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1.  INTRODUCTION 

Contemporary studies in evolution, conservation, 
and ecology are aimed at comprehending global pat-
terns of species richness and the underlying forces 
shaping them (Tittensor et al. 2010). The fluctuation 
in species richness concerning the observed scale has 
been a topic of debate (Chase et al. 2019). Globally, 
both current and historical anthropogenic factors 
have contributed to the extinction of numerous taxa 

(Barnosky et al. 2011, Pimm et al. 2014, McCauley et 
al. 2015), resulting in a worldwide decrease in species 
richness, although this decline is not consistently ev-
ident at regional or local scales (Primack et al. 2018). 

In the marine environment, various ecological hypo -
theses have been proposed to elucidate diversity gra-
dients (Pianka 1966, Brown & Gibson 1983, Okolodkov 
2010). Among the principal hypotheses are the kinetic 
energy hypothesis or temperature hypothesis, which 
correlates metabolic rates with higher temperatures, 
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consequently promoting greater levels of speciation 
and biodiversity (Rohde 1992, Allen et al. 2007); the 
productivity–richness hypothesis, which posits that 
high richness is conditioned by high rates of primary 
productivity (Gaston 2000, Evans et al. 2005); and the 
environmental stress hypothesis, which proposes an 
inversely proportional relationship between richness 
and environmental stress (Keeling et al. 2010). 

Among the numerous alternative hypotheses, there 
is a nearly unanimous consensus on the necessity of 
examining the relationship between richness and 
temperature variation. As per Janzen (1967), a reduc-
tion in seasonal temperature extremes in the tropics 
would facilitate the evolution of species with low ther-
mal tolerance. These species would structure them-
selves into narrower ecological niches, enabling a 
greater number of species to coexist in the tropical 
region. In addition to temperature, rainfall variation, 
such as dry and wet seasons, can alter turbidity and 
nutrient input in coastal regions (McClanahan 1988). 
Therefore, the relationship between niche breadth 
(and consequently richness) and latitude hinges on 
the environmental factors considered, including pro-
ductivity, temperature, and salinity, among others 
(Vázquez & Stevens 2004). 

In addition to these hypotheses traditionally stud-
ied in ecology, 2 other hypotheses have been investi-
gated from the perspective of climate change and 
anthropogenic alterations (Luypaert et al. 2020). The 
climatic stability hypothesis suggests a directly pro-
portional relationship between environmental stabil-
ity and diversity (Fraser & Currie 1996), while the 
habitat availability hypothesis supports the positive 
effect of habitat availability on diversity (Etnoyer et 
al. 2004, Worm et al. 2005). These hypotheses have 
been extensively studied due to the various impacts 
on marine systems, including the presence of differ-
ent types of pollutants, the expansion of invasive spe-
cies distributions, and ocean warming and acidifica-
tion processes. These factors have culminated in the 
widespread bleaching of coral reef areas and the over-
exploitation of marine species across multiple fishing 
levels (Luypaert et al. 2020). 

Human activities can also disrupt the distribution 
processes of marine species, acting as stressors for 
communities (Giraldes et al. 2021). They have the 
potential to modify marine food webs and establish 
new ecosystems with diversities different from those 
that existed before anthropogenic actions intervened 
(Jackson et al. 2001, Pereira et al. 2018, Giraldes et 
al. 2021). Examples of significant impacts on marine 
ecosystems include the removal of predators from 
the food chain due to fishing activities (Boudreau & 

Worm 2012), modification of benthic cover in reef 
en viron ments caused by tourism, and the increasing 
urbanization of coastal areas (Dwyer & Edwards 
2000). 

To understand the factors contributing to the emer-
gence of species richness gradients in the marine 
environment, and recognizing that these factors may 
vary among different taxa (Tittensor et al. 2010), we 
focused on the monophyletic clade formed by 
shrimps of the genus Lysmata (51 described species), 
Lysmatella (1 described species), Exhippolysmata (4 
described species), and Mimocaris (1 described spe-
cies) (Infraorder: Caridea; Family: Lysmatidae) (De 
Grave & Fransen 2011, Baeza & Prakash 2019, Aguilar 
et al. 2022). This family Lysmatidae demonstrates 
eco logical relevance by exhibiting a complex and 
uncommon sexual reproductive system, character-
ized by simultaneous protandry (Baeza et al. 2009, 
Baeza 2010a,b)), adopting different lifestyles (free-liv-
ing, obligatory and/or facultative symbiosis, occur-
rence in pairs, and aggregations), and performing 
ecosystem functions such as cleaning fish, corals, and 
anemones (Bauer 2000, Baeza & Bauer 2004, Baeza 
2006, 2007, 2008, 2013, Baeza et al. 2009, Baeza & Pra-
kash 2019, Aguilar et al. 2022). 

Furthermore, the group, in addition to facing fish-
ing pressure from the aquarium trade market, has rep-
resentatives registered as invasive species in various 
locations (Calado et al. 2003, Calado 2009, Aguilar et 
al. 2022, Guéron et al. 2022). Recently, a study on Lys-
mata uncicornis revealed an expansion of the distri-
bution of this species towards subtropical regions of 
the Atlantic Ocean (González-Ortegón et al. 2020), 
indicating the possibility of an initial process of tropi-
calization in these areas. 

Finally, the Lysmatidae are widely distributed 
across the planet (Calado et al. 2003, Rhyne & Lin 
2006, Anker et al. 2009, Baeza et al. 2009, Calado 
2009, Baeza 2010, Prakash & Baeza 2017, De Grave & 
Anker 2018), occupying both tropical and subtropical 
regions (De Grave & Anker 2018, Giraldes et al. 2018) 
and various habitats such as rocky environments, 
coral reefs, and seagrass beds (Bauer & Holt 1998, 
Rhyne & Lin 2006). They thrive at depths ranging 
from intertidal zones to about 300 m, as exemplified 
by L. philippinensis (Chace 1997, Rhyne & Lin 2006). 

Given the diverse pressures impacting the marine 
environment during the Anthropocene (Luypaert et 
al. 2020), and the remarkable diversity of lifestyles ex -
hibited by the Lysmatidae, characterized by a range 
of ecological, physiological, and morphological adap-
tations (Bauer 2000, Baeza & Bauer 2004, Baeza 2006, 
2007, 2008, 2013, Baeza et al. 2009, Baeza & Prakash 
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2019, Aguilar et al. 2022), we suggest that investigat-
ing the richness patterns of this clade provides in -
sights into the impacts of natural environmental vari-
ables (e.g. productivity, historical factors, salinity) as 
well as the continuing anthropogenic influence on 
marine ecosystems. 

Therefore, in this study, we aimed to evaluate the 
global distribution of Lysmatidae species richness and 
determine whether various ecological hypotheses 
could influence Lysmatidae distribution at 4 scales: 
realm, province, ecoregion (Spalding et al. 2008), and 
local (2° × 2° grid cells). Based on the physiological 
stress hypothesis (PSH), we investigated whether high 
variations in temperature and salinity could lead to a 
reduction in Lysmatidae richness at both local and re-
gional scales, thereby reducing their dispersal capac-
ity (Janzen 1967). Under the habitat heterogeneity 
 hypothesis (HHH), we explored the relationship be-
tween coral richness, bathymetry, and Lysmatidae 
species richness on a global scale. We hypothesized 
that habitat availability would enable resource use di-
versification and, consequently, speciation through 
niche specialization (Bazzaz 1975, Tews et al. 2004, 
Sanciangco et al. 2013). Additionally, we examined 
the resource availability hypothesis (RAH) to deter-
mine whether primary productivity was positively 
correlated with richness, promoting greater species 
coexistence (Hawkins et al. 2003) at local and regional 
scales. Lastly, we assessed whether the anthropogenic 
impact hypothesis (AIH) could be supported by ob-
serving lower species richness in areas with higher an-
thropogenic impact (Torres-Romero & Olalla-Tárraga 
2015), potentially associated with the loss of specialist 
species and subsequent biotic homo genization, par-
ticularly at broader scales (McKinney & Lockwood 
1999, Gossner et al. 2016, Chase et al. 2019). 

2.  MATERIALS AND METHODS 

2.1.  Data acquisition and processing 

We conducted a comprehensive survey of occur-
rence points for Lysmatidae species, utilizing litera-
ture reviews and data from the Global Biodiversity 
Information Facility (GBIF, www.gbif.org, as of 20 
November 2023) and the Ocean Biodiversity Informa-
tion System (OBIS; https://obis.org/, as of 20 Novem -
ber 2023). We considered occurrences re corded be -
tween 1899 and 2023. To work with this extensive 
temporal scale, we assume the perspective of niche 
conservatism, where sister species, such as those 
studied in this investigation, tend to conserve their 

niches over thousands of years of independent evolu-
tion, with speciation occurring at geographic scales 
and ecological modifications arising later (Peterson et 
al. 1999) 

The family Lysmatidae has 58 valid species, accord-
ing to the World Register of Marine Species 
(WoRMS) (WoRMS Editorial Board 2024 and the phy-
logeny of Aguilar et al. 2022). We also included Lys-
mata sp. AUS1 and Lysmata sp. AUS2 (belonging to 
the Lysmata rauli complex, as proposed by Guéron et 
al. 2022), that have not yet been formally described. 
This inclusion was possible because the occurrences 
of Lysmata sp. AUS1 and Lysmata sp. AUS2 found on 
the Australian coast could be other occurrences of the 
L. rauli complex. However, there is no distinction 
among occurrence records in GBIF; populations were 
classified a posteriori. Although we know that Lys-
mata sp. AUS1 and Lysmata sp. AUS2 are distinct spe-
cies, we will treat them as a species complex, which 
we refer to as Lysmata sp. AUS. Neither Lysmata sp. 
AUS1 nor Lysmata sp. AUS2 have been formally 
described and neither are listed in WoRMS. Further-
more, these data are significant, as they contribute to 
representing the diversity already identified within 
the L. rauli complex. In addition, all 4 species of the 
genus Exhippolysmata were considered, as were Lys-
matela prima and Mimocaris heterocarpoides. 

From the 59 species of the family, 4 species of the 
genus Lysmata (L. kempi, L. leptodactylus, L. splen-
dida, and L. stenolepis) were excluded due to insuffi-
cient data in the databases or because the species de-
scription papers lacked precise longitude and latitude 
data (Ahyong et al. 2024). Additionally, 2 species (L. 
baueri and L. durbanensis) were excluded during the 
data occurrence processing, because it was not pos-
sible to perform their spatial adjustment to the resolu-
tion of the environmental variables (2° × 2° grid cells). 
The genus Ligur, composed of a single species (L. en-
siferus), was not considered in this work, since it 
shows an uncertain basal position in the 2 phyloge-
netic trees (maximum likelihood, Bayesian inference) 
proposed by Aguilar et al. (2022), which suggests that 
the family Lysmatidae is a paraphyletic group (for 
more details, see Table S1 in the Supplement at www.
int-res.com/articles/suppl/m748p083_supp.xlsx). 

Despite evidence suggesting new synonymies 
(Ashrafi et al. 2021, Aguilar et al. 2022), there is still no 
consensus in the literature regarding them (e.g. Lys-
mata kuekenthali and L. hochi, Ashrafi et al. 2021; and 
L. dispar and L. lipkei, Aguilar et al. 2022). Therefore, 
distinct species were considered here in accordance 
with the WoRMS database (Ahyong et al. 2024). 
There are still some complexes of cryptic species 
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awaiting further detailed studies, including the L. 
wurdemanni complex sensu Baeza & Prakash (2019), 
the L. vittata complex (Aguilar et al. 2022, Guéron et 
al. 2022), and the L. rauli complex (Guéron et al. 
2022). In this study, the L. wurdemanni complex was 
treated as a single species, as the putative species in 
the complex have not been formally described (Baeza 
& Prakash 2019). The occurrences of L. vittata from 
the Red Sea and Mediterranean Sea were reevaluated 
and removed due to evidence suggesting that they 
are specimens of L. rauli sensu lato (Aguilar et al. 
2022, Guéron et al. 2022). 

In addition to all the caution already mentioned 
with the treatment of occurrences and which species 
would be used in this study, we also considered the 
possibility that many records represent cases of Lys-
matidae species invasions. Although we are aware of 
cases of invasions, such as L. lipkei and L. vittata in 
the western Atlantic (Almeida et al. 2021, Aguilar et 
al. 2022), our study focused on assessing species dis-
tributions without distinguishing between native and 
non-native occurrences. Our aim was to investigate 
the environmental factors that facilitate species co-
occurrence within the family, encompassing both 
native and invasive species. 

All occurrences underwent rigorous standardization 
to ensure consistency with predictor variables (5 arc-
min resolution) using the Bio-Oracle database (http://
bio-oracle.org/, accessed on 25 May 2020) (Tyberg-
hein et al. 2012, Assis et al. 2018) (Table S1). We con-
sidered the spatial structure of the data and the inher-
ent spatial autocorrelation, employing  spatial filtering 
through linear eigenvectors. Instead of analyzing each 
environmental variable separately in a linear regres-
sion, we chose to work with 2 variables de rived from 
the spatial relationships of the data (Diniz-Filho & Bini 
2005). To mitigate potential sampling biases, we re-
moved duplicate occurrences or those with ambiguous 
georeferenced records (in stances where more than 1 
occurrence was recorded in the same 
pixel) (Fourcade 2016, de Andrade et 
al. 2020).  Following this, we refined 
species oc currences by randomly se-
lecting 1 in stance within each grid cell 
at a resolution double that of the envi-
ronmental variables (Velazco et al. 
2019) 

Subsequently, occurrences were 
plotted and overlaid to determine rich-
ness at 4 distinct spatial scales: realm, 
province, ecoregion, and map grid cell 
(2° × 2° grid cell resolution, equi valent 
to ~220 × 220  km2). The spatial delin-

eation of realm (10), province (48), and ecoregion (115) 
was informed by Spalding et al. (2008) (Table S1). The 
processing of occurrences at each scale was executed 
using RStudio (R version 4.3.2; R Core Team 2023). 

To elucidate the factors influencing the richness 
distribution of the Lysmatidae, we selected 8 vari -
ables based on the scientific literature, which formed 
the hypotheses tested in this study. These variables 
in cluded annual temperature (mean and range), an -
nual salinity (mean and range), bathymetry and pri-
mary productivity (mean), obtained from the Bio-
Oracle database (http://bio-oracle.org/, accessed on 
25 May 2020). Addi tion ally, coral richness and the an-
thropogenic impact index were obtained from the 
IUCN Red List (www.iucnredlist.org, accessed on 16 
June 2022) and from the  National Center of 
Ecological Analysis and Synthesis (NCEAS; https://
www.nceas.ucsb.edu/), re spectively. Although an-
nual salinity (range), an nual dissolved oxygen 
(range), current velocity (range), bathymetry, and lu-
minosity (range) were considered, they exhibited col-
linearity problems, with correlation values less than 
0.70 and variance inflation factors (VIFs) less than 5.0 
(Fig. S1, Table S2).  

2.2.  Hypotheses 

Four hypotheses were proposed to elucidate the 
richness patterns of Lysmatidae: PSH, HHH, RAH, 
and AIH (Table 1). In the PSH, we used temperature 
(range and mean, °C) and salinity (mean, PSS) as indi-
cators of environmental stress (Fig. 1A,B). In the 
HHH, we used coral richness and bathymetry as vari-
ables to represent habitat heterogeneity (Fig. 1C,D). 
Coral richness data were obtained from distribution 
maps for 561 reef-building coral species from the 
IUCN Red List. Subsequently, these maps were over-
laid on a grid with cells of 2° × 2° resolution (approx-
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Variables                                                                PSH        RAH        HHH        AIH 
 
Anthropogenic impact index                             X                                                  X 
Bathymetry (m)                                                                                          X              X 
Coral richness                                                                                            X                 
Primary productivity mean (g m–3 d–1)                           X               X                 
Annual salinity mean (PSS)                                X                                                    
Annual salinity range (PSS)                               X                                                    
Annual temperature mean (°C)                         X                                                    
Annual temperature range (°C)                        X

Table 1. Description of variables evaluated for the studied hypotheses. PSH: 
physiological stress hypothesis; RAH: resource availability hypothesis; HHH:  

habitat heterogeneity hypothesis; AIH: anthropogenic impact hypothesis
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Fig. 1. Formulated hypotheses, illustrating the expected effect of each variable on the species richness of the family Lysmatidae. 
Physiological stress hypothesis: effect of the variables (A) mean temperature and mean salinity and (B) temperature range and 
salinity range. Habitat heterogeneity hypothesis: effect of (C) coral richness and (D) bathymetry. Resource availability hypo- 

thesis: effect of (E) mean primary productivity. Anthropogenic impact hypothesis: effect of (F) anthropogenic impact
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imately 220 × 220 km at the Equator) by aggregating 
the overlapping distribution ranges within each grid 
cell. The processing of these maps was conducted 
using the ‘raster’ package (Hijmans et al. 2021) in 
RStudio (R version 4.3.2). In the RAH, we used the 
mean primary productivity as an indicator of resource 
availability (Fig. 1E). 

Lastly, we assessed the AIH through an anthropo-
genic impact index (Fig. 1F), a composite of 19 anthro-
pogenic factors contributing to ecological changes in 
the oceans. This index evaluated the effect of various 
stressors on the marine environment, in cluding differ-
ent levels of fishing (from artisanal to high-impact de-
mersal), shipping activities, presence of oil platforms, 
direct human impact, various sources of pollution, in-
vasive species, ocean acidification, sea surface tem-
perature, sea level rise, and UV radiation incidence 
(Halpern et al. 2015). The cumulative im pact of these 
stressors was based on assumptions of linear and addi-
tive responses within natural systems. However, it is 
important to consider that marine ecosystems may ex-
hibit threshold responses to intense and cumulative 
stressors, resulting in nonlinear cumulative impact re-
sponses within ecological relationships (Halpern et al. 
2015). Such responses are common but difficult to pre-
dict. Therefore, the index provides an overview of how 
environmental pressures are changing over time and 
identifies areas where mitigation efforts are most nec-
essary (Halpern et al. 2015). 

2.3.  Statistical analyses 

This study was based on the assumption of an equi-
librium or pseudo-equilibrium existing between the 
environment and observed species patterns (Lischke 
et al. 1998, Guisan & Zimmermann 2000). The adop-
tion of the pseudo-equilibrium principle is justified 
due to its broad-scale predictive power and the lack of 
detailed data on the physiology and behavior of the 
studied species (Guisan & Zimmermann 2000, Pickett 
et al. 2010). Furthermore, given the limited research 
conducted on the Lysmatidae as a group, the princi-
ple of pseudo-equilibrium enables us to leverage the 
maximum available information gleaned from occur-
rence records amassed thus far. 

To perform spatial filter analyses, we utilized the 
geographical coordinates (latitude and longitude) of 
each cell on the globe to construct a paired matrix of 
geographical distances between cells (Diniz-Filho 
et al. 2003). This distance provides weight to short-
distance effects following the filtering process (Diniz-
Filho et al. 2003). The association between eigenvec-

tors and positive eigenvalues of the matrix represents 
the spatial relationship between globe cells at differ-
ent spatial scales (Diniz-Filho et al. 2003). The geome-
try of the geographic area under study allows their 
incorporation into a multiple regression approach, 
while considering spatial autocorrelation and en -
abling unbiased prediction of regression parameters 
(Diniz-Filho et al. 2003). 

To test the different hypotheses, we constructed 15 
regression models using the spatial eigenvector filter-
ing method (Murakami 2022). This approach removes 
the bias of spatial autocorrelation in the residuals of 
general linear model (GLM) regression, thereby en-
hancing the reliability of estimating the effects of each 
variable, as the filters represent distinct and inde-
pendent propositions of how map cells are geographi-
cally related or connected to each other (Diniz-Filho & 
Bini 2005). The filters are expressed as new variables 
derived from geographical distances and the spatial 
relationships between cells (Diniz-Filho & Bini 2005). 

The selection of the best model was based on 
Akaike’s information criterion (AIC). According to 
this criterion, the model that best explains the studied 
phenomenon is the one with ΔAIC = 0, as it repre-
sents the least loss of information when the model is 
used to approximate the total reality (Johnson & 
Omland 2004, Burnham et al. 2011). After adjusting 
each model to the data and calculating the AIC score, 
differences in these scores between each model and 
the best model were computed (the best model in the 
set has the minimum AIC score: Δi = AICi – AICmin) 
(Johnson & Omland 2004). All models with ΔAIC <4 
were considered to have substantial support (Burn-
ham et al. 2011). Akaike weights are additive and can 
be summed to provide a set of trustworthy models 
with a specific probability that the best-fitting model 
is contained within the confidence set (Johnson & 
Omland 2004). 

Upon evaluating the models based on the AIC, we 
proceeded to assess the performance of the top-rank-
ing models by examining their goodness of fit, while 
acknowledging the finite nature of the data and rec-
ognizing that models serve as approximations of real-
ity (Burnham & Anderson 2004). All statistical analy-
ses were executed using RStudio (R version 4.3.2). 

3.  RESULTS 

A total of 4125 data points were collected, with 243 
sourced from literature reviews. Following data screen-
ing, 966 occurrence points were selected for analysis. 
The highest richness of Lysmatidae was present in the 
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transition areas between tropical and subtropical re-
gions in both hemispheres (Fig. 2). The distribution of 
Lysmatidae richness across 4 scales — realm, province, 
ecoregion, and local (2° × 2° grid cell) — reveals a cir-
cumtropical dispersion (Fig. 3). 

At the local scale (cell), the highest richness is con-
centrated in the southern portion of the Gulf of Mex-
ico (7 species) and on the west part of the Florida 
(USA) coast, reaching a peak of 10 species (Fig. 3A). 
At the ecoregion scale, the northern region of the 
Gulf of Mexico (9–12 species) and the southwestern 
Caribbean (12–15 species) display the highest rich-
ness values in the Atlantic. In the Indo-Pacific, the 
Eastern Philippines ecoregion features scattered 
areas where species richness reaches its peak (12 spe-
cies) (Fig. 3B). 

At the province scale, we observed that the highest 
richness is concentrated in the tropical region of the 
North Atlantic (Tropical Northwestern Atlantic), but 
it extends into a transition area in the subtropical 
region of the Warm Temperate Northwestern Atlantic 
province. Intermediate values of richness were ob -
served in the South Atlantic (Tropical Southwestern 
Atlantic; richness range: 14–19 species). In the Paci-
fic Ocean, we observed several patches of richness, 
with peaks reaching 10–14 species in the Western 

Coral Triangle province (Fig. 3C). On the realm scale, 
we observed 2 peaks of Lysmatidae richness in tropi-
cal regions, one in the Atlantic Ocean and the other in 
the Eastern Pacific (Fig. 3D). Subtropical regions of 
the northern Atlantic Ocean (Temperate Northern 
Atlantic realm), and tropical regions of the Indo-Paci-
fic (Western Indo-Pacific realm) presented intermedi-
ate values of Lysmatidae richness (Fig. 3D). 

Among the hypotheses explored to elucidate the 
distribution patterns of Lysmatidae richness (PSH, 
RAH, HHH, and AIH), only at the realm scale was the 
best model composed of a single hypothesis (Fig. 4). 
The best models (ΔAIC = 0) and the contribution of 
the studied variables varied across scales. At the realm 
scale, the best model was HHH (adjusted R2 = 0.87, 
Moran’s I = 0.34, spatial effects residuals, SE = 0.89), 
where coral richness exhibited the highest contrib-
ution and a positive relationship with richness (esti-
mates = 0.08, t = 2.75, p < 0.01), followed by bathyme-
try, showing an equally significant relationship to 
Lysmatidae richness (estimates = 0.06, t = 2.74, p < 
0.01). At the province scale, the best model was 
PSH+RAH+HHH+AIH (adjusted R2 = 0.92, Moran’s 
I = 0.36, SE = 0.96), with bathymetry (estimates = 
0.08, t = 2.63, p = 0.01) showing the highest contrib-
ution to the model, followed by coral richness (esti-
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Fig. 2. Species richness of the Lysmatidae across latitudes. Black dots = species richness values of the Lysmatidae family on a  
local scale
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mates = 0.06, t = 2.31, p = 0.02), salinity range (esti-
mates = –0.05, t = –2.18, p = 0.03), and anthropo-
genic impact (estimates = –0.03, t = –2.54, p = 0.01). 
At the ecoregional scale, the best model was PSH+
RAH+HHH+AIH (adjusted R2 = 0.66, Moran’s I = 
0.31, SE = 0.84), with bathymetry (estimates = 0.21, 
t = 3.22, p < 0.01), temperature range (estimates = 
0.14, t = 2.67, p < 0.01), and anthropogenic impact (es-
timates = 0.06, t = 1.97, p = 0.05) displaying a positive 
relationship with richness and making the most sub-
stantial contributions to the model. Finally, at the local 
scale (2° × 2° grid cells), HHH+AIH was identified as 
the optimal model (adjusted R2 = 0.25, Moran’s I = 
0.68, SE = 0.64), with bathymetry exhibiting the high-
est contribution and a positive relationship with rich-
ness (estimates = 0.27, t = 2.68, p < 0.01). 

4.  DISCUSSION 

The models employed in this study effectively elu-
cidated variations in richness within the group, ex -
plaining a substantial proportion ranging from 25 to 
92%, as depicted in the presented scales (Table 2). 

This explained percentage holds sig-
nificance when compared to other 
studies investigating richness patterns 
in marine animals, where R2 values 
fluctuated between 15 and 89% (Tit-
tensor et al. 2010, Parravicini et al. 
2013, Martinez et al. 2021). It is note-
worthy that in comparison to the 
studies cited here, those demonstrat-
ing the highest percentages in ex -
plaining richness distribution consid-
ered not only environmental factors 
but also historical and phylogenetic 
factors. This affirms the relevance of 
the analyzed environmental factors in 
predicting the clade richness, as re -
vealed by our results. 

Our findings substantiate inter- and 
intra-regional disparities in species 
diversity patterns in tropical marine 
environments, as observed by Frey & 
Vermeij (2008). We observed the high-
est richness of the Lysmatidae in the 
region between the Caribbean Sea and 
the Gulf of Mexico, aligning with the 
same hemispheric asymmetry noted 
by Chaudhary et al. (2016) for marine 
species. In contrast to the suggestion 
by Tittensor et al. (2010) that coastal 

species tend to be disproportionately concentrated in 
Southeast Asia, the Lysmatidae exhibit higher rich-
ness in the Caribbean and Gulf of Mexico region, 
despite significant richness values also being present 
in the Philippines region. 

Although the Tropical Atlantic and Central Indo-
Pacific realms have the same number of species, rich-
ness is distributed more evenly in the Central Indo-
Pacific, with ecoregions showing maximum values of 
9 species. In the Tropical Atlantic, however, we ob -
served richness peaks in 3 ecoregions: the northern 
Gulf of Mexico, Floridian and southwestern Carib-
bean (ranging from 9 to 15 species). This fact may be 
re lated to a biogeographic pattern from the Indian 
Ocean and Western Pacific, where there is a decreas-
ing gradient in the number of species as we move 
away from the Coral Triangle region in any direction 
(Briggs 1999, 2005). Moreover, the fact that Carib-
bean coral reefs have a significantly smaller area than 
those present in the Coral Triangle region (Briggs 
2005) and are close to a major barrier such as the 
Amazon River plume (Giachini Tosetto et al. 2022) 
may contribute to the concentration of species diver-
sity in the tropical ecoregions of the western Atlantic. 
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Fig. 4. Slopes of regression models arranged by scale. Bold values (black bars)  
indicate p < 0.05
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Scale              Model                                              SD     Moran’s I/      Residual   Adj. R2   logLik         AIC      ΔAIC    Rank       BIC 
                                                                                              max(MoranI )                 SE 
 
Local (cell)   HHH + AIH                                  0.64           0.68                0.87           0.25    –102.62     229.23      0.00         1        259.54 
                        RAH + HHH + AIH                   0.63           0.70                0.87           0.25    –102.07    230.13      0.90         2        261.89 
                        HHH                                               0.63           0.55                0.87           0.21    –102.27    230.53      1.30         3        262.29 
                        PSH+ HHH                                  0.66           0.72                0.87           0.24    –102.28    230.56      1.33         4        262.32 
                        PSH + AIH                                    0.50           0.54                0.87           0.24    –101.72    231.44      2.21         5        265.64 
                        RAH + HHH                                0.61           0.56                0.87           0.24    –101.76    231.52      2.29         6        265.71 
                        PSH                                                 0.50           0.45                0.88           0.23    –102.82    231.64      2.41         7        263.39 
                        AIH                                                  0.50           0.45                0.90           0.19    –106.84    233.68      4.45         8        258.11 
                        RAH + AIH                                   0.50           0.45                0.91           0.18    –106.82    235.64      6.41         9        262.51 
                        RAH                                                0.51           0.37                0.91           0.18    –106.96    235.92      6.69        10       262.79 
                        PSH + RAH + AIH                     NA            NA                 0.94           0.12    –111.56    239.12      9.89        11       258.66 
                        PSH + RAH                                   NA            NA                 0.95           0.10    –112.87    239.74    10.51       12       256.84 
                        PSH + RAH + HHH + AIH     NA            NA                 0.93           0.13    –110.06    240.12    10.89       13       264.55 
                        PSH + RAH + HHH                   NA            NA                 0.95           0.11    –111.64    241.29    12.06       14       263.27 
Ecoregion    PSH + RAH + HHH + AIH     0.84          0.308               0.57           0.66    –419.91     925.83      0.00         1       1106.97 
                        RAH + HHH + AIH                   0.82          0.307               0.59           0.65    –424.18    928.36      2.54         2       1096.87 
                        PSH + RAH + AIH                     0.83          0.311               0.59           0.65    –422.08    930.16      4.33         3       1111.30 
                        RAH + HHH                                0.81          0.292               0.59           0.65    –426.32    930.64      4.81         4       1094.93 
                        PSH + RAH + HHH                  0.83          0.291               0.59           0.65    –425.00    930.85      5.02         5       1099.35 
                        PSH + AIH                                    0.83          0.318               0.59           0.65    –424.50    931.00      5.17         6       1103.71 
                        PSH + RAH                                  0.83          0.296               0.59           0.65    –423.88    931.76      5.93         7       1108.69 
                        PSH                                                 0.82          0.302               0.59           0.65    –426.44    932.88      7.05         8       1101.39 
                        PSH + HHH                                 0.82          0.297               0.59           0.65    –427.61    933.22      7.39         9       1097.51 
                        HHH + AIH                                  0.82          0.323               0.60           0.64    –432.61    941.21    15.39       10      1101.29 
                        RAH + AIH                                   0.81          0.302               0.60           0.64    –435.60   943.202   17.37       11      1094.86 
                        HHH                                               0.82          0.307               0.60           0.64    –434.83    943.66    17.84       12      1099.53 
                        RAH                                                0.81          0.288               0.60           0.64    –435.60    945.20    19.37       13      1101.06 
                        AIH                                                  0.81          0.312               0.60           0.63    –439.38    948.77    22.94       14      1096.21 
Province       PSH + RAH + HHH + AIH     0.96          0.361               0.84           0.92     –78.88      279.77      0.00         1        556.24 
                        RAH + HHH + AIH                   0.95          0.364               0.29           0.92     –82.70     281.40      1.63         2        544.28 
                        PSH + HHH                                 0.96          0.364               0.29           0.92     –82.36     282.72      2.95         3        550.12 
                        PSH + RAH + HHH                  0.96          0.365               0.29           0.92     –82.33     284.67      4.90         4        556.61 
                        RAH + HHH                                0.95          0.367               0.29           0.92     –86.18     286.36      6.59         5        544.70 
                        HHH + AIH                                  0.95          0.366               0.29           0.92     –87.39     288.78      9.01         6        547.13 
                        RAH + AIH                                   0.95          0.350               0.29           0.92     –91.78     289.55      9.79         7        529.77 
                        HHH                                               0.95          0.368               0.29           0.92     –90.79     291.57    11.81        8        540.85 
                        PSH + AIH                                    0.96          0.351               0.29           0.92     –86.95     291.89    12.12        9        559.30 
                        PSH + RAH + AIH                     0.96          0.350               0.29           0.92     –86.80     293.60    13.83       10       565.54 
                        AIH                                                  0.96          0.349               0.29           0.92     –94.21     294.42    14.65       11       534.63 
                        PSH                                                 0.96          0.354               0.29           0.92     –90.56     297.13    17.36       12       560.01 
                        RAH                                                0.96          0.353               0.29           0.92     –95.60     297.19    17.42       13       537.40 
                        PSH + RAH                                  0.96          0.354               0.29           0.92     –90.48     298.97    19.20       14       566.38 
Realm            HHH                                               0.89          0.338               0.36           0.87    –270.74     661.49      0.00         3        938.93 
                        HHH + AIH                                  0.89          0.337               0.36           0.87    –270.63    663.25      1.77        10       945.32 
                        RAH + HHH                                0.89          0.338               0.36           0.87    –270.74    663.48      1.99         8        945.55 
                        PSH + HHH                                 0.89          0.337               0.36           0.87    –268.34    664.67      3.18         6        960.61 
                        RAH + HHH + AIH                   0.89          0.337               0.36           0.87    –270.62    665.24      3.76        13       951.93 
                        PSH + RAH + HHH                  0.89          0.337               0.36           0.87    –268.12    666.25      4.76        11       966.81 
                        PSH + RAH + HHH + AIH     0.89          0.336               0.36           0.87    –268.01    668.01      6.53        14       973.20 
                        PSH                                                 0.91           0.35                0.36           0.87    –274.89    675.78    14.29        1        967.09 
                        PSH + AIH                                    0.91          0.351               0.36           0.87    –274.82    677.65    16.16        7        973.59 
                        PSH + RAH                                  0.91          0.351              0.364          0.87    –274.87    677.75    16.26        5        937.69 
                        PSH + RAH + AIH                     0.91           0.35                0.36           0.87    –274.80    679.61    18.12       12       980.17 
                        RAH                                                0.93          0.361               0.37           0.87    –279.94    681.89    20.40        2        963.96 
                        AIH                                                  0.94          0.362               0.37           0.87    –280.16    682.32    20.84        4        964.39 
                        RAH + AIH                                   0.94          0.361               0.37           0.87    –279.92    683.85    22.36        9        970.54

Table 2. Model ranking according to Akaike’s information criterion (AIC). Models in bold: ΔAIC = 0. BIC: Bayesian information  
criterion. Hypothesis abbreviations as in Table 1
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The models supported in this study indicate that 
the studied variables explain the richness pattern dif-
ferentially at each observed scale, confirming that the 
extent of a geographic area can significantly in -
fluence the derived species richness pattern (Rahbek 
2005). In this study, it is evident that factors related to 
habitat heterogeneity are the primary predictors of 
Lysmatidae richness, corroborating the insights of 
Tittensor et al. (2010) regarding the relevance of this 
resource for marine organisms. At the realm scale, 
we observed a positive impact of coral richness and 
bathymetry on Lysmatidae richness. Corals play a 
crucial role by  offering various habitats for the Lysma-
tidae, acting as refuges from predators and competi-
tors (Idjadi & Edmunds 2006) and altering local 
hydrodynamics, thereby enhancing nutrient and zoo-
plankton availability (Atkinson & Bilger 1992). This 
combination of factors may explain the equivalence 
in the number of species found in the Tropical Atlan-
tic and Central Indo-Pacific realms. The presence of 
scleractinian corals in the Gulf of Mexico, Caribbean, 
and the Philippines (Roberts et al. 2006, Soetaert et 
al. 2016) coincides with the provinces with the highest 
richness of Lysmatidae. Recognized as ecosystem 
engineers, scleractinian corals can shape bottom 
topographies, with heights ranging from tens to hun-
dreds of meters (Roberts et al. 2006, Soetaert et al. 
2016). 

Scleractinian corals reefs induce the upwelling of 
surface waters through the formation of internal waves 
or hydraulic jumps and construct extensive areas serv-
ing as habitats for sponges and fish (Soetaert et al. 
2016). All of these ecosystem functions provided by 
corals are relevant for the Lysmatidae species that per-
form fish cleaning or exhibit symbiosis with anemones, 
such as Lysmata amboinensis, L. grabhami, L. debelius, 
L. splendida, L. pederseni, L. seti caudata, L. californica, 
and L. wurdemanni (Calado et al. 2003, 2008, Rhyne & 
Lin 2006, Baeza 2013). 

The relationship between bathymetry and Lysmati-
dae richness remained consistent across all scales, 
being more pronounced at finer scales (ecoregion and 
local) and may be associated with the coloration and 
behavioral aspects of the Lysmatidae. Coloration in 
crustaceans is regulated by cells containing chroma -
to phores (Rao et al. 1985) and is influenced by both 
physiological and environmental factors (Kronstadt 
et al. 2013, Vega-Villasante et al. 2015). It serves var-
ious functions such as communication, camouflage, 
and thermoregulation (Kronstadt et al. 2013). Depth, 
as an example, can affect light penetration, and 
shrimp with reddish coloration can camouflage them-
selves better, increasing their crypticity (Kronstadt et 

al. 2013). The reddish coloration pattern, as observed 
for the Lysmatidae in general, functions as camou-
flage for dark environments; when inhabiting shallow 
environments, the species tend to adopt nocturnal 
habits and remain hidden in crevices and caves 
(Calvo et al. 2016). 

In the case of aposematic species, we expect the 
opposite pattern. Specifically, concerning the cleaner 
shrimps, we observe distinct coloration patterns asso-
ciated with fish-cleaning behavior and reef habitat, 
typically shallow (Calado et al. 2003, Calado 2006). 
Evidence from L. grabhami and L. amboinensis sug-
gests that part of the cues provided by shrimp to their 
‘clients’ are visual and may be associated with visual 
patterns as a specific signal (Fletcher et al. 1995, 
Rufino & Jones 2001). 

At the province and ecoregion scales, the best 
models incorporated all proposed hypotheses but 
diverged in the significance of each variable. At the 
province scale, both bathymetry and coral richness 
emerged as significant variables, mirroring their 
importance at the realm scale. On the other hand, 
salinity variation and anthropogenic impacts exhib-
ited a negative relationship with Lysmatidae richness. 
The impact of salinity on the distribution the Lysmati-
dae richness has been substantiated, given the well-
documented and regularly reviewed saline tolerance 
ranges of numerous decapods, including comprehen-
sive studies by Lockwood (1962), Mantel & Farmer 
(1983), Charmantier et al. (2008), and Freire et al. 
(2008). It is established that fully marine groups, such 
as the Lysmatidae, function as osmotic conformers. In 
essence, the osmolarity of their hemolymph closely 
mirrors the ambient environment within a narrow 
range of variation (McNamara & Faria 2012). Con-
sequently, Lysmatidae shrimps display limited regu-
latory capacity for both hemolymph concentration 
and composition, as well as osmotic urine production 
(McNamara & Faria 2012). 

Considering that variations in water salinity and 
resource availability can function as stressors during 
the larval stages of marine shrimp (Giménez & Anger 
2001), it is plausible that the stress effects from the 
environment could be passed down through genera-
tions, causing harm to juvenile stages, as outlined by 
Giménez (2006) in terms of ‘phenotypic linkage’ pro-
cesses. This may hinder the establishment of certain 
species in regions with significant salinity variations 
or their ability to migrate through areas with such 
characteristics. 

The discovery of contrasting anthropogenic im -
pacts on Lysmatidae richness at different scales 
(pro  vince: negative, ecoregion: positive) under-
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scores the significance of scale in biodiversity re -
search. At most regional scales, a negative relation-
ship between anthropogenic impact and Lysmatidae 
richness may be related to benthic marine ecosys-
tems experiencing erosion in their ecological resili-
ence due to climate change (Wernberg et al. 2010, 
Graham et al. 2015). Changes in physiological, dem -
ographic, and community processes due to temper -
ature increase have led to species redistribution 
(Wernberg et al. 2010, Poloczanska et al. 2013). 

At the finest scales, anthropogenically impacted 
marine environments could be characterized by an 
ex cessive influx of organic matter (wastewater, ben-
thic cover mortality on hard substrates, fishing and 
tourism residues), promoting the proliferation of 
algae and pests. This increase in organic matter could 
also lead to an increase in the population of scav-
engers and natural cleaners, such as the Lysmatidae 
cleaning species (Calado & Narciso 2005). 

At the ecoregion scale, we observed a positive 
effect of temperature range on the richness of Lysma-
tidae. This finding may be related to physiological 
aspects of the clade, as temperature plays a crucial 
role in establishing reproductive periodicity and 
recruitment in shrimps and numerous other crusta-
ceans (Sastry et al. 1983, Bauer 1992). Seasonal re -
cruitment is a common feature among crustacean 
species inhabiting temperate latitudes, a trait also 
observed in Exhippolysmata oplophoroides (Baeza 
2010). This species displays a mixed pattern of repro-
ductive biology, with embryo incubation occurring 
throughout the year and juvenile recruitment limited 
to the summer months (Baeza 2010). 

Despite the negative relationship found between 
salinity range and richness at the province scale, this 
pattern does not hold at the ecoregion scale. This 
fact becomes evident when we observe the ecore-
gions of the northern Gulf of Mexico and tropical 
southwestern Atlantic, which maintain high Lysmati-
dae richness values despite receiving a substantial 
volume of fresh water from the Mississippi and the 
Amazon Rivers, respectively. It is conceivable that 
salinity variation northeast of the Gulf of Mexico 
influenced the isolation and speciation of the L. wur-
demanni complex, as this river separates populations 
along the Florida coast from those along the Texas 
coast and may explain the observed speciation 
occurring between these populations. According to 
Baeza & Prakash (2019), the genetic distance be -
tween Texas and Florida populations was relatively 
large (p- distance = 0.045–0.081, mean ± SD = 
0.0645 ± 0.0011) and comparable to that calculated 
for species pairs within the genus Lysmata. 

Although we did not find a relationship between 
mean temperature and Lysmatidae richness, we can-
not dismiss the indirect effect of this variable, as coral 
richness is an important predictor for the clade, and 
mean temperature is directly related to it. Consider-
ing the decline in ecological resilience of benthic 
marine ecosystems promoted by climate changes, 
temperature emerges as a significant stressor across 
ecosystems (Wernberg et al. 2010, Graham et al. 
2015). The reduction in extreme cold events in winter 
has facilitated the expansion of cold-sensitive tropical 
species into temperate regions (Cavanaugh et al. 
2019). In the biogeographic division between tropical 
and temperate communities, global warming has led 
to the spread of tropical corals, fish, and benthic crus-
taceans (Poloczanska et al. 2013, Agostini et al. 2021). 

Poloczanska et al. (2013) identified a benthic crusta-
cean expansion rate of approximately 20 km per dec-
ade towards colder environments and emphasized 
that the reorganization of species at a regional scale 
can trigger cascade effects. González-Ortegón et al. 
(2020) suggested that the expansion of L. uncicornis 
to the western Atlantic coasts of Europe may be 
linked to the tropicalization of subtropical areas and 
warned against the spread of non-native species 
(Dawson et al. 2017), which could alter or create bio-
logical interactions, often leading to changes in the 
recipient community. 

In conclusion, our study showed the significance of 
spatial scale in shaping richness patterns and re -
vealed a bimodal distribution pattern for Lysmatidae, 
with peaks in tropical–subtropical transition regions 
and notably in the Gulf of Mexico and the Caribbean. 
We confirmed the effect of physiological stress (PSH) 
on the richness of Lysmatidae at regional scales 
(ecoregion and province) since salinity and tempera-
ture were negatively related to family richness. Con-
trary to our predictions, at the local scale, we noted 
the influence of bathymetry in promoting Lysmatidae 
richness, a pattern that persisted across other scales. 
The confirmation of anthropogenic impact also 
revealed varying influences across regional scales 
(ecoregion and province). 

Furthermore, our research confirms the importance 
of habitat heterogeneity for the clade at broader 
scales, as we observed a positive relationship be -
tween coral richness and the Lysmatidae richness at 
larger scales. This finding underscores the signifi-
cance of coral reef environments for Lysmatidae con-
servation efforts. Additionally, we emphasize the 
importance of expanding sampling efforts for the 
group to ensure the inclusion of all species in future 
studies. 
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