia, and Norway were significantly higher 
than those of M. nudus in a kelp forest of E. bicyclis. 

The present study was conducted immediately fol-
lowing kelp destruction by aggregated sea urchins at 
the grazing front, which had led to overgrazing. How -
ever, at the control transects where sea urchin densities 
ex ceeded 20 ind. m–2, there was an early disappear-
ance or marked decrease in FSJ, SSJ, and adults of 
E. bicyclis at the 0–5 m PLs of C1, C2, and C3. During 
the present study, there was a significant increase in 
sea urchin densities of >20 ind. m–2 at the 5–20 m PL 
of E1; a high grazing intensity with the potential to de-
stroy the adult E. bicyclis forest. Thus, the density and 
biomass of sea urchins immediately following kelp de-
struction is estimated to be the threshold level. 

According to Filbee-Dexter & Scheibling (2014), 
threshold densities are associated with body sizes 
among dominant sea urchin species. They summa-
rized the biomass thresholds in 6 regions and found 
them to be relatively consistent, displaying order-of-
magnitude differences between forward shifts to 
barren areas (A: 1–3 kg m–2) and reverse shifts to kelp 

forests (B: 0.1–0.6 kg m–2). These variations indicate 
a 77–91% decrease ((A – B) × 100 / A) in biomass re -
sulting in the forward shift. In Victoria, the biomass 
threshold for the forward shift in H. erythrogramma 
(0.427 kg m–2; Kriegisch et al. 2016) was lower than 
that for M. nudus in the present study. 

Adult kelps increased at the 0–10 m PL of E2 and E3 
in the present study. This was attributed to the con-
tinuous removal of sea urchins, resulting in low den-
sities. The sea urchin biomass range was 0–92.2 g 
m–2, as converted from the mean TD (47.8 mm, n = 
107; calculated from individuals at the 0–10 m PL of 
E2 and E3 during sea urchin removal), and the density 
range was 0–1.6 ind. m–2 (Fig. S2). These values for 
the reverse shift were lower than those observed in 
other regions, indicating an 87.1–100% decrease in 
biomass resulting in the forward shift, suggesting a 
significant hysteresis effect. 

4.2.  Recovery process of adult kelp forest 

Low sea urchin densities observed at the 0–5 m PL 
of all the experimental transects before sea urchin 
removal reflect their location just beneath the turbu-
lent wave base (Witman 1987, Siddon & Witman 2003, 
Lauzon-Guay & Scheibling 2007). At the 0–10 m PL of 
E3 on a hidden prominent reef, occasional changes in 
the density of adult kelp is a manifestation of the im -
pact of high wave action, which also curbs sea urchin 
grazing and the movement of M. nudus (Kawamata 
1998, 2012). Additionally, the kelp thalli might be de -
tached due to the shallower depths in comparison 
with E1 and E2. There was an increase in adult kelp at 
the 0–5 m PL of E1 and the 0–10 m PLs of E2 and E3 
since spring, following the occurrence of FSJ in 
summer and subsequent SSJ in autumn in the pre-
vious year. These seasonal occurrence patterns gen-
erally coincided with those at the depths of 0.5, 0.8, 
and 2.5 m surveyed at Kitsunezaki (38°21’ N, 
141°25’ E) along the Oshika Peninsula from 2011–
2013 (Suzuki et al. 2021). These kelp forest increases 
were due to the near-perfect regulation of sea urchin 
densities at <1.0 ind. m–2 for 3.8 yr. 

In E1, the temporal increase was found only at the 
0–5 m PL. At the 5–20 m PL, the substrate consists of 
boulders on a flat reef without kelp growth. Before the 
removal of sea urchins, at 10 m offshore, many sea 
urchins immediately invaded, occasionally exceed-
ing the threshold density of the northwest and off-
shore barrens. The adult kelp forest failed to recover. 
Sea urchin densities of >4.0 ind. m–2 at the 10–15 m 
PLs of E2 and E3 after October 2016, resulting from 
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invasion from deep and/or northeast barrens, 
impeded any increase in adult kelp density. 

Adult kelp recovery was limited to the nearshore 
half of the experimental transects. Sea urchins with a 
diameter of 40–50 mm were predominant at both 
experimental and control transects. The relative vari-
ation of individuals of diameter 35–40 and 50–55 mm 
may be affected by juvenile recruitment and somatic 
growth, respectively. The rarity of individuals with a 
diameter of >60 mm may be attributed to stagnation 
in somatic growth due to aging and limited food avail-
ability (Agatsuma 2014). 

4.3.  Sea urchin densities required for successful 
recruitment of juvenile kelp 

There were significant interactions in the densities 
of FSJ and SSJ between sea urchin densities and sea-
son. ANOVA results indicated a low density of FSJ 
during winter; high densities of FSJ during spring, 
summer, and autumn; and high densities of SSJ dur-
ing winter and autumn at sea urchin densities of 0 or 
1 ind. m–2. These density patterns reflect the pheno -
logy of E. bicyclis, where FSJ grow to SSJ from 
autumn to winter. However, GLMM analysis indi-
cated that the densities of SSJ were not significantly 
affected in November, January, February, and March. 
As the density of FSJ during summer and autumn 
decreased significantly with an increase in sea urchin 
density from 0–3 (Fig. 4), an increase in the number 
of sea urchins would decrease SSJ density in winter. 
Indeed, although sea urchins were removed monthly 
from August–November 2016, their density re -
mained extremely high at the 10–20 m PL of E1 in 
October and November 2016. This mirrors the sea-
sonally active foraging migration of many M. nudus 
away from barren areas, with their large population, 
to find and consume available food, thereby ensuring 
their reproduction in autumn (Agatsuma & Kawai 
1997, Sano et al. 1998). The results of data analyses 
indicate that reducing sea urchin densities to 0 or 
1 ind. m–2 during autumn is crucial to ensure the sur-
vival of SSJ in winter and to enable the growth of 
adult kelp forests in summer. In spring, a high density 
of FSJ (>1.5 ind. m–2) was observed even at sea urchin 
densities exceeding 3 due to a large FSJ recruitment 
in June 2019. In early April 2019, SST at Enoshimma 
fishing port dropped to around 5°C due to the first 
intrusion of the Oyashio into onshore waters starting 
in late March 2019 (Miyagi Prefecture Fisheries Tech-
nology Institute 2019). A large recruitment of FSJ is 
probably associated with the decreased food intake 

and foraging activity of M. nudus at low water tem-
peratures (Agatsuma et al. 2000) in addition to the 
presence of high nutrient levels. Following such a 
large recruitment of FSJ, maintenance of strict regu-
lation of sea urchin densities at 0 or 1 ind. m–2 would 
promote the recovery of the kelp forest. 

The E. bicyclis forest reaches its seasonal maximum 
biomass in July and August (Yoshida 1970). In July 
1982 and 1983, Taniguchi et al. (1987) observed the 
lower fringe depth of the kelp forest off Tomarihama 
to be 8 m. The density of adult kelp in the forest was 
~5 ind. m–2. The mean density in areas of dense 
growth at depths of 3–6 m in 1982 and 2–5 m in 1983 
ranged from 10–18 ind. m–2. The depth of the lower 
fringes of the kelp forest off Tomarihama was 5–6 m 
in July 1995 and September 1996 (Sano et al. 1998). By 
June 2008, it had decreased to a depth of 2.4 m 
(Muraoka et al. 2017). The adult densities recorded in 
the kelp forest were 1.08 ind. m–2 in 2000 (Muraoka 
2008) and an estimated 0.3 ind. m–2 in 2008 (Fig. 5 of 
Muraoka et al. 2017). These studies over the past 
quarter century have shown a dramatic decrease in 
the density of this kelp forest. 

In the present study, the maximum density of adult 
kelp was lower than 4.0 ind. m–2, except for 6.5 ind. 
m–2 at the 0–5 m PL and 4.0 ind. m–2 at the 5–10 m PL 
of E3. The densities are lower than those recorded off 
Tomarihama in 1982 and 1983 (Taniguchi et al. 1987). 
According to the Japan Meteorological Agency 
(2023a), SST off the Pacific coasts of Miyagi, Iwate, 
and Aomori Prefectures have increased significantly 
during winter (January–March) (p < 0.01), spring 
(April–June) (p < 0.05), and autumn (October–
December) (p < 0.01) over the past 100 yr (1911–
2021). The rates of increase were 1.25°, 0.81°, and 
0.97°C, respectively. Miyama et al. (2021) demon-
strated that a marine heat wave occurred in the Oya -
shio Current region off the Pacific coast of Hokkaido 
and Tohoku during summers between 2010 and 2016. 
This was attributed to weakening of the southward 
intrusion of the Oyashio Current near the coast in the 
summer from 2010, accompanied by an increase in 
anticyclonic eddies from the Kuroshio Extension. 

M. nudus spawns from September–October (Agat-
suma 2020). Increased autumn temperatures (~20°C) 
enhance juvenile abundance, possibly due to a short-
ening of their larval duration, ultimately improving 
larval survival rates (Agatsuma et al. 1998). Further-
more, the increase in winter and spring temperatures 
in 2016, 2017, and 2018 suggests a decrease in nutrient 
levels without the impact of the first intrusion of the 
Oyashio Current into onshore waters. Consequently, 
the recruitment of kelp juveniles de creases (Hoffmann 
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et al. 1984, Ladah & Zertuche-González 2007, Carney 
& Edwards 2010). Addition ally, the intensified grazing 
of M. nudus at elevated temperatures (Machiguchi et 
al. 1994) would accelerate the consumption and deple-
tion of kelp recruits. The high sea urchin grazing in-
tensity and unfavorable oceanographic conditions 
suggest that a significant decrease in M. nudus den-
sities is required for the reverse shift to an E. bicyclis 
forest that can act as an intensified positive feedback 
mechanism with significant hysteresis, resulting in the 
restricted recovery of kelp density and growth area. 

Mensah & Ohshima (2021) reported that warming 
and tidal cycles strongly impact the Oyashio Interme-
diate Water, which is responsible for high production 
in the western subarctic Pacific. Warming of the 
Oyashio Intermediate Water suppresses vertical mix-
ing, resulting in the reduction of nutrients supplied 
from deep layers. It is expected that this warming will 
increase at a faster pace from the mid-2020s until the 
mid-2030s, which suggests that kelp recruitment will 
be further suppressed even if sea urchins are com-
pletely removed. 

5.  CONCLUSIONS 

In the present study, we first estimated the thres-
hold density and biomass of Mesocentrotus nudus re -
quired to trigger the phase shift from an Eisenia bicy-
clis forest to a barren off Nojima Island in Shizugawa 
Bay, along the Pacific coast of Tohoku, northeastern 
Japan. As a result of continuous sea urchin removal 
for 3.8 yr, the kelp growth area has expanded off-
shore. However, increases in adult kelp following the 
occurrence of juveniles were restricted to the near-
shore half of the experimental transects. The success-
ful recruitment of kelp juveniles and the subsequent 
recovery of adult kelp forest requires M. nudus of 40–
50 mm TD to be restricted to a density of 0–1 ind. m–2. 
Reducing sea urchin density in autumn, when many 
invade from barrens, is crucial to ensure the survival 
of kelp juveniles. This study highlights the intensified 
positive feedback mechanism of the barren state due 
to high grazing intensity and the weakened Oyashio 
Current on the eastern Tohoku Pacific coast. 

The subtidal rocky reef ecosystem along the Pacific 
coast of Tohoku has evolved under the influence of the 
Oyashio Current and its variability, which has a signif-
icant impact on the expansion or reduction of E. bicy-
clis forests through the interaction of bottom-up (nu-
trient) and top-down (sea urchin grazing) effects. 
Future climate change is expected to have further ad-
verse effects on this ecosystem’s foundation  species. 
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