
1.  INTRODUCTION 

Bleaching of reef-building corals can be induced 
by many environmental forcings, including thermal 
stress (Glynn 1984, Brown 1997, Berkelmans & Willis 
1999, Hoegh-Guldberg 1999), increased irradiance 
(Lesser et al. 1990), sedimentation (Bak 1978, Philipp 
& Fabricius 2003), and decreased salinity (Coles & 
Jokiel 1978, 1992). Notably, the effects of these forc-
ings can be interactive, with combinations of factors 
leading to higher probabilities of bleaching than pre-
dicted based on the levels of each forcing individually 
(Fitt et al. 2001). 

Concurrent episodes of thermal stress and in -
creased irradiance (due to shifting wave or wind pat-

terns calming the sea surface) may result in par-
ticularly acute coral bleaching events, and shading 
has been shown to reduce coral mortality during 
mass bleaching events (Mumby et al. 2001, Taglia-
fico et al. 2022). For example, unexpectedly severe 
coral bleaching was observed during a mild thermal 
stress event under conditions of anomalously high 
irra diance, the latter linked to calm seas and cloud-
less skies (Glynn 1993). Contrastingly, cloud cover 
was credited with alleviating bleaching that was ex -
pected due to increased sea surface temperatures 
during the 1997/1998 global bleaching event (Mumby 
et al. 2001). In a global study of over 35 000 corals 
spanning 32 yr, higher levels of cloudiness reduced 
bleaching response of corals exposed to severe 
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bleaching-level heat stress (Gonzalez-Espinosa & 
Donner 2021). 

Similarly, nearshore turbid environments have been 
considered refuges during thermal stress due to 
increased particles in the water column absorbing 
light and lessening realized irradiance experienced 
by corals (van Woesik et al. 2012, Cacciapaglia & van 
Woesik 2016, Sully & van Woesik 2020). Additionally, 
recent research on corals growing on mangrove roots 
suggests that the shade provided by mangrove cano-
pies offers a vital refuge from light stress and contrib-
utes to improved coral survival during thermal stress, 
compared to nearby shallow reefs (Yates et al. 2014, 
Stewart et al. 2021). Macroalgae cover, though often 
harmful in outcompeting corals during favorable con-
ditions, has been shown to provide refuge by reduc-
ing solar irradiance, particularly for branching corals 
(Smith et al. 2022). 

High light combined with thermal stress can result 
in coral mortality. In an experimental study manipu-
lating both light and thermal stress, high levels of both 
resulted in coral mortality, while 70% light at the same 
temperature resulted in limited mortality and coral 
growth (Coles & Jokiel 1978). Relatedly, artificial 
shade during thermal stress decreased bleaching of 3 
common coral species, with heavier shading decreas-
ing growth rate but increasing survival rate of the col-
onies (Coelho et al. 2017). These findings have en-
couraged further studies investigating the potential of 
shade in coral resilience (West & Salm 2003, Ban et al. 
2014). Environmental features can also contribute to 
shading in natural settings. For example, the topogra-
phy of a reef due to structural complexity of massive 
and tabular corals, as well as large thickets of branch-
ing corals such as Acropora, naturally enhances reef 
topography. Variety in the physical structure in-
fluences environmental factors such as light intensity 
and water flow, which both impact bleaching severity 
(Hoogenboom et al. 2017, Lenihan et al. 2008). 

Here, we explored the interaction of local shading 
produced from reef structural complexity on the inci-
dence of coral bleaching in a natural setting during a 
thermal stress event. Using 3D models of coral reefs 
on a remote reef in the central Pacific during a marine 
heatwave, we investigated how local shading (at the 
scale of the colony) is associated with bleaching sev-
erity. We hypothesized that reduced irradiance from 
shade produced by neighboring topographical fea-
tures will reduce bleaching severity of coral colonies. 
We consider existing structural complexity of the reef 
as a form of protection against bleaching and high-
light the importance of maintaining varied reef 
topography under changing climate conditions. 

2.  MATERIALS AND METHODS 

2.1.  Study site 

Data were collected in 2015 and 2016 from Palmyra 
Atoll (5°88’ N, 162°08’ W), an unpopulated atoll in 
the central Pacific which has limited exposure to 
local stressors such as nutrient pollution and over-
fishing (Sandin et al. 2008). The isolation of this atoll 
provides an opportunity to determine the impacts of 
natural fluctuations without local anthropogenic 
influence. Palmyra experienced a severe bleaching 
event with a maximum of 11.9 degree heating weeks 
(DHWs) measured between July and September 
2015 and peak in situ nighttime temperature on the 
fore reef measured in September 2015 (Fox et al. 
2019). Previous studies have shown that 4 DHWs 
result in bleaching, with mortality common above 
8  DHWs (Eakin et al. 2009). During this bleaching 
event, 90% of the corals on Palmyra bleached, with 
32% of bleaching classified as severe. Despite the 
severity, most corals survived, with only 9% coral 
mortality (Fox et al. 2019). Four fore-reef sites, 2 on 
the north side of the atoll and 2 on the south side of 
the atoll, were identified for use in this study (FR8 
and FR14, FR38 and FR40, respectively; Fig. 1A). 

2.2.  Study organism 

The focal taxon of this study was the genus Pocillo-
pora, represented by 2 species: P. meandrina and P. ver-
rucosa. Because the species are morphologically and 
functionally similar, they were grouped as ‘Pocillo -
pora’ for the purposes of this study (Pinzón & La -
Jeunesse 2011, Pinzón et al. 2013). Pocillopora are 
highly abundant and widely distributed across the 
tropical central Pacific and comprise 15% of the total 
coral cover and 12% coral colony abundance at Pal-
myra, making it the third most abundant coral taxo no -
mic group (Edwards et al. 2017). Given their corymb ose 
morphology, identifying colony borders for ac curate 
size measurement is straightforward. P. meandrina and 
P. verrucosa exhibit a competitive life history strategy 
with low resistance to disturbance events and fast col-
onization and growth, often allowing rapid recovery 
(Loya et al. 2001, Darling et al. 2012, Kayal et al. 2015). 

2.3.  Model construction 

Methods of large-area imaging and exploration of 
resulting 3D models were adapted from Edwards et al. 
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Fig. 1. Study location. (A) Palmyra Atoll, central Pacific, showing the 4 fore-reef study sites. (B–E) Images of reef study sites.  
Adapted from Edwards et al. (2017)
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(2017). In September and October 2015, during the 
peak of the thermal stress event, and September 2016, 
imagery was collected from 100 m2 fore-reef plots 
(n = 4) along the 10 m isobath (Fig. 1B). The central 
axis of the plot was marked with 2 steel pins along the 
10 m isobath. The lefthand pin (with relative position 
assessed while facing onshore) was georeferenced 
with GPS coordinates for annual sampling and the 
compass bearing from the lefthand to righthand pin 
(approximately parallel to shore) was recorded. 
Models of each site were collected through large-area 
imaging techniques, with a diver operating a camera 
system with 2 Nikon D7000 DSLR cameras, one with a 
55 mm focal lens and another with 18 mm focal lens, 
with the cameras mounted one above the other. The 
diver swam a gridded pattern approximately 1.5 m 
above the reef, capturing 1 image per second, result-
ing in approximately 2500 images per camera per plot 
with significant image overlap across the seascape 
(targeting >20 images per point on the benthos). 

The raw imagery was used to create 3D point cloud 
reconstructions in the Structure-from-Motion software 
Metashape (Agisoft Metashape 2016). These point 
clouds were coregistered across time and converted 
into temporally aligned 2D top-down orthoprojec-
tions using the custom software Viscore (Petrovic et 
al. 2014). Scale bars on established reef plots were 
used to ensure accurate scale and the plane of refer-
ence for orthorectification was defined as that parallel 
to the sea surface, estimated based on the depths of 
the markers identifying the plot boundaries. Models 
in Viscore were oriented according to cardinal direc-
tions using the alongshore compass bearing, allowing 
for directional analysis. This study used a 2 yr time 
series of 2015 and 2016, with 2015 capturing the 
bleaching event and 2016 used to determine survivor-
ship and recovery. 

2.4.  Data extraction 

Within the 4 sites, 618 individual colonies of Pocillo-
pora were segmented by hand, tracing colony bound-
aries and annotating class label on the orthoprojec-
tion in the program TagLab, a software designed to 
support large-scale orthographic analysis (Pavoni et 
al. 2022). Colonies were defined as a patch of continu-
ous live tissue (Highsmith 1982) and spatially linked 
raw imagery from both cameras (with the 55 and 
18 mm lenses) were used to increase precision in 
mapping colony borders. Colonies whose boundaries 
could not be confidently defined based on the details 
of the 3D models (those near plot borders, those com-

pletely under overhangs that were occluded in the 
model) were excluded. 

Between years, colonies were manually matched in 
TagLab, thus providing the ability to evaluate colony-
specific shifts in condition or size through time. 
Change in planar area between the matched colonies 
was used to determine fate of the colony, classified as 
experiencing growth, no change (less than 5% change 
in area), shrinkage, or death (which included death 
with skeleton still visible, upheaval to different un-
identifiable location, or complete coverage by other 
reef structures). Size estimates were constrained to 2D 
orthoprojections to increase measurement precision; 
notably, 2D planar area has been shown to scale lin-
early with 3D surface area and volume (House et al. 
2018). Colonies with an initial size of less than 5 cm 
dia meter were considered juvenile (Pedersen et al. 
2019) and removed for the purposes of this study due 
to inaccuracy in using color to determine bleaching. 
Additionally, colonies that split or fused between 
years were removed from analysis to avoid complica-
tions of calculating area under partial mortality. A 
total of 45 colonies (~7%) were removed for this rea-
son, leaving 573 colonies for analysis. 

Colonies were assigned 1 of 5 bleaching severity 
categories (for the 2015 time point) based on the per-
cent of the whole colony affected. Bleaching severity 
was adapted from Gleason (1993) and Burgess et al. 
(2021) and classified as follows: not bleached (no loss 
of pigmentation), less than 10% bleached (some loss 
of pigmentation in branch tips), somewhat bleached 
(many pale branch tips), mostly bleached (white 
branch tips with bleaching extending down branches), 
and completely bleached (full colony white) (Fig. 2). 

The point cloud in Viscore was used to determine 
the impact of light through shading from neighboring 
reef structures. A 4 cm grid, oriented east/west, was 
placed over the model representing a 2D grid (x, y). At 
the coordinate of each vertex of the grid, a point was 
defined on the 3D point cloud, with the z dimension 
defined by the depth of the model at each (x, y) 
coordinate defined. For each coral colony, an 
additional point was placed at the centroid of the pla-
nar projection of the colony and positioned at the 
depth of the colony at this point (z); the associated 
colony ID from Taglab was linked to this point for 
identification. 

For each colony, relative shading was defined as the 
size of the arc of unobstructed view from the colony to 
the ocean surface along the east–west axis (Fig. 3A). 
The change in z coordinate and change in x, y coordi-
nate was used to determine angle of elevation, θ, be -
tween the 2 points through trigonometry 
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Fig. 2. Bleaching severity classifications assigned based on percentage of the whole colony experiencing bleaching. (A) Com-
pletely bleached (whole colony is white). (B) Mostly bleached (white branch tips with bleaching extending down branches). (C) 
Somewhat bleached (many pale branch tips). (D) Less than 10% bleached (some loss of pigmentation in the branch tips). (E) Not  

bleached (no loss of pigmentation). Bleaching categories were adapted from Gleason (1993) and Burgess et al. (2021)

Fig. 3. Measurement of shading. (A) Relative shading: θW and θE represent the angles between the colony and the nearest  
obstructing objects along the east and west axes. (B) Arc of shade: the largest angle of elevation within 1 m from the colony's  

centroid. (C) Arc of sunlight: the sum of the inverse angles in the east and west directions
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Change in elevation between the colony and neigh-
boring structure at each grid vertex was measured up 
to 1 m away from the centroid of the colony. The 
largest angle within that meter was recorded as the 
arc of shade for the colony, with 0° representing no 
topographically elevated structures nearby, and thus 
no shading, and 90° representing full coverage by a 
topographical feature (Fig. 3B). Negative arcs of 
shade were noted as 0°, as there were no shading 
structures nearby. The process was done in both the 
east and west direction. Because Palmyra is located at 
5.89°N latitude, the path of daily sun travels direc-
tionally from east to west with less significant light 
coming from north or south directions, which were 
not included in this study. 

The amount of sunlight the colony experienced 
based on neighboring structures was converted to a 
single arc of sunlight measurement by subtracting the 
east and west angles from 90° and adding those in -

verse angles together (Fig. 3C). A small arc of sun-
light approaching 0° represents significant shading, 
and a larger arc of 180° represents no shading. 

2.5.  Statistical analyses 

All data analysis was performed in R Statistical Soft-
ware Version 1.4.1103 (R Core Team 2022). Difference 
in severity of bleaching between sites was tested 
using a χ2 analysis. Pairwise comparisons were per-
formed using Fisher’s exact test. 

Bleaching severity was grouped as severe (com-
pletely bleached and mostly bleached) and mild 
(somewhat bleached and less than 10% bleached) for 
the remainder of the analyses. The relationship be -
tween bleaching severity and fate the following year 
was tested using a χ2 analysis. 

Logistic regression was used to analyze the rela-
tionship between arc of sunlight and colony bleach-
ing severity. The model considers whether the prob-
ability of a colony experiencing mild vs. severe 
bleaching is a function of level of exposure to sun-
light. This approach was then repeated for the arc of 
sunlight in both the east and west directions. The 
relationship between arc of sunlight and bleaching 
was similar across sites (data presented in Fig. A1 in 
the Appendix), so all data are aggregated across sites 
in the analyses presented. 

3.  RESULTS 

We measured planar area, bleaching severity, and 
estimated irradiance for 573 Pocillopora colonies 
across 4 sites at Palmyra Atoll during the bleaching 
event in 2015 and the following year. Of the colonies 
studied, 1.4 % were completely bleached, 24.1 % 
mostly bleached, 67.5% somewhat bleached, 7% less 
than 10% bleached, and 0% not bleached. 

Bleaching severity varied between sites, with FR8 
having the least severe colony bleaching and FR38 
having the most severe colony bleaching (p < 0.001, 
χ2 = 68.3) (Fig. 4). Pairwise comparisons showed sig-
nificantly different bleaching between all sites except 
between FR38 and FR40. 

Of the 573 colonies observed, 103 died, 87 shrank, 25 
had no more than a 5% change in area, and 358 grew. 
Due to sample size, bleaching severity categories were 
grouped as severe bleaching (mostly bleached and 
completely bleached) and mild bleaching (somewhat 
bleached and less than 10% bleached). Of the 146 
 severely bleached colonies, 42% grew, 3% had no 
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change, 23% shrank, and 32% died. Of 
the 427 mildly bleached colonies, 69% 
grew, 5% had no change, 13% shrank, 
and 13% died (Fig. 5). There was a sig-
nificant relationship be tween mild 
bleaching and severe bleaching and 
fate the following year (p < 0.001, χ2 = 
43.0). Colonies experiencing less severe 
bleaching resulted in a higher likeli-
hood of growth (69%) and a lower likeli-
hood of death (13%) when compared to 
more severely bleached colonies which 
exhibited 42% growth and 32% death 
(Fig. 5). 

Mildly bleached colonies had a 
smaller arc of sunlight, defined as the 
angle produced by neighboring struc-
tures in the combined east and west di-
rection, of 156.6 ± 1.0° (±SE). Severely 
bleached colonies had a larger arc of 
sunlight of 165.6 ± 1.0° (Fig. 6). The 
probability of a colony suffering severe 
vs. mild bleaching was positively re-
lated to the arc of sunlight (logistic re-
gression: arc of sunlight effect 0.030 ± 
0.007; p < 0.001; Fig. 6). 

In the west direction, mildly bleached 
colonies had a larger mean arc of shade 
of 11.9 ± 0.7°, and severely bleached 

colonies had a smaller mean arc of shade of 7.9 ± 0.8° 
(Fig. 7A). In the east direction, mildly bleached col-
onies had a larger mean arc of shade of 11.4 ± 0.7° and 
severely bleached colonies had a smaller mean arc of 
shade of 6.5 ± 0.7° (Fig. 7B). The magnitude of the 
arcs in the east and west direction were similar, mean-
ing there was no directional bias in the impact of 
shade on bleaching severity. Results of logistic re -
gression revealed similar positive effects of arc of 
 sunlight on probability of a colony suffering severe 
bleaching (west: 0.028 ± 0.009, p < 0.05; east: 0.034 ± 
0.010, p < 0.05). 

4.  DISCUSSION 

Here, we explored the role that shade from struc-
tural complexity of reef topography played in mitiga-
ting bleaching severity of Pocillopora during the mar-
ine heat wave of 2015 at Palmyra Atoll. Our findings 
suggest that the amount of sunlight coral colonies 
received, measured as both the arc of sunlight and the 
arc of shade in the east and west direction, was related 
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to the severity of bleaching. Colonies exposed to 
more sunlight experienced more severe bleaching, 
while colonies in shaded areas exhibited milder 
bleaching. Colonies with mild bleaching had a higher 
likelihood of growth, and colonies with more severe 
bleaching were more likely to die. 

Similarly, while shading consistently influenced 
bleaching patterns within sites, we observed site-
 specific differences in the overall magnitude of 
bleaching severity, which has been demonstrated 
previously (McClanahan et al. 2020). Site-specific dif-
ferences in bleaching severity within the same spe-
cies has been attributed to local upwelling bringing 

cool, nutrient-rich water to the surface (Goreau et al. 
2000, Spring & Williams 2023), thermal history and 
acclimation to past bleaching events (Coles & Jokiel 
1978), water flow and currents (Nakamura & van 
Woesik 2001), and depth, which decreases the com-
bined thermal and light stress (Huston 1985, Muir et 
al. 2017). At Palmyra Atoll, despite the lack of site-
specific differences in nutrient concentration and 
irradiance, wave energy on the north side of the atoll 
is typically higher than on the south side (Gove et al. 
2015, Williams et al. 2018). This could explain why 
corals on the north side experienced less severe 
bleaching, as increased wave energy provides more 

90

0

30

60

Mild bleaching Severe bleaching
Bleaching severity

Ar
c 

of
 sh

ad
e 

(°)

A − West

0

30

60

90

Mild bleaching Severe bleaching
Bleaching severity

Ar
c 

of
 sh

ad
e 

(°)

B − East 

Fate
Die
Live

Fig. 7. Arc of shade in the (A) west and (B) east direction by bleaching severity. The arc of shade is measured as the angle be-
tween the centroid of the colony and the object within 1 m of that colony in the east or west direction providing shade. A 90° arc  

represents full shade and a 0° arc represents no shade. Boxplot parameters as in Fig. 6



Liesegang et al.: Shade impacts coral bleaching severity

water flow to help flush toxins and increased passive 
diffusion during warm water events (Nakamura & van 
Woesik 2001). 

In line with previous research, our results confirm 
that colonies experiencing severe bleaching typically 
die or suffer significant tissue loss, while less severely 
bleached colonies are more likely to survive and grow 
(Gleason 1993). In our study, mildly bleached colonies 
exhibited more growth compared to those that were 
severely bleached. Because of the colonial nature of 
corals, partial mortality of less severely bleached 
 corals may allow for recovery following a bleaching 
event (Hughes & Jackson 1980). Our study confirms 
that corals with less bleaching have limited mortality 
and are more likely to survive the following year. 

In addition to supporting observations largely 
derived from experimental studies, we focused on the 
role of structural complexity and varied light regimes 
in mitigating the compounded impact of thermal 
stress and irradiance during a marine heatwave. We 
used reef topography and the ‘neighborhood’ in 
which the coral lives as predictors of the amount of 
shade corals received and considered how varied 
light regimes, resulting from reef structural complex-
ity, mitigated the compounded impacts of thermal 
stress and irradiance during a marine heatwave. 
Shaded colonies of Pocillopora, with smaller arcs of 
sunlight, bleached less severely than colonies with 
larger arcs of sunlight that were receiving more direct 
irradiance. Experimentally, corals under low light 
take longer, and require a higher temperature thresh -
old, to experience the same level of bleaching than 
corals in brighter light (Fitt & Warner 1995). 

Our results underscore the importance of structural 
complexity in creating microhabitats that mitigate 
bleaching severity. Consistent with earlier studies 
showing that coral in crevices or under overhangs 
experience less severe bleaching compared to those 
in open, elevated, or sandy substrate (Hoogenboom 
et al. 2017, van Woesik & McCaffrey 2017), we add 
quantitative data of the complementary importance 
of local shading on estimated irradiance levels and 
associated bleaching. 

The microhabitats created by structural complexity 
affect more than shading, likely influencing patterns 
of water flow and other environmental specifics that 
can affect coral bleaching (Lenihan et al. 2008). While 
water flow is difficult to assess through photographic 
analysis, reduced flow is often expected in complex 
environments like shaded crevices, which theoretically 
should increase susceptibility to bleaching. However, 
our study found that these crevices, despite potentially 
decreased water flow, still offered significant protec-

tion. This suggests that the decreased thermal stress in 
protected areas may be more significant than the con-
tribution of water flow to bleaching resilience. 

Structural complexity on reefs is in many cases 
formed by the coral assemblage itself, suggesting that 
coral mortality might contribute toward reductions in 
complexity. Magel et al. (2019) investigated the role 
of thermal stress and human activity on reef topo-
graphical complexity and found that both bleaching-
associated coral mortality and human disturbance 
decreased the density of branching and massive 
corals. The associated flattening of the reef would 
minimize the microhabitats that provide local shade 
which can mitigate bleaching. Similarly, cyclones, 
which are increasing in intensity and frequency under 
a changing climate, result in mechanical disturbance 
which can reduce structural complexity on reefs by 
dislodging shade-producing structures such as mas-
sive corals and the branches of branching corals 
(Massel & Done 1993, Fabricius et al. 2008). As cli-
mate change progresses, we expect reefs globally to 
become less complex, which has profound implica-
tions when considering the importance of shade. 

As thermal stress events increase in frequency, sev-
erity, and duration, understanding the factors that 
influence bleaching susceptibility of corals is increas-
ingly important. Consistent with previous studies, we 
conclude that corals that experience more severe 
bleaching are more likely to face mortality, while 
corals with less severe bleaching are more likely to 
experience recovery and growth (Gleason 1993). We 
also confirm the importance of site-specific differ-
ences in bleaching severity (McClanahan et al. 2020). 

Our study tested, in situ, the hypothesis that shade 
resulting from structural complexity can mitigate 
thermal stress and reduce bleaching severity. We 
found that corals with neighboring structures provid-
ing shade were less likely to experience severe bleach-
ing than corals that received full direct sunlight. We 
conclude that increased shade, as little as 10° of eleva-
tion, may alleviate some of the compounded impact of 
high temperature and high irradiance during thermal 
stress events. In addition to the demography of the 
coral, the neighborhood in which it lives is important. 
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Fig. A1. Arc of sunlight by bleaching severity at each fore-reef site on the north (FR8, FR14) and south (FR38, FR40) side of the atoll. 
Arc of sunlight approaching 0° represents full shade and arc of sunlight equal to 180° represents full sun. The central line of the box 
plot represents the median, the box encompasses the interquartile range (IQR), spanning from the 25th to the 75th percentile.  

Whiskers extend to the minimum and maximum values within 1.5 times the IQR. Data points outside this range are outliers
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