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1.  INTRODUCTION 

Incidental mortality in fisheries (bycatch) is one of 
the biggest threats to marine megafauna like seabirds, 
marine mammals and sea turtles (Moore & Reid 2009, 
Wallace et al. 2013, Phillips et al. 2023). Seabirds such 
as albatrosses, petrels and shearwaters travel 1000s of 
km when foraging at sea, where they interact with a 

range of fisheries that operate in the same highly pro-
ductive areas (Petersen et al. 2008, Copello et al. 2014). 
About half of seabird species are listed as threatened 
with extinction by the International Union for Conser-
vation of Nature (IUCN), with fisheries bycatch, the 
presence of invasive species in breeding areas and cli-
mate change as the main causes of their worsening 
conservation status (Dias et al. 2019, Phillips et al. 
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2023). The Southwest Atlantic Ocean concentrates 
one of the largest seabird biomasses in the world (Fala-
bella et al. 2009, Carneiro et al. 2020), hosting some 40 
procellariiform species, including breeders and long-
distance migrants (Favero & Silva Rodriguez 2005, 
Seco Pon et al. 2015). These species share this marine 
ecosystem with human activities, including commer-
cial fisheries as one of the main economic activities. 
Current fishing effort in the Argentine exclusive eco-
nomic zone (EEZ) comprises ca. 800 vessels operating 
throughout the year, using a wide range of fishing 
gear, to catch some 800 000 t annually (Argentine 
NPOA–Seabirds 2010, Secretaría de Agri cultura Ga-
nadería y Pesca 2022). Seabird attendance and interac-
tions have been reported in a range of fleets including 
longliners as well as coastal and offshore trawlers (e.g. 
González-Zevallos & Yorio 2006, Favero et al. 2013, 
Seco Pon et al. 2015, 2023, Paz et al. 2018). The interac-
tions primarily arise from seabirds attempting to feed 
on discarded fish and/or offal generated by fishing 
fleets, often resulting in entanglements of strikes with 
fishing gear leading to severe injuries or incidental 
mortality (i.e. bycatch) (Favero & Seco Pon 2014). 

Within this group of threatened seabirds, 10 petrel 
species are known to interact with fisheries operating 
in the Argentine EEZ and the fishing zone shared with 
Uruguay, particularly divers such as Procellaria 
petrels and Ardenna shearwaters, including the great 
shearwater A. gravis, which is globally listed as Least 
Concern (BirdLife International 2023) and locally as 
‘not threatened’ (Ministerio de Ambiente y Desar-
rollo Sustentable y Aves Argentinas 2017). However, 
this species faces several threats including predation 
by introduced mice on Gough Island (Wanless et al. 
2007, Dilley et al. 2015), the harvest of eggs/chicks on 
Nightingale Island (Rowan 1952, Richardson 1984), 
plastic ingestion (Ryan 1987, Pierce et al. 2004) and 
incidental mortality in a range of fisheries (Barnes et 
al. 1997, Glass et al. 2000, Bugoni et al. 2008, Jiménez 
et al. 2009, Paz et al. 2018, Seco Pon et al. 2020). 
Locally, great shearwaters have been recorded in sea-
bird assemblages attending demersal and mid-water 
trawl fleets (coastal and offshore), as well as longline 
fleets (Seco Pon et al. 2007, 2020, 2023, Favero et al. 
2011, Paz et al. 2018, Tamini et al. 2021, 2023). This 
species has been also reported in the bycatch of long-
liners and demersal freezer and ice-trawlers (Favero 
et al. 2011, 2013, Tamini et al. 2015, 2021, Seco Pon et 
al. 2023), and in some fleets showing high bycatch 
rates, for example in the mid-water trawl fishery (Paz 
et al. 2018, Seco Pon et al. 2020). 

Great shearwaters breed at 3 main sites in the Tris-
tan da Cunha archipelago, namely Nightingale, Inac-

cessible and Gough islands, where the total popu -
lation is estimated to be some 5 million pairs (Carbon-
eras 1992, Snow et al. 1998, Ryan 2007). The species 
was also recorded in 1987 as a breeder (albeit with 
fewer than 15 pairs) in the Malvinas Islands (Woods 
1988). Adults begin a trans-equatorial migration in 
April, moving north-west to South America, up to 
Canada, past Greenland and onto the northeast 
Atlantic, before returning south from late September 
to November to their breeding grounds (Harrison 
1983, Powers et al. 2022). Tracking data indicate that 
the southwestern Atlantic Ocean is an important for-
aging area for the species during all phases of the 
breeding period (pre-laying, incubation and post-
breeding) (Ronconi et al. 2010, 2018, Schoombie et al. 
2018). During the non-breeding period in the north 
Atlantic, the diet of shearwaters includes fish such as 
Clupea harengus and Scomber scombrus, squid Illex 
illecebrosus and krill Meganyctiphanes norvegica 
(Ronconi et al. 2010). The knowledge about the diet 
during breeding is limited, with sparse information 
available at the prey species level. Data from stomach 
contents suggest that chicks and adults primarily 
feed on squid, with occasional consumption of fish 
and crustaceans (Hagen 1952, Rowan 1952). 

The spatial and temporal overlap between seabirds 
and fisheries has been used extensively as a proxy of 
risk of bycatch (Copello & Quintana 2009, Yorio et al. 
2010, 2021, Tuck et al. 2011, Copello et al. 2014). In 
addition, the analysis of stable isotopes has been used 
as a proxy of dietary information and to better under-
stand the importance and contribution of fishery tar-
get species and discards (Bugoni et al. 2010, Mariano-
Jelicich et al. 2014, 2017). Although the use of fishery 
discards and offal by seabirds could be seen as a food 
subsidy, the literature shows negative impacts on the 
life history traits and population dynamics of sea-
birds, with incidental mortality as the main threat 
worsening the con servation status of many procellar-
iforms (Favero & Seco Pon 2014, Louzao et al. 2020). 
In general, studies focused on spatial overlap with 
fisheries and the effect of fishing effort on the forag-
ing behavior of seabirds have been conducted at a sin-
gle fishery scale. Despite the importance of conduct-
ing a multi-gear/fisheries assessment of possible 
impact, no such attempt has been made so far within 
the Argentine EEZ and adjacent areas. This study 
assesses the spatial association of adult and immature 
great shearwaters with commercial fisheries in the 
Argentine EEZ and in the Argentine–Uruguayan 
Common Fishing Zone (ZCPAU), analyzing the effect 
of fishing effort on the foraging behavior of the spe-
cies. In addition, the study provides evidence of the 

174



Paz et al.: Great shearwater attendance at Argentine fisheries 175

importance of mid-water fish and demersal prey in 
the diet of shearwaters. The information supplied 
here is relevant for use in the design, development 
and implementation of marine protected areas in 
Argentina, aimed at achieving the objective of pro-
tecting 10% of the marine areas (Ministerio de Am -
biente y Desarrollo Sostenible Resolution 356/2022; 
https://www.boletinoficial.gob.ar/detalleAviso/prim
era/268717/20220817), as envisioned in the United 
Nations Convention on Biological Diversity Strategic 
Plan for Biodiversity 2021–2024 (https://www.cbd.
int/sp; ratified in Argentina for 2021–2024). 

2.  MATERIALS AND METHODS 

2.1.  Tracking data 

Great shearwaters Ardenna gravis were tagged at 
different sites during breeding (incubation and post-
breeding) and pre-laying periods between 2006 and 
2015. Between 2006 and 2009, 24 birds were captured 
in the Bay of Fundy, Canada (44.47–44.87° N, 66.52–
66.82° W), most of which were considered to be ‘imma-
ture’ birds (Powers et al. 2017, Ronconi et al. 2018). In 
2009, 42 birds were caught in their burrows at breeding 
colonies on Gough Island (40.35° S, 9.88° W; popu -
lation size: 1 million pairs) and Inaccessible Island 
(37.29° S, 12.70° W; 2 million pairs) (Ronconi et al. 
2018). The tracking devices used were battery-pow-
ered platform terminal transmitters (PTTs). In addition, 
data from 2 GPS-tracked individuals from Gough and 
Nightingale islands (37.42° S, 12.47° W) in 2014 and 
2015 were used to analyze the general distribution of 
shearwaters in the study area. To summarize, a total of 
66 birds were tracked using PTTs, with an additional 2 
tracked via GPS. However, only data from individuals 
within the study area were considered, totaling 41 
birds (Table S1 in Supplement 1 at www.int-res.com/
articles/suppl/m751p173_supp.pdf, both supplements). 
The locations and techniques used to capture and de-
ploy these tracking devices are described by Ronconi 
et al. (2018) and Schoombie et al. (2018), respectively. 

2.2.  Data analysis 

Analyses were conducted using all shearwater loca-
tions where the commercial Argentine-flagged fish-
eries operate, hereafter referred to as the ‘Argentine 
fishing zone’, comprising the Argentine EEZ and the 
ZCPAU (Table S1, Fig. S1 in Supplement 1). The 
kernel utilization distribution of birds by age class 

(adults from 2009 to 2015 and immatures from 2006 to 
2010) was estimated using the ‘kernelUD’ function in 
the ‘adehabitatHR’ package in R (Calenge 2006, 2021) 
with a reference bandwidth smoothing parameter 
(Worton 1989). Kernel analysis enables the prediction 
of a volume representing the estimated probability 
distribution across a surface defined by (x, y) coordi-
nates. In this study, quantiles were employed to iden-
tify the upper 50%, as well as 75% and 95% of that vol-
ume (Copello et al. 2014), indicating the probability of 
a particular individual being within a specific cell (x, 
y). Subse quently, contours (polygons) were delineated 
to represent the minimum area where the probability 
of relocating the animal equals a specified value. For 
example, the 95% home range corresponds to the 
smallest area where the probability of relocating the 
animal equals 0.95 (Copello et al. 2014). 

Treatment of tracking data are summarized here 
and fully described in Ronconi et al. (2018). Tracking 
data were fitted to a Bayesian switching state-space 
model (SSSM) using the ‘bsam’ package in R (Jonsen 
et al. 2005, 2013). These models provide improved lo -
cation estimates (using statistical processes to esti-
mate positions which account for inaccuracy from dif-
ferent Argos location classes, Jonsen et al. 2005), 
evenness in the sampling (Reid et al. 2014, Jodice et 
al. 2015) and an inferred behavior state as a probabil-
ity that any bird position is in 1 of 2 states: transiting 
(1) or foraging (2), thus representing transiting or 
area-restricted search (i.e. foraging), respectively 
(Jonsen et al. 2013, Powers et al. 2017). Estimated 
locations were derived using the hierarchical first-
 difference correlated random walk with switching, 
which was run in batches on groups of 4 birds (run-
ning larger batches would have taken several days of 
work for the processor), keeping batches separate for 
Fundy and Gough/Inaccessible birds. The modeling 
approach used a Markov chain Monte Carlo method 
with 10 000 iterations (thinned by every 10th record) 
after a burn-in of 40 000 iterations to eliminate the 
effects of initial values. The model was run with a 6 h 
time step so that estimated locations were normalized 
in time over a regular interval (6 h) for the entire 
tracking period. While a 3 h time step has been pre-
viously modeled with these data, the results were 
qualitatively similar when modeled with a 6 h time 
step (see the supplementary materials in Powers et 
al. 2017), although we opted for a 6 h time step to 
 produce a more generalized track due to the longer 
‘off’ period of these tag deployments, which were 
duty-cycled at 8 h on and 16 h off (Ronconi et al. 
2018). Moreover, the long distance and duration of 
foraging trips from their colonies (Ronconi et al. 2018, 
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Schoombie et al. 2018) suggest that behavior-state 
models at 6 h time intervals would be sufficient to dif-
ferentiate between foraging and long-distance move-
ments. Foraging and transiting behaviors were deter-
mined by investigating the value of b from the SSSM, 
with b > 1.7 defining foraging behavior and b < 1.3 as 
transit behavior. Behavior was uncertain and not 
defined for b values between 1.31 and 1.69 (Jonsen et 
al. 2013, Powers et al. 2017); the duty-cycle of the tags 
and the positional inaccuracy of Argos data (com-
pared to GPS data) may have contributed to the 
uncertainty in behavior inference; therefore, these 
data were omitted from the analyses rather than con-
sidering the modeling of additional behavior states. 

A range of commercial Argentine fisheries operate 
in the Argentine fishing zone throughout the year 
(see Argentine NPOA–Seabirds 2010, Copello et al. 
2014, Seco Pon et al. 2015). Trawl fleets consiste of 
vessels preserving the entire fish in ice within plastic 
cubes (i.e. ice-trawlers) operating in coastal or high-
seas areas and those freezing the catch after process-
ing onboard (freezer trawlers) operating mainly in 
high-seas. These fleets are different both in length 
and number of vessels operating. Both types of ves-
sels discard part of the catch lacking commercial 
value, but freezer trawlers also generate offal as a pro-
duct of the processing, consisting of heads, fins and 
guts that are released back to the sea (Copello et al. 
2014). Trawlers were classified according to their fish-
ing gear: bottom otter trawl (e.g. targeting Pata -
gonian scallop Zygochlamys patagonica; consistent 
catches throughout the year), demersal trawl (e.g. tar-
geting common hake Merluccius hubbsi, southern 
hake M. australis and Patagonian grenadier Macru -
ronus magellanicus; consistent catches throughout 
the year), mid-water trawl (e.g. targeting Argentine 
anchovy Engraulis anchoita; higher catches from July 
to November) and double beam trawl (targeting Pata-
gonian shrimp Pleoticus muelleri; higher catches from 
July to September) (Navarro et al. 2019, Prodocimi 
2020). Two demersal longline fleets also operate in 
the area, chiefly targeting Patagonian toothfish Dis-
sostichus eleginoides and kingklip Genypterus bla-
codes. For the study period, the number of operative 
trawlers was on average higher (n = 265) than that of 
longliners (n = 5) (Favero et al. 2013, Bertolotti et al. 
2017). The following fleets were considered in this 
study for the overlap analyses: (1) freezer bottom 
trawlers, (2) freezer demersal trawlers, (3) demersal 
longliners, (4) freezer double beam trawlers, (5) coas-
tal demersal ice-trawlers mainly fishing common 
hake or without a specific target species, locally 
known as ‘coastal mixed catch’, (6) mid-water ice-

trawlers, (7) coastal demersal ice-trawlers mainly fish-
ing for common hake or Patagonian shrimp (operat-
ing from Rawson fishing harbor), (8) demersal high-
seas ice-trawlers and (9) coastal semi-industrial 
ice-trawlers (small-scale vessels ranging from 9 to 
18 m in length). The distribution of fishing vessels in 
the Argentine fishing zone was obtained from a satel-
lite vessel monitoring system (VMS) database, sup-
plied by the Undersecretariat of Fisheries (Ministerio 
de Agricultura, Ganadería y Pesca de la Nación). This 
information was coincident with the study period per 
age class (see next paragraph) and provides hourly 
GPS positions of each vessel. VMS data were filtered 
by speed and time to obtain only fishing locations and 
discard navigation positions (Martinez Puljak et al. 
2018). 

The shearwaters–fisheries overlap analysis was 
conducted using locations from PTTs, since the 2 GPS 
data sets available did not match with the PTT track-
ing period (GPS data were only used for the analysis 
of shearwater distribution in the study area). Adult 
and immature birds were analyzed separately and by 
period (i.e. for adults from October 2009 to June 2010, 
and for immatures from September 2008 to February 
2009, and September 2009 to June 2010; Table S1). 
The same periods were selected for fisheries. The data 
from 2006 for immature individuals were not consid-
ered, as they represent a different time frame from 
that obtained for adults, thereby introducing variabil-
ity into future comparisons. The overlap between the 
distribution of selected fisheries and great shear-
waters (adults 2009–2010 and immatures 2008–2010) 
was estimated with the kernel overlap function in 
‘adehabitatHR’ using the utilization distribution 
overlap index (UDOI), following (Fieberg & Ko -
channy 2005). The UDOI method assumes space use 
independently between groups (Hurlbert 1978), with 
values ranging from 0 (no overlap) to 1 (100% over-
lap) but can be >1 if both UDs are non-uniformly dis-
tributed and have a high degree of overlap. The fleets 
that had a UDOI ≥0.2 were selected to be used in the 
statistical models. This cut-off value was arbitrarily 
chosen to select fleets that are most spatially associ-
ated with the species’ distribution areas, avoiding 
selecting variables that may lead to convergence 
errors in the statistical modelling. 

2.3.  Statistical models 

The effect of fishing effort on shearwater behavior 
was determined through statistical modeling. Fishing 
effort was estimated by summing the number of 
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 fishing points per hour per 4 × 4 km grid cell (Fig. S2 
in Supplement 1). Subsequently, in order to discard 
multi collinearity between fishing effort of different 
fleets, a Pearson correlation analysis was performed 
for each age class using the ‘ggpairs’ function in the R 
package ‘GGally’ (Emerson et al. 2013). There was no 
significant correlation between fishing fleets (Fig. S3 
in Supplement 1). 

Generalized additive mixed models (GAMMs) for 
each age class were applied using the ‘bam’ function 
in the package ‘mgcv’ (Wood 2023). The advantage of 
‘bam’ is a much lower memory footprint than ‘gam,’ 
but it can also be much faster for large data sets. The 
response variable was presence (1) or absence (0) of 
foraging behavior per point (subsequently the fishing 
effort of each cell was extracted). The absences were 
represented by transiting positions; in addition, a set 
of random pseudo-absences was generated for each 
individual. This was done because transiting positions 
constituted a lower proportion (approximately 10%) 
of the total data set compared to foraging positions, 
thus making convergence and model fitting challeng-
ing. The pseudo-absences were generated within the 
95% kernel area of each individual (ID) in the study 
area, and their number was the same as the difference 
between original foraging and transiting positions per 
ID. A binomial distribution was used with a ‘logit’ link 
function since it is the one that best fits for response 
variables with binary outcome (0 [transit positions and 
pseudo-absences] vs. 1 [foraging positions]) (Zuur et 
al. 2009). The explanatory variables were the fishing 
effort of each fleet; these covariates were transformed 
towards normal using an optimized Box-Cox transfor-
mation factor (Box & Cox 1964), derived using the 
package EnvStats (Millard & Kowarik 2023). In adults, 
individual ID was included as a random effect, while 
for immatures it was not included because it did not 
show a significant effect during the explorations of 
the models. As a consequence of the spatial autocor-
relation evaluated by a Moran test (p < 0.001 for both 
age classes) using the ‘ape’ package (Paradadis et al. 
2024), a Gaussian process fixed term with the coordi-
nates was added to the models (Bivand et al. 2013, 
Wood 2017). The adjustment of each global model 
was made from a visual inspection of the residual 
graphs, and the goodness of fit of the final model was 
determined by the area under the receiver operating 
characteristic curve (Zuur et al. 2009). Model selection 
was based on Akaike’s information criterion (AIC) 
using the ‘dredge’ function in the ‘MuMIn’ package 
(Bartoń 2023). Candidate models were compared 
using the difference between the AIC for each respec-
tive model and the lowest observed value (measured 

as ΔAIC, where ΔAIC = 0 represents the best model, 
and those within the range of ΔAICc ≤ 2 are consid-
ered plausible models). In addition to the ΔAICc 
value, the Akaike weight (wi) was used (Burnham & 
Anderson 2002). 

2.4.  Stable isotope analysis 

Blood samples (n = 5) were obtained from adult 
birds captured alive in April 2013 with nets from rec-
reational fishing boats sailing in waters of the north-
ern Argentine fishing zone. Breeding status of indi-
viduals was not determined. Blood of shearwaters 
integrates dietary information up to 8 wk before sam-
pling (Vander Zanden et al. 2015, Hong et al. 2019). 
Hence, in this study, we assumed that blood samples 
provided information on the species’ diet during the 
late austral summer and early austral autumn (Hong 
et al. 2019). Stable isotope ratios were determined by 
mass spectrometry and were compared among poten-
tial prey categories (taken from the literature, as 
described in Table S2 in Supplement 2) through a per-
mutational multivariate analysis of variance (PERM-
ANOVA) (Anderson 2001, Anderson et al. 2008) in 
PRIMER 6 (Clarke & Gorley 2006) and pairwise post 
hoc comparisons. To assess the importance of differ-
ent prey as food sources, we used the ‘MixSIAR’ Bay-
esian stable isotope mixing model in the R environ-
ment (Stock et al. 2018). Convergences of mixing 
models were evaluated using the Gelman-Rubin and 
Geweke diagnostics (Stock et al. 2018). Results from 
the isotope  mixing models are expressed as mode and 
95% cre dibility intervals (CI). Means are provided 
±SD un less otherwise stated. More methodological 
procedures of sample preparation and analysis are 
detailed in Text S1 in Supplement 2. 

The data management and analysis were con-
ducted using R (R Core Team 2021) and QGIS 3.14 
(QGIS Development Team 2020). 

3.  RESULTS 

In general terms, the area used by great shearwaters 
Ardenna gravis covered waters from southern Brazil 
(~32° S) to southern Argentina (~49° S) (Fig. 1). The 
distribution of adult shearwaters was wider than the 
area used by immatures (kernel 95%), with a large 
core area (ca. 167 000 km2) chiefly running between 
the 50 and 200 m isobaths east and south of the mouth 
of the Río de la Plata and a small one (ca. 6000 km2) 
located at the northern boundary of San Jorge Gulf 
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(~43° S). Immature shearwaters used waters slightly 
farther north than adults, from southern Brazil (~32° S) 
to northern Argentine Patagonia (~42° S), showing 2 
core areas, one off the mouth of the Río de la Plata (ca. 
45 000 km2) and a larger one (ca. 153 000 km2) from 
south-east Buenos Aires province (~36° S) to Valdés 
peninsula (Fig. 1). The overlap analysis showed that 
coastal demersal ice-trawlers, mid-water ice-trawlers 
and demersal high-seas ice-trawlers highly over-
lapped with shearwaters of both age classes. In 
addition, immatures showed high overlap with de -
mersal longliners and coastal semi-industrial ice-
trawlers (Table 1, Fig. 2). 

The Box-Cox transformation factors used in models 
for adult shearwaters were 0.24, 0.16 and 0.16 for 
demersal high-seas ice-trawlers, mid-water ice-
trawlers and coastal demersal ice-trawlers, respec-
tively. Those used for immature individuals were 0.20, 
0.12, 0.19, 0.05, 0.09 for demersal high-seas ice-
trawlers, mid-water ice-trawlers, coastal demersal ice-
trawlers, demersal longliners and coastal semi-indus-
trial ice-trawlers, respectively. When analyzing the 
effect of fishing effort on the behavior of great shear-
waters, global models for each age class showed a 
deviance explained of 6.40% for adults and 6.53% for 
immatures. The selected model for adult birds 
included a significant association with the demersal 

high-seas ice-trawlers and the coastal demersal ice-
trawlers (Table 2). The prediction plots showed that 
adults were more likely to forage when the effort of 
demersal high-seas ice-trawlers increased, and then it 
remained constant at high effort. In the case of the 
variable coastal demersal ice-trawlers, adults initially 
did not seem to respond to changes in fishing effort; 
however, once the effort began to increase signifi-
cantly, they became less likely to forage (Fig. 3). In 
immatures, there were different selected models 
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Fleet                                                               Adults   Immatures 
 
Freezer demersal trawlers                         0.16            0.05 
Demersal longliners                                    0.12            0.22 
Freezer double beam trawlers                  0.03            0.00 
Freezer bottom trawlers                             0.16            0.13 
Coastal demersal ice-trawlers                  0.28            0.38 
Mid-water ice-trawlers                               0.59            0.60 
Coastal demersal ice-trawlers                  0.01            0.01 
 of Rawson 
Demersal high-seas ice-trawler                0.61            0.29 
Coastal semi-industrial ice-trawlers       0.17            0.20

Table 1. Utilization distribution overlap indices (UDOI) be-
tween great shearwaters and studied fishing fleets per age 
class (fleets selected to be used in statistical models, with  

UDOI ≥0.2, are highlighted in bold)

Fig. 1. Marine areas used by (A) adult and (B) immature great shearwaters in the study area during 2006–2015
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according to the ΔAIC criterion; however, the model 
chosen here included only the variables that had a 
significant effect on the foraging behavior of imma-
ture individuals: demersal high ice-trawlers, coastal 
demersal ice-trawlers and mid-water ice-trawlers 
(Table 2). The immature individuals were more likely 
to forage with increased fishing effort of demersal 

high ice-trawlers, while for the other fisheries, ini-
tially the foraging probabilities increased as fishing 
effort began to rise. However, this trend reversed, and 
they became less likely to forage with increased fish-
ing effort, although with greater associated va riability 
(Fig. 3). The goodness of fit of the final models was 
0.67 for both age classes. 
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Age class                    Period          Model             AIC              ΔAIC                wi                   Variable           edf                  χ2                             p 
 
Adults                     2009–2010           1               19113.3              0                 0.934       CoastDem       4.313            164.61          <0.001 
                                                                                                                                                    HighDem        6.516            258.02          <0.001 
Immatures             2008–2010           1              4400.86            0                  0.43         CoastDem       2.908            12.939         0.009 
                                                                                                                                                    MidWater       2.425            10.717         0.010 
                                                                                                                                                    HighDem         1.347            18.659        <0.001 
                                                                                                                                                    CoastRad         1.884             4.475         0.136 
                                                                  2              4402.13         1.27              0.23         CoastDem       2.865            12.066         0.013 
                                                                                                                                                    MidWater       2.425             10.69           0.010 
                                                                                                                                                    HighDem         1.318            18.679        <0.001 
                                                                                                                                                    CoastRad         1.925             5.097         0.107 
                                                                                                                                                    DemLong        1.725              2.16           0.365 
                                                                  3              4402.16          1.3                0.22         CoastDem       2.866             13.41           0.007 
                                                                                                                                                    MidWater       2.413             11.35           0.008 
                                                                                                                                                    HighDem        1.548              22.4             <0.001

Table 2. Generalized additive models that explain the probability of foraging behavior of adult and immature great shearwaters 
in relation to the fishing effort. The best and the plausible models (according to differences in Akaike’s information criterion 
[ΔAIC] ≤2 and Akaike weight [wi]) are shown. Estimated degrees of freedom (edf) represent the complexity of the model term, 
while χ2 represents the effect the term has on the model output. A p-value of <0.05 is considered significant. The models high- 

lighted in bold best explain the foraging behavior of the species. See Fig. 2 for variable abbreviations

Fig. 3. Marginal effects of each model covariate on the foraging probability prediction in (A,B) adult and (C–E) immature great 
shearwaters. Dotted lines represent 95% confidence intervals. The explanatory variables on the x-axis are expressed in values  

resulting from Box-Cox transformations (see Section 2)
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Isotope ratios for great shearwaters were –17.9 ± 
0.2 for carbon and 16.8 ± 0.3 for nitrogen. Isotope 
ratios of potential food sources ranged from –18.8 to 
–15.5‰ in δ13C and from 12.6 to 16.9‰ in δ15N 
(Table S2). Significant differences were found in δ13C 
and δ15N values among species considered as poten-
tial prey (PERMANOVA F7,52 = 21.71, p < 0.001) 
allowing the prey to be pooled into 5 functional cate-
gories from the Argentine fishing zone (Table S2): 
demersal fish (Merluccius hubbsi and Nototenia pata -
gonotothen, part of demersal ice-demersal trawler 
discards), mid-water fish (Engraulis anchoita), demer-
sal crustacea (Pleoticus muelleri) and 2 components 
of local zooplankton, calanoid copepods (Gaitán 
2012) and the lobster krill Munida gregaria (Funes et 
al. 2018). The isotopic signatures of mid-water cepha-
lopods from the Argentine fishing zone (including 
Illex argentinus and Doryteuthis gahii) did not differ 
from demersal fish species; nevertheless, they are 
shown as a discrete category (Fig. 4). Given the high 
values observed in the isotopic composition of Pata-
gonian shrimp Pleoticus muelleri, this category was 
excluded from the mixing model analysis. As a result, 
the model included demersal fish, mid-water fish, 
calanoid copepods and M. gregaria as potential food 
sources for great shearwaters in the Argentine fishing 
zone. Mixing polygon sensitivity analyses showed 
that isotopic ratios of most individual samples, given 
the trophic discriminant factor and food sources 
values used (see Text S1), were included in more 
than 70% of the simulated mixing polygons, vali -
dating the proposed mixing models. The distributions 

resulting from the MixSIAR showed, for individuals 
sampled during austral autumn, similar higher con-
tribution of zooplanktonic species, particularly cala-
noid copepods (mode: 34%; 95% CI: 13–51%) and 
mid-water fish (30%, CI: 5–56%), followed by demer-
sal species (20%, CI: 3–38%) and other abundant 
components of the zooplankton such as M. gregaria 
(15%, CI: 2–39%). 

4.  DISCUSSION 

This study investigates the association and effect of 
commercial fishing activities on the distribution and 
foraging behavior of great shearwaters Ardenna gra-
vis during their pre-laying, incubation and post-
breeding periods in the Southwest Atlantic Ocean. 
Core distribution areas of great shearwaters were 
concentrated at the northern Patagonian Shelf, main -
ly at the mouth of the Río de la Plata estuary, the shelf 
break and the convergence zone of the Malvinas–
Brazil Currents, a highly productive region (Acha et 
al. 2004, 2015, Lucas et al. 2005). Oceanographic 
 features such as high surface temperature gradients, 
neritic zones, convergence areas and river discharges, 
coupled with the abundance of prey, make these 
areas important foraging grounds and migra tory 
routes for seabirds and other marine megafauna, 
including turtles, sea lions and whales (Phillips et al. 
2006, Falabella et al. 2009, Zerbini et al. 2015, Gonzá-
lez Carman et al. 2016, Carneiro et al. 2020, Mariano-
Jelicich et al. 2021). 

The high overlap observed between 
great shearwaters and different com-
mercial fishing fleets in the Argentine 
fishing zone was in line with previous 
studies based on onboard observations 
in a range of fleets, where high abun-
dances of great shearwaters have been 
observed throughout the year (Gonzá-
lez-Zevallos & Yorio 2006, 2011, Favero 
et al. 2011, González-Zevallos et al. 
2011, Paz et al. 2018, Seco Pon et al. 
2020). However, onboard observations 
did not consider the effect of fishing ef-
fort and spatial scales analyzed in this 
study. The overlap with the anchovy 
fishery was high in both age classes. 
High bycatch rates were also reported 
in this fishery, with mortalities mainly 
due to net entanglements while shear-
waters were feeding on discards or 
prey captured during hauling opera-
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Fig. 4. Carbon and nitrogen stable isotope ratios of great shearwater blood 
samples (grey circles). Black circles correspond to mean isotopic ratios of Ar-
gentine fishing zone potential food sources. Error bars show standard devi-
ation. The isotopic signatures of cephalopods did not differ from demersal fish  

species; nevertheless, they are shown as a discrete category
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tions (Paz et al. 2018, Seco Pon et al. 2020). Studies in 
other trawl fisheries such as coastal and offshore ice-
trawlers have also reported interactions (i.e. contacts 
with fishing gear) and incidental mortality of great 
shearwaters (González-Zevallos & Yorio 2006, 2011). 

An increase in fishing effort in demersal high-seas 
ice-trawlers was associated with a high probability of 
foraging behavior in adult and immature shearwaters, 
similar to the response of black-browed albatrosses 
Thalassarche melanophris foraging in neighboring 
waters closed to common hake fishing (Copello et al. 
2016, Paz et al. 2019). Such increased foraging behav-
ior can be attributed to the attraction generated by 
the availability of important volumes of discards, offal 
and facilitated prey as a predictable source of food 
(like in high-seas ice-trawlers, see Favero et al. 2011, 
Bovcon et al. 2013). Great shearwaters may show 
dominant behavior offshore over other species when 
feeding on fishery discards (for example dominating 
the zone in close proximity to the vessel), which may 
even lead to higher risks of incidental mortality 
through heavy strikes or entanglement (Cianchetti-
Benedetti et al. 2018, Carvalho et al. 2020). Contrary 
to the above effect, an increase in fishing effort in 
coastal demersal ice-trawlers was associated with a 
decreased probability of foraging behavior in shear-
waters of both age classes, and in mid-water ice-
trawlers for immatures. This opposite effect could be 
attributed to the existence of density-dependent pro-
cesses or interspecific competition with coastal and 
very abundant species, such as the kelp gull Larus 
dominicanus, identified as a dominant species attend-
ing Argentine coastal fleets (González-Zevallos & 
Yorio 2006, Seco Pon et al. 2012, 2013). Another im -
portant aspect to be considered is that coastal demer-
sal ice-trawlers concentrate their fishing efforts in 
areas very close to the coastline not frequently used 
by shearwaters preferring to forage in pelagic waters 
(Ronconi et al. 2018), hence reducing the likelihood 
of encounters with those vessels and causing lower 
foraging probability when fishing effort increases. 
Instead, they might be attracted to offshore fleets with 
larger fishing efforts (e.g. catches in offshore demer-
sal high-seas ice-trawlers is ca. 40 times greater than 
that reported by coastal demersal ice-trawlers; 
Navarro et al. 2014) and generating higher levels of 
discards (Favero et al. 2011, Seco Pon et al. 2015, Paz 
et al. 2018). 

The results from isotopic analysis supported, at 
least partially, the important role that Argentine 
anchovy Engraulis anchoita and other mid-water 
resources play in the diet of adult shearwaters in the 
Argentine sea (Table S2). This finding becomes even 

more relevant when considering the high overlap 
between the mid-water ice-trawlers and the distribu-
tion of great shearwaters. The isotopic analysis also 
showed the contribution of demersal fish species like 
common hake Merluccius hubbsi (Table S2), which is 
a primary target species for a significant portion of 
the offshore demersal trawl fleet and is present in the 
discards and offal (González-Zevallos & Yorio 2006, 
Favero et al. 2011, Bovcon et al. 2013). This kind of 
prey is not naturally available and could only be 
obtained through association with other subsurface 
predators or fisheries. However, considering that the 
stable isotope ratios of mid-water cephalopods were 
similar to those of demersal fish in the Argentine fish-
ing zone, we cannot rule out the possibility that these 
results are related to the consumption of cephalopods 
(i.e. Illex argentinus, Doryteuthis gahii). Hard parts 
like cephalopod beaks can be over-represented in 
stomach contents (Barrett et al. 2007), and a previous 
study reported a high occurrence of cephalopods in 
stomachs of shearwaters (Petry et al. 2008). We are 
aware of the limited number of individuals sampled, 
and so these results should be considered with cau-
tion. A larger sample size could more accurately rep-
resent the diet during the breeding and pre-laying 
period. Nevertheless, these results are in line with 
other approaches in southern South America (Bugoni 
et al. 2010). Coupled with high-resolution distribu-
tion records of shearwaters and long-term tracking of 
the same individuals (for example, through captures 
and recaptures in colonies), this would provide cru-
cial information to identify changes in behavior over 
time and assess the direct impact of resources pro-
vided by fishing fleets on the species’ long-term diet. 

Several studies highlight the positive and negative 
effects of fishery discards and the importance of food 
quality, as well as abundance and availability, on sea-
bird reproduction, survival and population dynamics 
(Oro et al. 1999, Hüppop & Wurm 2000, Bartumeus et 
al. 2010, Mariano-Jelicich et al. 2017, Church et al. 
2019). ‘White’ fish (like hake) and some offal discards 
(such as intestines) have little nutritional value, while 
‘blue’ fish (like anchovies) present a much higher 
nutritional value. In this regard, the consumption of 
discarded hake by shearwaters may only be beneficial 
in the short term, whereas anchovies (whether caught 
naturally or associated with trawlers through discards 
or facilitated prey) could represent high-quality prey 
meeting the nutritional requirements during the 
breeding period (Navarro et al. 2009, Montevecchi 
2023). However, this benefit of accessing discards and 
prey facilitated by fishing operations results in a 
greater seabird attendance, increasing the likelihood 
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of negative direct interactions leading to incidental 
mortality (Montevecchi 2001, 2023). 

The present study is an approximation of the behav-
ioral response of shearwaters to commercial fishing 
effort in Argentine waters; however, data at finer spa-
tial and temporal resolution is necessary to visualize 
changes in the species’ behavior at the time of the 
encounters with vessels, taking into account different 
moments of the fishing operation and discard pro-
cesses (for example, through the use of GPS devices 
that provide more precise data, see Collet et al. 2015, 
2017, Ouled-Cheikh et al. 2020). Nevertheless, this 
study allowed us to better understand the effect of 
fisheries on seabird behavior, which is essential for 
developing and implementing measures aimed at 
reducing the incidental capture of seabirds by fishing 
fleets, including the design of discard management 
strategies. 

Argentina has developed regulations promoting 
the implementation of the ecosystem approach to 
fisheries management, including the adoption in 
2010 of the National Plan of Action for Seabirds (and 
other National Plans for other marine megafauna), 
aimed at minimizing the detrimental effects of fishing 
operations on seabirds (Argentine NPOA–Seabirds 
2010). More recently, Argentina and Uruguay have 
adopted a Regional Plan of Action–Seabirds to 
address bycatch in fisheries operating in a common 
fishing zone, which is largely used by great shear-
waters, among other marine megafauna (Domingo et 
al. 2022). The incidental mortality of seabirds in the 
Argentine demersal longline fishery has decreased 
significantly from the 1990s, mainly due to a sig -
nificant reduction in fleet size and fishing effort (Fav-
ero et al. 2013). Regulations have been developed 
to mitigate the impact of longliners and trawlers 
 (Federal Fisheries Council Resolutions 08/2008 and 
03/2017), calling for the use of methods endorsed 
internationally (ACAP 2024a,b). However, the effec-
tive implementation of mitigation measures and 
 regulations remains largely uncertain in the majority 
of Argentine net fisheries (Favero et al. 2011, 2013, 
Favero & Seco Pon 2014, Tamini et al. 2023). The 
South Atlantic Ocean represents a crucial highly pro-
ductive marine ecosystem extremely valuable for 
great shearwaters and many other local and distant 
migrant species (Phillips et al. 2006, González Car-
man et al. 2016, Krüger et al. 2017), holding inter -
national significance for the conservation of marine 
biodiversity. Argentina has recently created (through 
Law 27 490) 3 large southern offshore marine pro-
tected areas, namely Yaganes and Namuncurá–
Banco Burdwood I and II, which favor the conserva-

tion of marine biodiversity. However, the full imple-
mentation of these marine protected areas and the 
establishment of new areas is still needed to achieve 
the objective of protecting 10% of the marine areas in 
the region, as envisioned in the National Strategic 
Plan for Biodiversity (Resolution 356/2022). The exis-
tence of other well-regulated areas with permanent or 
temporary fishing closures in the Argentine EEZ and 
in the ZCPAU surely benefit seabirds and the overall 
marine ecosystem. The results presented in this study 
may help decision makers in the identification of key 
waters for the further delimitation of important areas 
to be protected. 
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