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1.  INTRODUCTION 

Movement patterns and site fidelity strongly in-
fluence the population connectivity and spatial struc-
ture of genetic differentiation in a species. Connectiv-
ity requires movement, so species with high movement 
rates or distances are commonly associated with a 
high degree of mixing and more homogeneous genetic 

structure on broad spatial scales (Palumbi 2003, Young 
et al. 2015, Carr et al. 2017). Species with strong site fi-
delity, however, are typically characterized by popula-
tion structures with strong spatial patterns of genetic 
differentiation (Meylan et al. 1990, Campbell et al. 
2008, Rooker et al. 2008, Bonanomi et al. 2016). This is 
often due to natal site fidelity, whereby an animal 
either remains at its natal location (philopatry) or re-
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turns to reproduce at its natal location after an initial 
migration away (natal homing). However, spatial pop-
ulation structure can also arise through foraging site 
fidelity to non-natal locations by juveniles or adults 
(Lowther et al. 2012). 

Sometimes, however, diverse taxa, ranging from 
birds (Milot et al. 2008, Pearce et al. 2008) to fishes 
with varied life histories, exhibit little genetic differen-
tiation across broad spatial scales despite natal homing 
(Thorrold et al. 2001), site fidelity (Whitney et al. 2012, 
Klein et al. 2022), or the sedentary behavior of adults 
(van Herwerden et al. 2009, Berry et al. 2012, Gardner 
et al. 2015, Antoni & Saillant 2017). This can lead to a 
perceived mismatch in the scale of demographic con-
nectivity, which considers the exchange of individuals 
between populations, and estimates of geneflow 
(Weersing & Toonen 2009, Lowe & Allendorf 2010, Sel-
koe et al. 2016, Legrand et al. 2022). Such is the case for 
scamp Mycteroperca phenax, an economically impor-
tant reef-associated grouper that is found throughout 
the continental shelf off the southeastern USA — from 
the northwest Gulf of Mexico to the Atlantic Ocean 
near North Carolina (Smith 1971, Bullock & Smith 
1991, Bacheler & Ballenger 2018). 

Scamp form spawning aggregations (<100 individ-
uals) in high-relief rocky areas along the edge of the 
continental shelf (Coleman et al. 2011, SAFMC 2013, 
Farmer et al. 2017, Grüss et al. 2018, Heyman et al. 
2019) that are thought to comprise both resident and 
transient individuals (Biggs et al. 2021). The details 
are not well established, but compared to other aggre-
gating groupers, like gag Mycteroperca microlepis, 
scamp aggregations are thought to be less specific to 
particular locations or habitat types (Coleman et al. 
2011). Some localized movement to and from spawn-
ing locations on the edge of the continental shelf is 
likely, but there is no direct evidence of significant 
migration. Tag recaptures overwhelmingly find 
scamp within 20 km of their release location, with 
only a handful of documented individuals traveling 
farther (Wilson & Burns 1996, Coleman et al. 2011, 
Addis et al. 2013, SEDAR 2020). 

Nonetheless, genetic analyses of scamp have found 
no spatial patterns of differentiation or population 
structure. Instead, a single genetic population spans 
the continental shelf off the southeast USA, including 
the Gulf and Atlantic regions (Zatcoff et al. 2004, 
SEDAR 2020). This finding has led to speculation 
about the mechanism of mixing that maintains genetic 
homogeneity across the scamp population, despite 
high site fidelity and little post-settlement movement. 

One plausible explanation is that long-distance lar-
val dispersal by ocean currents facilitates connectivity 

between disparate and otherwise isolated populations 
(Zatcoff et al. 2004). Indeed, larval dispersal has long 
been implicated as a source of population connectivity 
in fishes (Cowen et al. 2003). For taxa with long 
pelagic larval durations (PLDs), such as grouper (Lin-
deman et al. 2000), it may serve as the dominant form 
of connectivity. The dispersal distances required to 
mix scamp populations in the Gulf of Mexico with 
those in the Atlantic, however, are orders of magnitude 
greater than what is commonly assumed to be realized 
(Cowen et al. 2006, Abesamis et al. 2017, Almany et al. 
2017, D’Aloia et al. 2022). Moreover, the dispersal pat-
terns of reef-fish larvae, including grouper species, are 
widely thought to be dominated by self-recruitment, 
with most larvae settling close to where they spawned 
(Jones et al. 1999, 2005, Cowen et al. 2006, Buston et al. 
2012, Almany et al. 2013, D’Aloia et al. 2015). 

In US waters, scamp are managed as 2 separate 
stocks: one in the Gulf of Mexico, which is managed 
by the Gulf of Mexico Fishery Management Council 
and was recently estimated to be not overfished and 
not subject to overfishing (SEDAR 2022a); another in 
the Atlantic, which is managed by the South Atlantic 
Fishery Management Council and was recently esti-
mated to be overfished but not subject to overfishing 
(SEDAR 2022b). This 2-stock structure is due, in part, 
to geographical boundaries as well as a presumed bio-
logical separation between populations. In effect, this 
treats US scamp in the Gulf of Mexico and Atlantic 
as 2 independent and homogeneous populations. 
If, however, sufficient larval dispersal exists to mix 
scamp populations in the 2 regions, then it could also 
have implications for fishery management. 

In particular, spatial management decisions, like the 
placement of stock boundaries and marine protected 
areas, benefit from understanding which areas provide 
recruitment to the broader region and which areas rely 
on external recruitment (Dubois et al. 2016). These so-
called ‘source–sink’ dynamics can be quantified by 
 simultaneously considering a variety of connectivity 
metrics, including some that consider the retention of 
locally spawned larvae and others that consider the 
exchange of larvae between areas (Dubois et al. 2016). 
Moreover, understanding dispersal could influence 
the way recruitment is modeled during stock assess-
ment. For example, in some instances, statistical 
models that include connectivity metrics better predict 
inter-annual recruitment deviations than conventional 
spawner–recruit relationships do (Hidalgo et al. 2019). 

Therefore, to investigate the scale of scamp connec-
tivity, we used an individual-based model to simulate 
dispersal and examine the resulting recruitment 
dynamics. Specifically, we used the open-source par-
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ticle tracking platform Connectivity Modeling Sys-
tem (CMS; Paris et al. 2013), which combines repro-
ductive ecology and larval biology with models of 
oceanic currents, to transport virtual larvae through 
time and space. Within CMS, we modeled scamp life 
history, released virtual larvae from spawning loca-
tions throughout US waters, and tracked their simu-
lated movements from spawning grounds to settle-
ment locations. These simulations can inform the 
degree of connectivity between fishery management 
units (Le Corre et al. 2019, 2020, Zeng et al. 2019). We 
focused on 3 topics: (1) whether oceanographic con-
ditions in the region favor local retention or long-
 distance dispersal; (2) which spawning re gions are 
likely to produce significant scamp recruitment; and 
(3) the degree of trans-boundary connectivity 
between the scamp stock units in the US Gulf of Mex-
ico and Atlantic Ocean. 

2.  MATERIALS AND METHODS 

2.1.  Biophysical modeling framework 

We used the CMS to simulate the spawning of vir-
tual eggs from expected scamp spawning locations 
throughout the US Gulf of Mexico and Atlantic re -
gions. CMS uses the output from oceanographic 
models to advect individual virtual larvae through 
time and space and monitors the trajectories of those 
larvae from spawning to settlement. In total, we con-
ducted 8 different simulations, which used the same 
seasonal and spatial spawning distributions but dif-
fered in terms of the underlying ocean velocity fields 
and assumed larval traits and behaviors (Table 1). 

These 8 simulations can be thought of as one base 
simulation and 7 variations that explore 2 kinds of 
known uncertainty: that due to ocean circulation and 
that due to larval biology. In the subsequent sections, 
we describe the configuration of the base simulation 
we used to model scamp dispersal. Then, we describe 
how we modified this base simulation to investigate 
hydrodynamic and biological uncertainties, and the 
ensemble modeling approach we used to analyze the 
results and quantify scamp connectivity. 

2.2.  Initial conditions of the base biological model 

2.2.1.  Spawning time 

To determine the timing of simulated spawning in 
CMS, we used a generalized additive model (GAM) to 
analyze the seasonality of all available reproductive 
histology data for scamp caught in the US Gulf of 
Mexico (1972–2017, National Marine Fisheries Ser-
vice, Southeast Fisheries Science Center) and Atlan-
tic (1976–2018, South Carolina Department of Mar-
ine Resources). After removing data without reliable 
positional information and years with fewer than 30 
samples, these data included 5093 reproductive 
samples (Fig. S1, Table S1 in the Supplement at www.
int-res.com/articles/suppl/m750p133_supp.pdf). Of 
these, 650 were obtained from females within approx-
imately 24 h of spawning, with spawning observed at 
depths between 14 and 177 m. We used a binomial 
GAM to predict the probability that a sample came 
from a spawning female (η, Eqs. 1–3). The covariates 
we considered included average bottom depth (d), 
local change in bottom depth (delta), distance to the 
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Simulation                     Hydrodynamic product                   Competency                 OVM                Settlement                  Ensemble 
                                                                                                       period (PLD) (d)                                         criteria (m)                             
 
Base                                HYCOM GOM + GOFS                        33–52                          No                           30                                H, B 
GOM HiRes           HYCOM GOM HiRes + GOFS                  33–52                          No                           30                                   H 
IAS                                             HYCOM IAS                                   33–52                          No                           30                                   H 
Mercator                                      Mercator                                       33–52                          No                           30                                   H 
SABGOM                                   SABGOM                                      33–52                          No                           30                                   H 
PLD 57                           HYCOM GOM + GOFS                        33–57                          No                           30                                   B 
OVM                              HYCOM GOM + GOFS                        33–52                         Yes                          30                                   B 
45 m                                HYCOM GOM + GOFS                        33–52                          No                           45                                   B

Table 1. Scamp larval dispersal simulations (1 base simulation and 7 sensitivity simulations) investigating variation due to un-
certainty in ocean velocity estimates and scamp larval biology. OVM (ontogenetic vertical migration): whether the simulation 
includes (Yes) or does not include (No) an ontogenetic shift in the vertical distribution of simulated larvae; H: simulations in-
cluded in the hydrodynamic ensemble; B: simulations included in the biological ensemble; PLD: pelagic larval duration; 
HYCOM: Hybrid Coordinate Ocean Model; GOM: Gulf of Mexico; GOFS: Global Ocean Forecasting System; HiRes: high  

resolution; IAS: Inter-American Seas; SABGOM: South Atlantic Bight and Gulf of Mexico

https://www.int-res.com/articles/suppl/m750p133_supp.pdf
https://www.int-res.com/articles/suppl/m750p133_supp.pdf
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continental shelf-break (dist; Text S1), day of year 
(doy), year (yr), and whether the sample came from a 
fishery-dependent or fishery-independent source 
(source). We calculated the depth-based covariates 
from the Coastal Relief Model (National Geophysical 
Data Center 2023) using a 100 m radius around each 
catch location. Scamp are thought to spawn preferen-
tially at high-relief rocky areas near the edge of the 
continental shelf (Coleman et al. 2011, SAFMC 2013, 
Farmer et al. 2017, Grüss et al. 2018); unfortunately, 
habitat, relief, and substrate data are not consistently 
available throughout our full study area. As these 
data are only available at select sites, we could not in -
clude them explicitly in this model. Instead, we used 
the change in depth within 100 m of each sample loca-
tion as a proxy for local relief.  

                                 η ~ Bernoulli(π)                             (1) 

                 E(η) = π, and var(η) = π × (1 – π)             (2) 

            logit(π)= α + s1(doy*) + s2(dist†) + s3(d†)  
              + s4[log (delta†)] + ƒ1(yr) + ƒ2(source)          (3) 

where η is the probability of scamp spawning, π is the 
probability of a spawning female and (1 – π) is the 
probability of a male or non-spawning female; logit is 
the logit link function; α is the model intercept; s is a 
smoothed cubic spline function; ƒ is a categorical 
function; * denotes temporal covariates that changed 
when predicting the spawning season; and † denotes 
spatial covariates that changed when predicting the 
spawning distribution. 

For this and all subsequent GAMs, we used the 
‘mgcv’ package (Wood 2011) in R version 4.0.5 
(R Core Team 2023). We estimated smoothing param-
eters using re stricted maximum likelihood and con-
ducted variable selection with the ‘select == TRUE’ 
argument, which is the recommended method for 
GAMs and adds an additional penalty to each term so 
that they can be removed from the model during the 
fitting process (Marra & Wood 2011). The final model 
(Eq. 3) re tained all variables and explained 45.1% of 
the deviance in spawning with an adjusted r2 of 0.402. 
This model predicted a high probability of spawning 
from March through May, with a peak in April 
(Fig. 1A), which is consistent with previous reports of 
the scamp spawning season (Harris et al. 2002, Lom-
bardi-Carlson et al. 2012, Farmer et al. 2017). 

There has not been sufficient histology sampling to 
estimate a different spawning season for each year 
(Table S1); therefore, we used this average seasonal-
ity to distribute simulated spawning events through-
out the year. First, we delineated the spawning season 
by calculating the middle 95% of the area under the 

spawning season curve from the model (Fig. 1A) and 
only simulated scamp spawning between doy 55 (late 
February) and 165 (mid-June). Then, within this 
spawning season, we simulated spawning every other 
day and scaled the number of virtual eggs spawned on 
each day to be proportional to the predicted probabil-
ity of spawning on that day. In this way, we simulated 
more spawning in April, when our model and other 
reports suggest scamp spawning is higher than at the 
beginning or end of the estimated spawning season. 

2.2.2.  Spawning location 

We used a similar approach to scale the spatial dis-
tribution of simulated spawning throughout the US 
Gulf of Mexico and Atlantic. Briefly, using a grid of lo-
cations spaced at 10 km intervals, we calculated the 
ex pected spawning (λ) as the product of spatial pre-
dictions from 3 statistical models (Eq. 4): the probabil-
ity of scamp presence, the estimated abundance when 
present, and the probability of spawning when present. 
Then, we simulated spawning at each grid location but 
spawned more virtual larvae at locations where these 
models predicted higher spawning (Fig. 1B). 

                                      λ = β × μ × η                                  (4) 

where β is the probability of scamp presence; μ is the 
estimated scamp abundance, when present; and η is 
the probability of scamp spawning, when present 
(Eq. 2).  

In effect, this (Eq. 4) builds a species distribution 
map and then uses the histology-based spawning 
model we described above (Eq. 3) to adjust where the 
simulated spawning is concentrated with respect to 
depth, local change in depth (a proxy for local relief), 
and proximity to the edge of the continental shelf. 
Therefore, if scamp tend to spawn closer to the shelf 
edge or at different depths than the species distribu-
tion in general, our modeling approach can readily 
account for this difference. 

To build the species distribution map, we used a 
common delta model approach (also known as a hur-
dle model) to analyze recent data (2011–2017) from 5 
fishery-independent surveys (see Text S2 for full de-
tails). Sampling for these surveys occurs largely from 
May through August, so it does not perfectly align 
with the scamp spawning season (March through 
May). However, these are the best available data to in-
form the relative abundance of scamp throughout US 
waters, which is necessary to appropriately scale the 
magnitude of simulated spawning. Moreover, there is 
no evidence that scamp travel long distances to 
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spawn, and by including a histology model, our ap-
proach accounted for potential inshore–offshore 
shifts in the spawning distribution compared to the 
species distribution. 

The delta model approach we used to estimate the 
species distribution map included 2 GAMs: a bino-
mial sub-model that predicted the probability of 
scamp presence (β; Eqs. 5–7) and a Gaussian sub-
model that predicted scamp abundance when present 
(μ; Eq. 8). Both sub-models had the same set of covar-
iates, which included all covariates that overlapped 
across the surveys: d, delta (as a proxy for local relief), 
dist (Text S1), position along the shelf break (pos; 

Text S1), percent observed substrate (sub), observed 
maximum relief (rel), year (yr), and survey program 
(survey).  

                                    β ~ Bernoulli(θ)                               (5) 

                   E(β) = θ and var(β) = θ × (1 – θ)               (6) 

            logit(θ)= α + s1(dist†) + s2(pos†) + s3(d†)  
                  + s4[log (delta†)] + s5(sub) +ƒ1(yr)             (7) 
                              + ƒ2(survey) + ƒ3(rel) 

412μ = α + s1(dist†) + s2(pos†) + s3(d†)+ s4[log (delta†)]  
             + s5(sub) + ƒ1(yr) + ƒ2(survey) + ƒ3(rel)         (8) 
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Fig. 1. (A) Generalized additive model, predicting that 
scamp spawning peaks in late April. Dashed lines: spawning 
season during which we simulated spawning. Number of lar-
vae simulated on any given day was proportional to pre-
dicted probability of spawning (blue line); jittered black 
points: the catch date of all histological samples. Points 
along the top: females within 24 h of spawning; points along 
the bottom: non-spawning females or males. Red ‘×’s show 
the proportion of samples that came from spawning females 
in weekly bins. (B) Predicted spatial distribution of scamp 
spawning, with values proportional to the maximum. Yellow: 
high estimated spawning; purple: low estimated spawning. 
We used this distribution to scale the amount of spawning 
simulated from each grid location. Solid red line: boundary 
between the US Gulf of Mexico and South Atlantic manage-
ment units; dashed red lines: sub-regions within the Atlantic
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where θ is the probability of scamp presence and (1 – θ) 
is the probability of absence; Eq. (7) uses all visual 
survey data to predict the probability of scamp pres-
ence, and Eq. (8) uses 4th-root-transformed positive 
count data and a Gaussian error distribution to esti-
mate scamp abundance when present. 

The binomial sub-model explained 25.6% of the de -
viance in whether a survey observed scamp, with an 
adjusted r2 of 0.238. The Gaussian sub-model ex -
plained 26.2% of the deviance in survey counts (when 
scamp were present), with an adjusted r2 of 0.254. 

We used the spatial predictions of these 2 sub-
models, in combination with the spatial predictions 
from the previously described histology model (Eq. 3), 
to estimate the spatial distribution of scamp spawning 
(Fig. 1B). Specifically, we generated a grid of locations 
spaced at 10 km intervals throughout the US Gulf of 
Mexico and Atlantic, and at each location, we used the 
spatial covariates in each model (e.g. depth, denoted 
by †) to predict the probability of scamp presence (β; 
Eqs. 5–7), scamp abundance when present (μ; Eq. 8), 
and the probability of scamp spawning when present 
(η; Eq. 3). The product of these 3 predictions (Eq. 4) es-
timates the relative amount of scamp spawning at each 
grid location. These models suggest that scamp are 
most likely to spawn around 75 m depth (Fig. S5) and 
at locations near the edge of the continental shelf 
(Fig. 1B), which is consistent with previous reports of 
scamp spawning (Coleman et al. 2011, SAFMC 2013, 
Farmer et al. 2017, Grüss et al. 2018). 

Unfortunately, observations of relief and substrate 
are not available throughout our full study area. 
Therefore, we could not include these spatial covari-
ates in our spawning model or use them to predict the 
species distribution. Instead, we used the local 
change in depth within a 100 m radius of each loca-
tion as a proxy for local relief. In addition, we used the 
survey observations of percent available substrate 
and maximum relief as controlling variables in our 
species distribution modeling to better estimate the 
relationship between scamp abundance and the other 
spatial covariates in the model (e.g. depth). There-
fore, our spatial models likely captured the broad spa-
tial patterns in scamp spawning but they cannot 
account for spatial variation at fine scales. 

In addition, there is not enough empirical data to es-
timate annual spawning maps. Instead, we used data 
from multiple years to inform an average spatial distri-
bution that we applied for all simulation years. This 
average distribution analyzed recent survey data to 
estimate the relative abundance of scamp and com-
bined it with histology samples that were collected 
over a longer time period. Therefore, the exact spawn -

ing locations of scamp and how they might change 
over time remain uncertain. 

To confine the spatial extent of spawning locations, 
we calculated the middle 95% of the area under the 
depth marginal effect of all 3 models combined 
(Fig. S5). As a result, we simulated spawning at grid 
locations with an average depth between 14 and 
279 m. Then, we scaled the number of virtual eggs 
spawned at each grid location to be proportional to 
the predicted probability of spawning at that location 
(Fig. 1B), which was highest near the edge of the con-
tinental shelf. This is consistent with previous reports 
(Coleman et al. 2011, SAFMC 2013, Farmer et al. 
2017, Grüss et al. 2018) and the empirical depth range 
of spawning observed in the histology data (14–
177 m, with most spawning between 50 and 100 m). 

2.2.3.  Scaling the magnitude of spawning 

For each year, we simulated approximately 100 000 
virtual eggs, a number we chose through a resampling 
analysis of preliminary results (Text S3). To calculate 
the number of eggs spawned at each time and place, 
we first used the histology model (Eq. 3) to distribute 
the 100 000 eggs throughout the spawning season 
(Fig. 1A). Then, on each spawning day, we used the 
spatial distribution (Fig. 1B) based on all 3 models 
combined (Eq. 4) to allocate the eggs to each grid 
location. Finally, we rounded the number of eggs for 
each spawning event (combination of time and place) 
to the nearest whole number. After rounding, we sim-
ulated 99 102 eggs yr–1 and used the same temporal 
and spatial distribution for each year of our 8 simula-
tions (base and 7 sensitivity simulations). In total, we 
simulated the spawning of 3 765 876 virtual eggs.  

We simulated spawning every other day during the 
spawning season; however, for computational effi-
ciency, we did not spawn eggs from all locations 
every time. Instead, we randomly assigned spawning 
locations to one of 5 groups and spawned eggs from 
each group on a different set of dates (Fig. S7). For 
example, at locations in one group, we simulated 
spawning on doy 55, 65, 75, etc., but at nearby loca-
tions in another group, we simulated spawning on doy 
57, 67, 77, etc. In this way, only 20% of the locations 
simulated spawning on each day, with spawning oc -
curring at individual locations every 10 d. This ap -
proach maintained the temporal and spatial resolu-
tion needed for robust probabilistic results but 
re duced the total number of virtual eggs required for 
each simulation, which is important for computa-
tional efficiency. 
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2.2.4.  Vertical distribution of eggs and larvae 

We simulated spawning 10 m above the sea floor, 
which is consistent with the depth range in which 
scamp courtship behavior has been observed (Gil -
more & Jones 1992, Schobernd & Sedberry 2009). Im-
mediately after spawning, the simulated eggs float to 
the surface, as is consistent with grouper eggs. The 
exact rate at which scamp eggs float is unknown, so 
we specified that simulated eggs float to the surface 
over the first 9 h and then remain in the top 15 m of the 
water column until they hatch. We defined this as-
sumption through a series of initial simulations that 
also confirmed that the resulting connectivity patterns 
were similar under a wide range of buoyancy assump-
tions (Text S4). After 2 d, when grouper eggs typically 
hatch (Roberts & Schlieder 1983, Colin et al. 1996), the 
simulated larvae undergo vertical migration, with 
depths determined probabilistically (Table 2). For the 
base simulation, we used one vertical distribution 
throughout the entire larval duration (Table 2: ‘no 
onto genetic shift’). We informed the assumed vertical 
distribution of simulated larvae by analyzing the lim-
ited empirical data available for grouper larvae caught 
during the scamp spawning season (Text S4). Because 
these data are limited, however, the exact vertical dis-
tribution of scamp larvae is uncertain. 

2.2.5.  Settlement 

We only allowed virtual larvae to settle successfully 
when certain criteria were met. First, we specified the 
settlement competency period from 33 to 52 d. 
Because the PLD of scamp remains unknown, we ap -
proxi mated it using information on congeneric gag 

grouper Mycteroperca microlepis larvae in the study 
region (Fitzhugh et al. 2005, Adamski et al. 2012), 
which tend to settle between 33 and 52 d old (Text S5). 
These values are also consistent with the PLD of 
another closely related species, black grouper M. 
bonaci (Keener et al. 1988). 

Second, we used 30 m as a boundary for suitable 
settlement habitat (see below) and only considered 
virtual larvae to have successfully settled if they 
reached a depth <30 m when they were between 33 
and 52 d old. If a simulated larva reached 33 d old and 
was not in a suitable settlement habitat (i.e. depth 
<30 m), then it continued to move until it either en -
countered settlement habitat or reached the maxi-
mum PLD (52 d), at which point it stopped and we 
considered it dead. 

Little is known about the settlement preferences of 
scamp, but larvae are not known to require a specific 
nursery habitat, and juveniles are thought to inhabit 
reefs between 20 and 30 m depth (Coleman et al. 
2011). This is consistent with the few data available 
for age-0 and age-1 scamp caught in the northeastern 
Gulf of Mexico, which suggest that young scamp are 
predominantly caught at depths of <30 m (Fig. S9). In 
addition, surveys that sample depths <30 m, like 
those in the Florida Keys (Keller et al. 2020), tend to 
record a higher proportion of small scamp than do 
surveys that operate in deeper waters (Thompson et 
al. 2020). Therefore, we felt that using a depth-based 
settlement criteria of 30 m was appropriate. 

To delineate settlement habitat, we extracted the 
0 and 30 m isobaths from the global 30 arc-second 
bathy metry grid available from GEBCO (General 
Bathy metric Chart of the Oceans; www.gebco.net) 
and defined suitable settlement habitat as all areas 
be tween these isobaths on the US Gulf and Atlantic 
continental shelves. This does not account for poten-
tial spatiotemporal variation in settlement habitat, 
which is not well understood for scamp and is beyond 
the scope of this study. It also assumes that scamp lar-
vae can either settle anywhere shallower than 30 m or 
that once near their preferred settlement habitat (yet 
unknown), larvae can direct their swimming to in -
crease the likelihood of finding it. These are reason-
able assumptions given the lack of information on 
scamp settlement and that many fish larvae can alter 
their behavior to facilitate settlement (Montgomery 
et al. 2001, Kingsford et al. 2002, Gerlach et al. 2007, 
Bottesch et al. 2016, Teodósio et al. 2016, Faillettaz et 
al. 2018). 

Hereafter, we use terms such as settlement, suc-
cessful larvae, and settlers to refer to virtual larvae 
that found suitable settlement habitat during the 
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Depth   No ontogenetic shift     Ontogenetic shift 
bin (m)           Entire PLD            Pre-flexion      Post-flexion 
 
0–20                       60                            64                        40 
20–40                     30                            28                        48 
40–60                     10                              8                         12 
60–100                   0                               0                          0

Table 2. Percentage of simulated scamp larvae in each depth 
bin for each of 2 vertical distribution assumptions. Most 
simulations assumed a single vertical distribution through-
out the entire pelagic larval duration (PLD); one sensitivity 
simulation assumed an ontogenetic shift in the vertical dis-
tribution of larvae. Connectivity Modeling System uses 
these distributions, which we calculated by analyzing em-
pirical data (Text S4), to specify the vertical distribution of  

simulated larvae in each timestep
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competency period instead of reaching their maxi-
mum PLD in deeper waters. Similarly, for fluency, we 
sometimes use terms like recruit or recruitment inter-
changeably with settler or settlement, even though 
our simulations do not model post-settlement pro-
cesses that influence whether settled larvae ulti-
mately recruit to the population as juveniles. 

2.3.  Exploring known uncertainties 

There are several sources of uncertainty that we 
know will influence the trajectories of simulated lar-
vae and, therefore, our estimates of scamp connectiv-
ity. Different hydrodynamic models produce differ-
ent current velocity estimates, and several areas of 
scamp larval ecology are relatively understudied. 
Therefore, we conducted 7 additional simulations 
that use alternative assumptions for the ocean veloc-
ity estimates, PLD, settlement habitat, and vertical 
distribution of larvae. These are analogous to sensi-
tivity analyses often used in stock assessment, or 
robustness trials often discussed for management 
strategy evaluation (Punt et al. 2016). 

2.3.1.  Ocean velocity fields 

A large source of uncertainty in simulating larval 
dispersal is the variability between the estimated 
velocity fields from different hydrodynamic products 
(Karnauskas et al. 2022). Therefore, we conducted 5 
simulations, including the base simulation, that as -
sumed the same biological parameterization de -
scribed above (i.e. spawning distribution, vertical dis-
tribution of eggs and larvae, and settlement criteria) 
but used velocity fields from different hydrodynamic 
products to transport the simulated larvae. 

In total, we used velocity fields from 6 hydro -
dynamic products, but one was only used as a nest 
for others that did not cover our entire study area. 
These products were obtained from different ocean 
circulation models as well as implementations with 
a range of spatial and temporal resolutions, forcings, 
and data assimilation approaches (summarized in 
Table 3, details in Text S6). Note that we do not 
prefer any one hydrodynamic model over the 
others. Instead, we gave them equal weight when 
analyzing our results (see Section 2.4.2) and only 
refer to a base simulation for clarity in describing 
our methods. 

Briefly, we used velocity fields from (1) the 
Hybrid Coordinate Ocean Model (HYCOM) Gulf of 
Mexico 1/25° analysis (hereafter GOM HYCOM), 
(2) the HYCOM Gulf of Mexico 1/50° analysis 
(hereafter GOM HYCOM HiRes; Le Hénaff & Kou-
rafalou 2016), (3) the HYCOM Intra-American Seas 
1/32° analysis (hereafter HYCOM IAS), (4) the 
Mercator GLORYS 12V1 1/12° reanalysis (hereafter 
Mercator; Lellouche et al. 2021), and (5) the South 
Atlantic Bight and Gulf of Mexico 1/25° model 
(hereafter SABGOM; Hyun & He 2010, Xue et al. 
2015). Two velocity fields (GOM HYCOM and 
GOM HYCOM HiRes) do not extend north of 
32° N. Therefore, to cover our entire study area we 
nested them within (6) the operational 1/12° global 
HYCOM Global Ocean Forecasting System (here -
after HYCOM GOFS; Chassignet et al. 2007), which 
provides the boundary conditions for both GOM 
HYCOM and GOM HYCOM HiRes. For all hydro-
dynamic products, we used velocity fields at daily 
intervals. 

Each product is available for different years and, 
thus, simulations using individual velocity fields do 
not always overlap (Table 3). However, the purpose of 
this study is to estimate probabilistic connectivity and 
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Hydrodynamic                                     Years                    Vertical resolution         Horizontal               Type of        CMS diffusivity  
product                                                                                (top 100 m) (layers)         resolution                product      coefficient (m2 s–1) 
 
HYCOM GOM                    2012, 2013, 2015–2018                  20                   1/25° (ca. 4 km)         Hindcast                     15 
HYCOM GOM HiRes                  2011–2017                              11                   1/50° (ca. 2 km)         Hindcast                     12 
HYCOM IAS                                          2010                                     7                   1/32° (ca. 3.5 km)      Reanalysis                   15 
MERCATOR                                    2013–2017                              22                   1/12° (ca. 8 km)       Reanalysis                   20 
SABGOM                                         2004–2010                              20                   1/25° (ca. 4 km)         Hindcast                     20 

GOFS   Expt. 3.0                         2011–2014                               7                    1/12° (ca. 8 km)         Hindcast                     20 
Expt. 3.1                         2015–2018                              20

Table 3. Hydrodynamic product specifications. Our simulations used ocean velocity fields from 6 different hydrodynamic pro-
ducts with varying specifications. See Table 1 for product abbreviations and how these fields were applied across the simula-
tions. Note that the GOFS fields were only used as a nest for other products that did not cover the entire region of interest. See  

Text S6 for details of each hydrodynamic product. CMS: Connectivity Modeling System
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recruitment patterns over time, not to produce a hind-
cast of recruitment in specific years. Therefore, we 
aimed to capture the interannual variability within 
each hydrodynamic product by using at least 5 yr of 
velocity fields (except for HYCOM IAS). This ensured 
that our results were probabilistically robust and al -
lowed us to compare the general connectivity trends 
from simulations that use non-overlapping years 
(Karnauskas et al. 2022). 

To account for processes not resolved by the resolu-
tion of the hydrodynamic products (sub-grid scales), 
we used the random walk displacement algorithm in 
CMS. It adds a random component to the motion of 
virtual larvae and approximates diffusion. The diffu-
sivity values we used to scale the random walk ranged 
from 12 to 20 m2 s–1, with the value depending on the 
horizontal resolution of the ocean velocity field and 
Okubo’s (1971) parameterization. However, SAB-
GOM has lower eddy kinetic energy, and therefore 
variability, than other models (Fig. S10). Thus, after 
unpublished sensitivity explorations by Karnauskas 
et al. (2022), we used a slightly higher diffusivity 
value for SABGOM than for other models with the 
same horizontal resolution to ensure that our results 
captured a probabilistic distribution of dispersal path-
ways. 

2.3.2.  Biological traits 

There is also uncertainty in several aspects of 
scamp larval biology and behavior. Specifically, lit-
tle is known about the PLD of scamp, how the verti-
cal distribution of scamp larvae changes throughout 
onto  geny, or the preferred settlement habitat of 
scamp. However, in contrast to the hydrodynamic 
models, of which none are preferred, the base 
model (Section 2.2, Table 1) does in fact represent 
our best assessment of the relevant scamp biology 
and behavior. To investigate how uncertainty in 
these traits might influence our results, we con-
ducted 3 ad di tional simulations that vary each trait, 
one at a time (Table 1). One extended the PLD to 
57 d, which is the 97.5% quantile of settlement age 
for gag larvae in the Atlantic (Adamski et al. 2012); 
the second incorporated an ontogenetic shift in the 
vertical distribution of larvae (Table 2: ‘ontogenetic 
shift’); and the third expanded the settlement crite-
ria to 45 m. All 4 simulations (base and 3 biological 
variations) used the same temporal and spatial 
spawning distribution as well as the same ocean 
velocity fields (GOM HYCOM nested within 
GOFS). 

2.4.  Data analysis 

2.4.1.  Metrics and plots 

To investigate the general patterns of scamp con-
nectivity, we used 2 graphical approaches. First, we 
visualized connectivity matrices, which aggregate 
successfully settled larvae based on where they 
spawned and where they settled (see Fig. 2). These 
plots provide a convenient way to determine whether 
most larvae are likely to settle close to where they 
started (i.e. local retention as defined by Botsford et 
al. 2009) or disperse longer distances. Second, we 
mapped the spatial distribution of where successfully 
settled larvae spawned and settled (see Fig. 3). These 
maps help to identify important spawning locations 
that are likely to be strong sources of recruitment to 
the broader region and settlement locations that are 
likely to be recruitment hotspots, collecting larvae 
from widespread spawning locations. 

In addition to these general patterns of connectivity, 
we specifically focus on the connectivity dyna mics 
between the US Gulf of Mexico and Atlantic regions. 
To delineate the 2 regions, we used the jurisdictions of 
the Gulf of Mexico and South Atlantic Fisheries Man-
agement Councils. Because the jurisdictions of these 
management bodies do not apply within state waters 
(3 nautical miles [ca. 5.6 km] from shore), we approx-
imated a boundary between them in a way that can be 
applied to any location, including those within state 
waters. Our boundary (shown in Fig. 1B) follows US 
Highway 1 from Miami, Florida, to Key West, Florida, 
until it intersects latitude 24° 35’ N, which it follows 
west until it intersects longitude 83° W, which it fol-
lows south. We considered all spawning and settle-
ment habitat north and west of this line to be in the 
Gulf of Mexico and all habitat south and east of this 
line to be in the Atlantic. We also further partitioned 
the US Atlantic into subregions at latitude 25.75° N 
(ap proximately Miami, Florida) and latitude 28.5° N 
(approximately Cape Canaveral, Florida). Using these 
geographic boundaries, we calculated a set of propor-
tions to describe the trans-regional connectivity pat-
terns in the area, including what percent of recruits 
settling in the Atlantic came from the Gulf of Mexico. 

2.4.2.  Ensemble models 

In general, we report the findings of a hydrody-
namic ensemble, a biological ensemble, and an over-
all ensemble. The hydrodynamic ensemble combines 
and summarizes the results of 5 simulations: the base 
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simulation and the 4 variations that change the under-
lying ocean velocity field. The biological ensemble 
combines and summarizes the results of 4 simulations: 
the base simulation and the 3 variations that change 
the larval biology and behavior. The overall ensemble 
combines and summarizes the results of all 8 simula-
tions together (base and 7 sensitivity simulations). 

For the raster maps and the connectivity matrix 
plots, which use spatial polygons (Fig. S11) to aggre-
gate successful recruits, we first calculated the result 
of interest (e.g. number of successfully settled par-
ticles spawned in a particular area) for each simulation 
and normalized it by the total number of virtual larvae 
spawned in the same simulation (Eq. 9). Then, for each 
raster cell or matrix element, we calculated the arith-
metic mean across the simulations in each ensemble 
(Eq. 10). Finally, for plotting, we normalized the mean 
values so that they are proportional to the maximum. 

                                                         (9) 
where 

                                           

and T is the total number of larvae spawned in simula-
tion s  

                                                       (10) 

where E is an ensemble of simulations and kE is the 
number of simulations in the ensemble. 

For the proportions (e.g. percentage of Atlantic re -
cruits from Gulf of Mexico spawning areas), we re -
sampled each simulation 1000 times and calculated 
every proportion for each resample. Then, we pooled 
the resampled proportions from all the simulations in 
an ensemble before calculating the ensemble mean 
and standard deviation. This captures the uncertainty 
within each simulation as well as across the simula-
tions in an ensemble. We also, however, examined the 
results for each simulation individually and highlight 
major differences when relevant. 

3.  RESULTS 

On broad spatial scales, we found a predominant 
pattern of local retention (Botsford et al. 2009), with 
most settled larvae ending near their spawning loca-
tion (Fig. 2). Across all simulations, most potential re -
cruits (i.e. virtual larvae that found settlement hab-
itat) started in the eastern Gulf of Mexico (Fig. 3A), 
with a peak off the west coast of Florida near 28° N. 
This area was also the most successful settlement 
area, with the highest number of potential recruits 
settling off the west coast of Florida near 28° N 
(Fig. 3B). In general, the high degree of local reten-
tion persisted across all 8 simulations (Fig. S12), but 
the spawning and settlement locations of potential 
recruits were more spatially distributed across the 
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Fig. 2. Connectivity matrices showing the dispersal dynamics of successful simulated scamp larvae summarized over the (A) over-
all, (B) hydrodynamic, and (C) biological ensembles. Spawning and settlement locations of successful virtual larvae are shown. 
Values (on a log scale) are proportional to the maximum across all panels; yellow: high estimated connectivity; purple: low esti-
mated connectivity. Black dashed line: axis of local retention (i.e. settlement location = spawning location; Botsford et al. 2009). 
TX: Texas; LA: Louisiana; FL-PAN: Florida Panhandle; FL-WFS: West Florida Shelf; FL-KEYS: Florida Keys; FL-SE: Atlantic coast 
of Florida; SC: South Carolina. These geographic sub-regions follow the US coastline from west to east and are identified in Fig. S7;  

Fig. S12 shows a similar connectivity matrix for each individual simulation
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northern Gulf of Mexico when the results were sum-
marized over the simulations in the hydrodynamic 
en semble than when summarized over the simula-
tions in the biological ensemble (Figs. S13 & S14). 

Despite this trend of high local retention, we also 
found that more than one-third of virtual scamp lar-
vae settling in the US Atlantic region came from the 
Gulf of Mexico (Fig. 4). Almost 65% of these larvae, 
which were transported from the Gulf to the Atlantic, 
settled in the Florida Keys — technically in the Atlan-
tic, but very close to the boundary between the 2 

regions. To more conservatively estimate the contrib-
ution that Gulf of Mexico spawning makes to recruit-
ment in the Atlantic, we also report the results when 
we only consider those potential recruits that settled 
farther into the Atlantic (i.e. north of latitude 
25.75° N, or north of latitude 28.5° N). Even then, 17% 
of the larvae that settled north of latitude 25.75° N 
(Miami) and 10% of the larvae that settled north of 
latitude 28.5° N (Cape Canaveral) started in the Gulf 
of Mexico (Table 4). There is, however, considerable 
variation in these proportions, both between simula-
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Fig. 3. Spatial distribution of (A) spawning and (B) settlement locations of simulated scamp larvae that successfully settled. 
Values are proportional to the maximum; yellow: areas where many successful virtual were spawned or settled; purple: areas 
where few successful larvae were spawned or settled. Maps show results from the overall ensemble that pooled all simula-
tions. Figs. S13 & S14 show the hydrodynamic and biological ensembles individually. Solid red line: boundary between the US 
Gulf of Mexico and Atlantic management units; dashed red lines: sub-regions within the Atlantic; white lines in (B) represent 
2 alternative assumptions for settlement habitat. For the base simulation, settlement habitat included any location between 
the coastline and the 30 m isobath. For one of the sensitivity analyses, settlement habitat was extended to the 45 m isobath
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tions and between years within a simulation (Table 4, 
Fig. 5). 

The percentage of potential Atlantic recruits (i.e. 
virtual larvae that settled anywhere in the Atlantic) 
that came from the Gulf of Mexico is sensitive to the 
biological parameterization of our simulations (e.g. 
PLD, settlement criteria, vertical distribution). The 
differences are greater, however, when we compare 

simulations that use the same biological parameter-
ization but rely on current velocity estimates from 
 different oceanographic models. For example, the 
simulation using SABGOM estimated that 19% of 
potential Atlantic recruits started in the Gulf (year-to-
year values range from 12 to 35%; Table 5), while the 
simulation using the high-resolution HYCOM model 
estimated that 56% of potential Atlantic recruits 
started in the Gulf (year-to-year values range from 29 
to 74%; Table 5). In contrast, the values from simula-
tions in the biological ensemble, which all use the 
same hydrodynamic model, only range from 29 to 
43%. There is still, however, considerable year-to-
year variability within each simulation (Fig. 5). 

This relationship changes when we focus on larvae 
that settled farther north in the Atlantic. Specifically, 
the percentage of potential Atlantic recruits that set-
tled north of latitude 28.5° N (Cape Canaveral) but 
came from the Gulf is more sensitive to the biological 
specifications of a simulation than to the hydrody-
namic model used. For example, in the base simula-
tion, 10% of larvae that settled north of Cape Canav-
eral started in the Gulf of Mexico. However, when the 
suitable settlement habitat was extended from depths 
of <30 m to depths <45 m, 28% of the larvae that set-
tled north of Cape Canaveral came from the Gulf of 
Mexico. By contrast, the percentage of potential re -
cruits north of Cape Canaveral that came from the 
Gulf remained relatively consistent across the simula-
tions in the hydrodynamic ensemble, which all used 
the same biological parameterization as the base sim-
ulation (2–10%; Table 4). 

Larvae that left the Gulf of Mexico and settled in 
the Atlantic came overwhelmingly from the West 
Florida Shelf (Fig. 6). When we focus only on poten-
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Simulation            % ATL recruits          % ATL recruits        % ATL recruits         % ATL Spawn       % GOM Spawn      % GOM to  
(ensemble)               from GOM                (N of 25.75°)            (N of 28.5°)                 Settled                      Settled                     ATL 
                                                                           from GOM              from GOM 
 
Base (H, B)                        34                                  19                               10                               25                               26                            7 
GOM HiRes (H)              56                                  21                                9                                39                               26                           11 
IAS (H)                               25                                   9                                  5                                32                               27                            4 
Mercator (H)                    55                                  11                                4                                31                               23                           11 
SABGOM (H)                  19                                   3                                  2                                27                               20                            2 
PLD 57 (B)                        36                                  22                               12                               27                               27                            7 
OVM (B)                           29                                  18                               10                               19                               32                            9 
45 m (B)                             43                                  34                               28                               41                               30                            7

Table 4. All proportions by simulation. We calculated several proportions to describe the scamp connectivity dynamics be-
tween the US Gulf of Mexico (GOM) and Atlantic (ATL). Columns 2–4 describe what percentage of recruits to various portions 
of the Atlantic came from spawning in the Gulf of Mexico. Columns 5 and 6 describe what percentage of simulated larvae from 
each region successfully settled anywhere. The last column describes what percentage of successful larvae spawned from Gulf  

of Mexico spawning areas settled in the Atlantic. See Table 1 for abbreviation definitions

Fig. 4. Percentage of scamp recruits to the Atlantic that came 
from the Gulf of Mexico. We resampled each simulation 
1000 times and calculated the proportion for each resample 
then pooled the resampled proportions from the simulations 
in an ensemble and calculated the ensemble mean (bars) and 
SD (error bars). This captures the uncertainty within each 
simulation as well as across the simulations in an ensemble
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tial recruits that settled farther into the Atlantic, north 
of latitude 25.75° N (Miami), the spawning locations 
of these trans-regional settlers were limited largely to 
the southern portion of the West Florida Shelf. This 
southern concentration is even more extreme when 
we focus only on potential recruits that settled north 
of latitude 28.5° N (Cape Canaveral). 

4.  DISCUSSION 

Consistent with expectation (Jones et al. 2005, 
Cowen et al. 2006, Buston et al. 2012, Almany et al. 
2013, Vaz et al. 2023), we found that scamp dispersal 
largely followed a pattern of local retention (Fig. 2). 
Most virtual larvae in our simulations settled close to 
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Fig. 5. Percentage of scamp recruits to the Atlantic that come from the Gulf of Mexico by simulation and year. Top row: hydro-
dynamic ensemble simulations; bottom row: biological ensemble simulations. Note that the ‘base’ simulation is in both ensem-
bles. Lines connecting data points do not represent a regression or trend and are only included to highlight the year-to-year 
changes within a simulation. Each column shows the proportion based on recruitment to a different portion of the Atlantic

Year               Base                 GOM                   IAS               Mercator         SABGOM           PLD 57               OVM                 45 m  
                      (H, B)             HiRes (H)               (H)                      (H)                      (H)                       (B)                       (B)                       (B) 
 
2004                 –                        –                        –                        –                        35                        –                        –                        – 
2005                 –                        –                        –                        –                        16                        –                        –                        – 
2006                 –                        –                        –                        –                        21                        –                        –                        – 
2007                 –                        –                        –                        –                        26                        –                        –                        – 
2008                 –                        –                        –                        –                        20                        –                        –                        – 
2009                 –                        –                        –                        –                        12                        –                        –                        – 
2010                 –                        –                        25                        –                        12                        –                        –                        – 
2011                 –                        61                        –                        –                        –                        –                        –                        – 
2012                 –                        29                        –                        –                        –                        –                        –                        – 
2013                 28                        65                        –                        76                        –                        30                        24                        – 
2014                 –                        51                        –                        26                        –                        –                        –                        – 
2015                 25                        59                        –                        31                        –                        27                        23                        31 
2016                 45                        47                        –                        57                        –                        49                        38                        55 
2017                 37                        74                        –                        49                        –                        38                        34                        44 
2018                 25                        –                        –                        –                        –                        28                        18                        30 
All                     34                        56                        25                        55                        19                        36                        29                        43

Table 5. Percentage of scamp recruits to the US Atlantic that came from Gulf of Mexico spawning locations. Dashes indicate  
that the simulation was not conducted for that year. See Table 1 for abbreviation definitions
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their spawning sites. However, there was also a con-
sistent pattern of some larvae dispersing away from 
the natal place. Notably, although most larvae from 
the West Florida Shelf settled there, some dispersed 
to the Florida Keys and along the Atlantic shelf, even 
as far north as North Carolina (Fig. 2). Even if not pre-
dominant, this pattern of consistent long-distance 
dispersal has important ramifications for the connec-
tivity dynamics, genetic structure, and fishery man-
agement of scamp. 

Specifically, we found that approximately one-third 
of potential scamp recruits to the Atlantic came from 
the Gulf of Mexico (Fig. 4). Most of these recruits that 
left the Gulf of Mexico settled in the Florida Keys, but 
even when we only considered potential Atlantic re -
cruits settling north of latitude 25.75°N (Miami, Flor-
ida), Gulf of Mexico spawning still accounted for 17% 
of Atlantic recruitment. This external recruitment 
might increase the resilience of the scamp population 
in the US Atlantic. In addition, this degree of connec-
tivity appears to provide sufficient trans-regional 
mixing to minimize spatial patterns in the genetic 
structure of scamp populations (Zatcoff et al. 2004). 

It is important to note that demographic connectivity 
examines unique events of individuals moving be-
tween regions, while genetic connectivity studies un-
veil patterns that occur over multiple generations and 
evolutionary timescales (Carr et al. 2017, Legrand et 
al. 2022, Vaz et al. 2022). Our results suggest a re -
curring pattern of transport from the Gulf of Mexico to 
the Atlantic Ocean, which, if consistent over long 
time scales, can explain the observed genetic structure 
of scamp populations in the region — particularly if 
we consider the possibility of multi-generational trans-
port, which has been shown to better predict spatial 

patterns in genetic differentiation than single-
generation transport models or conventional concep-
tual models like isolation-by-distance (Legrand et al. 
2022). 

Dispersal over multiple generations can magnify 
the effects of demographic connectivity and reconcile 
mismatches in the spatial scale of demographic and 
genetic connectivity through 2 mechanisms (Legrand 
et al. 2022). Filial connectivity traces explicit connec-
tions between parents and offspring (i.e. dispersal of 
single lineages over generations). Coalescent con-
nectivity considers the implicit linkages between 
areas that have no demographic connectivity be -
tween them but share common ancestry because they 
receive dispersal from the same external area. Both 
filial and coalescent connectivity are important when 
considering how demographic connectivity pathways 
revealed by dispersal modeling may lead to observed 
patterns of genetic connectivity (Legrand et al. 2022). 

For example, even if a particular individual does not 
move from the Gulf to the Atlantic, it may disperse 
downstream far enough such that when it reproduces 
as an adult, its larvae are more likely to move be tween 
the regions. Specifically, most potential Atlantic re-
cruits from the Gulf of Mexico started on the West 
Florida Shelf, but there was also dispersal from the 
Florida Panhandle to the West Florida Shelf. Therefore, 
the West Florida Shelf may serve as a stepping-stone 
that facilitates filial connectivity (Legrand et al. 2022) 
between scamp near the Florida Pan handle and those 
in the Atlantic. In addition, because there is also dis-
persal from the Florida Panhandle to Louisiana, there 
may be coalescent connectivity (Legrand et al. 2022) 
between scamp in Louisiana and the Atlantic because 
they share common ancestors (i.e. spawners near the 
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Fig. 6. Distribution of the spawning locations for Atlantic scamp recruits that came from the Gulf of Mexico and ended in a dif-
ferent portion of the Atlantic: (A) the entire Atlantic, (B) north of 25.75º N, and (C) north of 28.5º N. Values are proportional to 
the maximum across all panels. Yellow: spawning areas that produced a high number of Gulf to Atlantic recruits; purple: 
spawning areas that produced a low number of Gulf to Atlantic recruits. Maps show results from the overall ensemble that  

pooled all simulations
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Florida Panhandle). Thus, under the conceptual frame-
work outlined by Legrand et al. (2022), the connectivity 
pathways revealed by our simulations could lead to 
broad spatial mixing among scamp throughout the 
Gulf of Mexico and the US Atlantic. 

The fact that such a large proportion of Atlantic 
recruitment comes from the Gulf of Mexico, even 
though our findings generally favor a pattern of local 
retention, may initially seem incongruous. This 
pheno menon likely arises, however, because of the 
way that the oceanographic transport patterns over-
lay the scamp spawning distribution. One of the most 
ubiquitous circulation patterns in the Gulf is the pres-
ence of the meandering Loop Current, which enters 
the Gulf flowing northward from the Yucatan Straits, 
rotates clockwise, flowing eastward and then south-
wards along the outer West Florida Shelf (Hetland & 
Hsueh 1999, Le Hénaff & Kourafalou 2016). The dis-
persal pathway connecting the Gulf and Atlantic 
scamp populations passes through the Straits of Flor-
ida, a relatively narrow channel between Cuba and 
the Florida Keys. When entering the Florida Straits, 
the Loop Current originates the eastward flowing 
Florida Current, which dominates the Straits circula-
tion, along with locally and remotely generated meso-
scale eddies also translating eastward (Le Hénaff & 
Kourafalou 2016). Upon exiting the Florida Straits, 
the Florida Current joins the Gulf Stream, which flows 
northeastward. Thus, prevailing current patterns in 
our study region facilitate the dispersal of potential 
re cruits from the Gulf to the Atlantic, but relatively 
few simulated larvae were transported upstream in 
the Florida Straits, from the Atlantic to the Gulf. As a 
result, larvae transported out of the Gulf of Mexico 
can find acceptable settlement habitat in the Atlantic, 
but larvae transported out of the Atlantic within the 
Gulf Stream are removed from the system entirely. 
For scamp, this is exacerbated by the relative spawn-
ing in the 2 regions. Because scamp biomass is higher 
in the Gulf of Mexico than in the Atlantic (SEDAR 
2022a,b), the amount of spawning is higher as well 
(Fig. 1B). Therefore, more larvae originate in the Gulf 
of Mexico than in the Atlantic. When combined with 
the observed larval dispersal pathways, this distribu-
tion leads to a large proportion of potential Atlantic 
recruits coming from the Gulf of Mexico even though 
most larvae settled close to their spawning grounds. 

This set of conditions may not be geographically 
widespread, but that does not imply that the findings 
are limited to scamp. Even if these transport dyna -
mics are unique to this region, the results are likely 
applicable to an extensive set of reef-associated spe-
cies that span the Gulf of Mexico and the US South 

Atlantic. Indeed, results for red snapper suggest that 
up to one-third of Atlantic recruits come from spawn-
ing areas in the Gulf of Mexico (Karnauskas et al. 
2022). We expect the extent of Atlantic recruitment 
from the Gulf of Mexico to be highest for species that 
spawn on the West Florida Shelf, have higher biomass 
in the Gulf of Mexico than in the Atlantic, and have 
extended PLDs. By contrast, the effect may be tem-
pered in species with spawning concentrations 
farther west in the Gulf of Mexico or species with 
higher abundance in the Atlantic, such as black sea 
bass Centropristis striata. 

This connectivity between the 2 regions has impor-
tant implications for the assessment and management 
of economically important species. Currently, scamp 
and other reef-associated fishes near the southeast US 
are assessed and managed as 2 distinct stocks: one in 
the US Gulf of Mexico and one in the Atlantic. For 
scamp, our results suggest that the 2 stocks are con-
nected through source–sink recruitment dynamics, 
with some Atlantic recruits originating in the Gulf of 
Mexico. Considering these findings, resource man-
agers may wish to revisit the hard separation of juris-
dictional regions or, if this is not feasible, recognize 
that management decisions applied in the Gulf of 
Mexico will likely influence scamp abundance in the 
Atlantic. 

For stock assessment, these results may inform our 
understanding of the spawner–recruit relationship 
and how that relationship is modeled. Ideally, the 
stock assessment could incorporate an index of con-
nectivity as a covariate in the recruitment model. 
Doing so could help explain variance in annual re -
cruitment patterns (Hidalgo et al. 2019) and improve 
short-term forecasts if the terminal year of the assess-
ment lags behind the terminal year of the hydro -
dynamic models. 

Precisely estimating annual connectivity dynamics 
would be helpful for stock assessment, but it was not 
our goal. Instead, we probabilistically informed the 
general dispersal patterns of scamp. Specifically, 
even though we used ocean velocity estimates for 
different years, all of our simulations used the same 
seasonal and spatial spawning distributions. Simi-
larly, we assumed the same spatial settlement criteria 
and PLD for all years. In reality, the spatiotemporal 
dyna mics of spawning and settlement are complex 
processes influenced by many factors (e.g. tempera-
ture, trophic interactions, oceanographic processes). 
There fore, they are likely to change from year to year, 
but we did not have sufficient data to model these 
spatiotemporal nuances. Future simulations could 
consider exploring annual variation in both spawning 
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(e.g. Di Stefano et al. 2023) and settlement (e.g. Druon 
et al. 2015), particularly if they aim to hindcast re -
cruitment estimates for specific years. 

Similarly, our results must also be considered at 
the appropriate spatial scale. Scamp are thought to 
form transient spawning aggregations in rocky areas 
with high local relief (Coleman et al. 2011, SAFMC 
2013, Farmer et al. 2017, Grüss et al. 2018, Heyman 
et al. 2019, Biggs et al. 2021). We included these fac-
tors, when possible (e.g. local relief from modeled 
bathy metry), but fine-scale habitat information is not 
available throughout our study area and the details 
of scamp aggregation behavior remain uncertain. 
Therefore, our spatial models are likely to approx-
imate the broad spatial trends in scamp spawning 
but they cannot account for fine-scale patterns due 
to habitat patchiness, local movements, or transient 
aggregations. 

In addition, the spatial resolution of the ocean cir-
culation models in our study area ranged from 2 to 
8 km (Table 3), so they cannot resolve flow at finer 
spatial scales. Consequently, the results of our dis-
persal simulations can probabilistically inform the 
general connectivity patterns expected for scamp 
and help to identify which spawning or settlement 
regions are likely important. They cannot, however, 
precisely identify specific spawning or settlement 
locations or be used to compare neighboring loca-
tions with certainty. 

To explore whether our results were robust to alter-
native assumptions of scamp larval biology and ocean 
circulation, we conducted a suite of sensitivity analy-
ses. The goal of these explorations was not to disen-
tangle the relative importance of physical oceano -
graphy and larval biology on the ultimate dispersal 
patterns of scamp but rather to understand how 
known uncertainties might influence our findings. 
Our general conclusions were robust to the choice of 
hydrodynamic model and assumed larval biology, but 
there was considerable quantitative variation across 
the simulation results. 

The greatest variation was across simulations in the 
hydrodynamic ensemble, which used different ocean 
velocity fields but the same biological parameteriza-
tion. For example, the simulation that relied on veloc-
ity fields from the GOM HYCOM HiRes model esti-
mated that 56% of Atlantic recruits came from the 
Gulf of Mexico, while the simulation using velocity 
fields from the SABGOM model estimated that only 
19% did (Table 5). This is consistent with results for 
red snapper (Karnauskas et al. 2022), which also found 
that SABGOM provided lower estimates of Atlantic 
recruitment coming from the Gulf of Mexico than 

other hydrodynamic models. This is most likely due to 
differences in the hydrodynamic models themselves, 
as SABGOM presented lower variability than other 
models (Karnauskas et al. 2022). This variability in the 
flow field, which is largely due to the formation and 
passage of mesoscale eddies, is essential to facilitate 
connectivity between the Gulf and Atlantic regions. 

It is hard to completely exclude the possibility of a 
year effect, however, as we were constrained by the 
years that ocean velocity estimates were available. 
Therefore, our SABGOM simulation used an earlier 
set of years (2003–2010) than the other simulations, 
which started in or after 2010. This difference in year 
sets can influence connectivity estimates because of 
unpredictable changes in the state and position of the 
Loop Current that lead to considerable year-to-year 
variability in the circulation patterns in the northeast 
Gulf of Mexico (Liu et al. 2016). Therefore, the degree 
to which the Loop Current extends north into the Gulf 
of Mexico and the seasonal timing of these intrusions 
are likely to change from one year to the next, which 
will, in turn, influence the annual estimates of con-
nectivity. However, variability in the Loop Current is 
greatest on time scales of 2 yr or less (Liu et al. 2016), 
so because we used at least 5 yr for most hydrody-
namic models, the results are probabilistically robust 
(Karnauskas et al. 2022). Therefore, we can compare 
the general patterns across simulations, even those 
that used different years. 

In addition, there was still considerable variation 
be  tween hydrodynamic models that used largely 
over lapping years (e.g. Mercator, HYCOM, HYCOM-
HiRes). Even within a given simulation year, different 
hydrodynamic models provided different estimates of 
how many Atlantic recruits came from the Gulf 
(Table 5). However, it was not simply that one hydro-
dynamic model consistently provided higher esti-
mates than another and they all followed the same 
trend from one year to the next. Instead, there were 
also differences in the interannual patterns between 
simulations that use different velocity fields (Fig. 5). 
This variation is likely because the mechanistic factors 
that control when and how far the Loop Current 
 intrudes into the Gulf of Mexico are not fully under-
stood (Weisberg & Liu 2017, National Academies of 
Sciences, Engineering, and Medicine 2018). 

There was less variation across the simulations in the 
biological ensemble, which all used the same hydro -
dynamic model. This does not, however, imply that 
variability in current velocity estimates is more impor-
tant in determining dispersal patterns than variability 
in larval biology. Indeed, biological assumptions, like 
the vertical distribution of larvae in the water column, 
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can have profound implications for the ultimate dis-
persal patterns (Hernández et al. 2023). In our case, 
the alternative biological assumptions we considered 
apparently presented smaller variations around the 
base simulation than the alternative flow representa-
tions did. Even still, changing the biological parame-
terization did influence our simulated recruitment dy-
namics (Table 4) and connectivity estimates (Table 5, 
Fig. 5). Relative to the base simulation, increasing the 
PLD and extending the settlement criteria to 45 m both 
increased the proportion of potential Atlantic recruits 
that came from the Gulf of Mexico. Conversely, incor-
porating ontogenetic vertical migration decreased the 
proportion of potential Atlantic recruits that spawned 
in the Gulf. This is largely because of a decrease in the 
proportion of Gulf of Mexico-spawned larvae that 
 successfully settled, an increase in the proportion of 
Atlantic-spawned larvae that successfully settled 
(Table 5), and a corresponding increase in local reten-
tion in the Atlantic, particularly near North Carolina 
(Fig. S12). Not surprisingly, the variation that did exist 
remained consistent from one year to the next. For ex-
ample, the simulation using a settlement criterion of 
45 m always resulted in the highest estimate of con-
nectivity (Fig. 5). 

4.1.  Research recommendations 

Our findings highlight several avenues for future 
ex ploration. As suggested by Swearer et al. (2019), 
em pirical observations could help validate our find-
ings and confirm our assumptions. For example, our 
simulations estimate that approximately one-third of 
scamp recruitment to the US Atlantic comes from the 
Gulf of Mexico. This result could be explored empiri-
cally through targeted genetic analysis that explores 
the natal origin of individual scamp in the Atlantic. 

In addition, a suite of empirical sampling could tar-
get areas where our models predict high scamp 
spawning. This would both confirm the predictions of 
our spatial models, which underlie our dispersal sim-
ulations, and help to better understand the spatiotem-
poral dynamics of scamp spawning. Histological sam-
pling could further inform the location and character 
of spawning sites as well as whether the seasonality of 
spawning is consistent throughout the scamp’s range. 
Once spawning locations are identified, tagging 
studies could help reveal the details of transient 
aggregation behavior and the extent of seasonal 
spawning migrations, both of which remain uncertain 
and are likely important for management (Erisman et 
al. 2017, Heyman et al. 2019, Biggs et al. 2021). 

Future connectivity explorations could then incor-
porate an updated understanding of the spatiotem -
poral variability in spawning as more empirical data 
become available. Additional dispersal simulations 
would also benefit from a better understanding of 
scamp larval ecology. The vertical distribution of 
scamp larvae is not well studied, and these assump-
tions are known to influence the results of dispersal 
simulations (Hernández et al. 2023). Therefore, addi -
tional ichthyoplankton sampling with refined taxo -
nomic classification could better inform future con-
nectivity simulations. Similarly, little is known about 
scamp’s PLD or nursery habitat, so we conducted sen-
sitivity analyses to explore the robustness of our re -
sults. Empirical studies looking at larval ingress or tar-
geting newly settled young scamp could help in form 
these assumptions for future dispersal simulations. 

We explored the sensitivity of our results to several 
sources of uncertainty, but future studies investigating 
connectivity between the Gulf of Mexico and Atlantic 
could explore others. Specifically, if those larvae that 
settle in the Atlantic after starting in the Gulf of 
Mexico tend to settle later during the PLD than other 
settlers, then including larval mortality could in-
fluence the degree of connectivity between the 2 re-
gions. Finally, diverse fish larvae are known to use a 
variety of environmental cues to orient their swimming 
(Faillettaz et al. 2015, Cresci et al. 2019, Leis et al. 2021, 
Berenshtein et al. 2022). Future simulations could also 
investigate how this potential orientation behavior 
might influence the expected connectivity between 
the Gulf of Mexico and the US Atlantic. 

4.2.  Synthesis 

Taken together, our findings provide strong evi -
dence that episodic but consistent long-distance lar-
val dispersal facilitates the connectivity of scamp 
populations on a broad spatial scale. Moreover, due 
to the pattern of directional oceanographic transport 
and the spatial differences in abundance, this con -
nectivity leads to the US Atlantic scamp population 
re ceiving a high proportion of external potential re -
cruits from the Gulf of Mexico. Although this may in -
 crease the resilience of the Atlantic population, it also 
means that the sustainability of the Atlantic popula-
tion may rely, in part, on the health of spawning pop-
ulations in the Gulf of Mexico. 
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