
1.  INTRODUCTION 

Understanding where and when fish move and why 
they use specific habitats has direct application to 
spatial management and conservation (Moffitt et al. 
2009, Allen et al. 2018). Movement patterns of fish 
are  shaped by diverse biological and environmental 
drivers across different spatial and temporal scales 

(Nathan et al. 2008). For instance, the time fish spend 
in a specific area, i.e. reflecting their residency and 
habitat use, depends greatly on the availability of 
essential resources like food and shelter (Dahlgren & 
Eggleston 2000, Murray & Sandercock 2020, Appert 
et al. 2023). These resource requirements can vary 
across different life stages (Allen et al. 2018). In ad -
dition, climate-driven environmental conditions such 
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as temperature, dissolved oxygen and pH can in -
fluence fish movement and habitat selection (Pörtner 
et al. 2017, Woodson et al. 2019, Pinsky et al. 2020). 
Fish may need to seek optimal conditions for survival 
and to meet energy requirements based on their phys-
iological limits (Brett & Groves 1979, Keefer et al. 
2009, Fey et al. 2019). Therefore, environmental vari-
ability may trigger movements to regions with more 
suitable temperatures (Topping & Szedlmayer 2011a, 
Piraino & Szedlmayer 2014) as a thermoregulatory 
strategy (Fey et al. 2019), or to accelerate digestion 
(Bacheler et al. 2021). Moreover, the effect of differ-
ent environmental and biological drivers can be life-
stage dependent (Erisman et al. 2020). For example, 
for red snapper Lutjanus campechanus, habitat qual-
ity, competition and predation have a different im -
pact on juveniles than on adults (Erisman et al. 2020). 

Environmental variability can also trigger shifts in 
ecosystem dynamics and biological interactions that 
can influence the spatial ecology of a species (Allan 
et al. 2015, Kämpf & Chapman 2016). Therefore, by 
quantifying the effects of biological and environmen-
tal drivers on fish movement across different spatio-
temporal scales and life stages, it is possible to define 
their critical habitats (e.g. nursery, feeding, or repro-
ductive areas) and, ultimately, predict how species 
may respond to environmental change (Hussey et al. 
2015, Crossin et al. 2017). This information is key to 
effectively managing populations of important tar-
geted fish species, such as snappers, under the pres-
sure of fishing, habitat degradation and climate change 
(Hussey et al. 2015, Crossin et al. 2017, Barange et al. 
2018, Rilov et al. 2019). 

Coastal upwellings are natural oceanographic phe-
nomena that influence marine ecosystem dynamics 
(Kämpf & Chapman 2016, Pinsky et al. 2020). During 
coastal upwellings, cool, nutrient-rich water emerges 
to the surface, resulting in high productivity and 
sharp fluctuations in oceanographic conditions (e.g. 
temperature, dissolved oxygen, pH) (Kämpf & Chap-
man 2016). Given their contrasting fluctuating con-
ditions, seasonal upwellings in tropical regions can 
increase our understanding of how fishes may re -
spond to environmental variability. Within the East-
ern Tropical Pacific, there are 3 main wind-driven 
seasonal coastal upwellings: the Tehuantepec Bowl in 
Mexico, the Bay of Panama and Papagayo, between 
Nicaragua and northern Costa Rica (Fiedler & Lavín 
2017). The Papagayo upwelling largely influences the 
dynamics of local reefs and their associated reef fish 
assemblages on the northern Pacific coast of Costa 
Rica (Jimenez & Cortés 2003, Dominici-Arosemena & 
Bnignoli 2005, Roth et al. 2015), suggesting that some 

species readjust their space use in response to chang-
ing environmental conditions (Eisele et al. 2020). 

Snappers (Lutjanidae) are economically impor-
tant reef fish that typically exhibit ontogenetic pat-
terns in movements and habitat use (Gillanders et al. 
2003, Martinez-Andrade 2003). Juveniles of estuarine-
dependent snappers usually remain near mangroves 
and shallow estuarine areas with abundant food and 
refuge (Reis-Filho et al. 2019), whereas adults use a 
wider range of habitats including rocky and coral 
reefs and periodically migrate to offshore habitats to 
spawn (Sadovy de Mitcheson et al. 2008). Thus, the 
degree of connectivity between estuarine and reef 
habitats is key to supporting the transition of many 
snapper species to mature life stages (Gillanders et al. 
2003, Pimentel & Joyeux 2010, Vasconcelos et al. 
2011, Dance & Rooker 2015, Reis-Filho et al. 2019) and 
to enhancing fishery production as they leave their 
nursery grounds (Kramer & Chapman 1999, Grüss et 
al. 2011). However, continuous tracking data on the 
early life-stages of snappers remains scarce, making it 
difficult to accurately identify their essential habitats. 

Snappers are the main target of local artisanal fishers 
in the north Pacific coast of Costa Rica and are also 
important in recreational fisheries (Villalobos-Rojas 
et al. 2014, SINAC 2017). However, overfishing and 
habitat degradation have negatively impacted the 
populations of snappers in this region (Villalobos-
Rojas et al. 2014, Alvarado et al. 2018, Beita-Jiménez 
et al. 2019, Arias-Godínez et al. 2019, 2021). Previous 
studies using underwater visual surveys and catch 
records of small individuals suggest that Santa Elena 
Bay, a relatively large embayment on the northern 
Pacific coast of Costa Rica, functions as a nursery area 
for several species of snappers (Arias-Zumbado 2021, 
Espinoza et al. 2022). However, knowledge of how 
snappers are using this area is still lacking or re -
stricted to sighting records. Santa Elena Bay was 
declared a Marine Management Area (MMA) in 2018, 
which means that specific zones of the bay are pro-
tected from fishing and others are restricted to low-
impact fishing gears (SINAC 2017). The unique con-
ditions of the bay (i.e. diverse habitats available 
ranging from mangrove to coral and rocky reefs), cou-
pled with the management zoning and the influence 
of a seasonal upwelling, provide an ideal opportunity 
to investigate the spatial ecology of early life stages 
of  snappers in relation to multiple environmental 
drivers. 

This study quantified the residency and habitat use 
patterns of the Colorado L. colorado and the Pacific 
dog L. novemfasciatus snappers in the Santa Elena 
Bay MMA. These are 2 common species that are 
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known to be estuarine-dependent, particularly in 
their early life stages, and are expected to use man-
groves as nurseries and transition to reef environ-
ments as they grow larger, particularly L. novemfasci-
atus, as L. colorado is known to be highly associated 
with both environments at mature life stages as well 
(Martinez-Andrade 2003, Vega et al. 2015). Therefore, 
our objectives were to (1) determine the residency 
time and movement extent of individuals of both spe-
cies within the bay, (2) quantify the use of mangrove, 
transitional and reef habitats within Santa Elena Bay, 
(3) investigate temporal shifts associated with move-
ments across habitats over time and (4) determine the 
effect of biological and environmental drivers on the 
probability of fish occurrence in the bay over time. 
Given the variety of habitats found in the bay and that 
different species of snappers in Santa Elena Bay are 
often found in small sizes (Arias-Zumbado 2021), we 
expected L. colorado and L. novemfasciatus to exhibit 
high residency to Santa Elena Bay, spending a signif-
icant proportion of days within the bay compared 
to days spent outside of it through the study period. 
Furthermore, we expected particularly high use of 

areas with high mangrove cover, as these habitats are 
believed to offer an abundant source of food and 
shelter for growth and survival (Martinez-Andrade 
2003). In addition, environmental drivers play a key 
role in fish movement; therefore, we expected that 
changes in water temperature from the seasonal 
upwelling may influence the movements in and out of 
the bay and between habitats of L. colorado and L. 
novemfasciatus within Santa Elena Bay. 

2.  MATERIALS AND METHODS 

2.1.  Study site 

Santa Elena Bay MMA is a ~728 ha, semi-enclosed 
estuarine embayment located on the north Pacific 
coast of Costa Rica (Fig. 1). Nearshore habitats along 
the entire coastline are shallow (<10 m deep), while 
the middle and outer areas of the bay can reach maxi-
mum depths of 35 m (Lizano & Alfaro 2015). The bay is 
subjected to a semidiurnal tidal cycle with an average 
daily amplitude of 228 cm (Lizano 2006). Some chan-
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the bay are classified as Mangrove (A), Transitional (B) and Reef (C)
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nels of the inner mangrove (Estero Grande) and some 
fringing mangrove roots are only inundated during 
high tide. The bottom in the innermost areas of the 
bay is composed of silt, sand and some submerged 
rocks with dense mangrove cover. The seascape grad-
ually transitions outwards to sparse mangrove patches 
and to sandy and rubble beaches with rocky outcrops 
(BIOMARCC-SINAC-GIZ 2012, 2013). 

During the wet season (May–November), small 
rivers discharge into the inner and middle regions of the 
bay (BIOMARCC-SINAC-GIZ 2012, 2013), whereas 
the dry season (December–April) is influenced by the 
Papagayo upwelling, a result of intensification of the 
north trade winds that leads to the cooling and 
enrichment of the water in the region (Amador et al. 
2006, Alfaro & Cortés 2015, Stuhldreier et al. 2015). 
Although long-term oceanographic characterization 
of the bay is not available, in adjacent coastal waters 
from the Gulf of Santa Elena, water temperature is 
known to fluctuate from 28° to 34°C during non-
upwelling season (May to November) to minimum 
temperatures of ~15°C during upwelling months 
(Alfaro & Cortés 2015, Stuhldreier et al. 2015). Water 
temperatures inside Santa Elena Bay are more stable 
than in coastal areas outside the bay (Fig. S1 in the 
Supplement at www.int-res.com/articles/suppl/m752
p149_supp.pdf). 

Santa Elena Bay is surrounded by Sector Murcié-
lago, which is part of the Santa Rosa National Park, 
providing land protection since 1980 (Decreto Ejecu-
tivo 12062-A 1980). Moreover, in 2018, Santa Elena 
Bay was declared a MMA with a zoning plan (Fig. S2) 
that delineates 4 areas based on the human activity 
level permitted, ranging from very low (i.e. no-take 
zones) to high (i.e. commercial fishing only with 
handline, recreational catch-release, or free diving 
extraction) intervention (SINAC 2017). Over 50% of 
the bay was designated as no-take (very low to low 
intervention), covering mostly the innermost areas of 
the bay and the coastline contour. Fishing is only 
allowed in the outer deeper areas of the bay that have 
medium and high intervention, which comprises 
about 42% of the MMA (SINAC 2017). 

2.2.  Acoustic array and fish tagging 

L. colorado and L. novemfasciatus were monitored 
inside Santa Elena Bay from November 2020 to 
August 2022 (665 d) using an array of 28 acoustic 
receivers (180 kHz VR2W, Vemco, Innovasea). Re -
ceivers were deployed at 4–10 m depths across differ-
ent habitats (Fig. 1). The average detection range of 

receivers at 25% detection efficiency placed in the 
mangrove area was ~141 m; ~181 m in the estuarine 
region and 22 m in the reef (Matley et al. 2022). There-
fore, receivers were spaced 150–400 m from each 
other, following a linear array along the coast to cover 
the entire bay and optimize the monitoring area along 
the coast. The receivers were covered with electric 
tape and panty hoses to reduce biofouling (Heupel et 
al. 2008). The receivers were positioned on mooring 
systems consisting of concrete blocks connected to a 
buoy by a 1.5–2.5 m long rope or stainless iron rod, 
to  which receivers and stationary sentinel trans-
mitters or reference tags programmed to emit a signal 
every 600s were attached ~1 m above the ocean bot-
tom. During August and September 2021, approx-
imately 6  receivers located in the different habitat 
types of the bay were inactive for a few days due to 
dead batteries. 

Snappers were captured using rod and reel near the 
inner and middle of the bay and held in a floating net 
cage near the boat. Fish were then transferred into a 
water-holding bin with a dissolved clove-oil-based 
solution to anesthetize them before surgery (Topping 
et al. 2005). Each fish was surgically implanted with 
coded acoustic transmitters (Vemco, V9-2x-180k-1, 
180 kHz, code intervals: 70–110 s, battery life: 730 d). 
These high-frequency transmitters are typically 
smaller than lower frequency types and are ideal for 
tracking smaller individuals. This tag frequency also 
proved to be effective within the study system after 
acoustic receiver performance tests (Matley et al. 
2022). The acoustic transmitter, covered with liquid 
povidone-iodine as an antiseptic, was implanted in -
side the peritoneal cavity of each individual through a 
small (~1 cm) incision above the ventral midline 
(Wagner et al. 2011). The incision was closed by 1 or 
2 square knot sutures using absorbable monofilament 
material (Sutuvet sutures, size 3-0, tapered-point, 
25 mm long needle). Subsequently, total length (TL, 
cm) and weight of fish (g) were measured. Additionally, 
a plastic dart tag (Floy Tag, FT-2-94 Dart tag) with a 
unique code number was inserted into the dorsal 
musculature near the base of the dorsal fin to obtain 
reports of recapture events. Fish were held in a float-
ing net pen until complete recovery (~20–40 min) 
and then released back into their capture site. The 
stage of maturity was determined by comparing mea-
sured lengths with available published length at 
maturity for L. colorado (25.0 cm TL) (Rojas 1997, 
Ángel Pérez 2011, Vega et al. 2015) and L. novemfasci-
atus (58 cm TL) (Sala et al. 2003, Duncan et al. 2011, 
Vega et al. 2015). These lengths were also compared 
to their approximate maximum lengths (91 cm for 
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L. colorado and 170 cm for L. novemfasciatus) to ob -
tain a relative measure of life stage (Froese & Pauly 
2024). 

To assess the potential fate of each tagged fish, 
detection plots were used to examine movement pat-
terns between receivers following criteria suggested 
by Klinard & Matley (2020). Given that acoustic trans-
mitters did not have an acceleration or pressure sen-
sor, we based our conclusions about the fate of our 
fish mainly on the cessation of detections. Similarities 
in behaviors between conspecifics were assessed to 
identify potentially atypical behaviors, particularly 
the timing of cessation of detection. We also consid-
ered that our acoustic equipment configuration could 
bias the interpretation, as there were no receivers in 
the centre of the bay (typically deeper ~25–30 m, 
soft-mud habitats with low oxygen levels) or in a cur-
tain at the entrance to the bay. Ultimately, the cessa-
tion of detections was considered to be potential fish 
mortality (natural predation or fishing mortality) or 
emigration from the bay. The monitoring period of 
our study was shorter than the battery life of the 
transmitter and while transmitter failures cannot be 
completely ruled out, they are rare. Individual detec-
tion plots also allowed an assessment of intra- and 
interspecific variability and the identification of move-
ment patterns for each species. All data processing 
and analyses were carried out in R version 4.3.2 (R 
Core Team 2023). 

2.3.  Data analysis 

2.3.1.  Residency and roaming in the bay 

Prior to analysis, we filtered the acoustic data to 
remove potential false positive detections by remov-
ing sole transmitter detections in a 24 h period (Speed 
et al. 2011, Udyawer et al. 2013, Papastamatiou et al. 
2015). To determine the mean proportion of time each 
species spent within the array over the course of the 
monitoring period, we calculated the residency index 
(RI) of each fish in the bay by dividing the number of 
days an individual was detected in the array by the 
number of days between the tagging day and the last 
day of the study. The RI is a value between 0 and 1, 
with 1 indicating that a fish was present within the 
acoustic array every day of the entire monitoring 
period. We selected an RI that quantified the pres-
ence in the array throughout the entire study period 
rather than specific detection periods (time between 
the first and last detection of each individual). This 
decision was based on the observation that all mon-

itored individuals were tagged within 2 consecutive 
days and that multiple individuals were observed to 
return after long absences spanning weeks or even 
months. Including the entire monitoring period thus 
provided a more comprehensive measure of res-
idency, accounting for potential long-term absences 
rather than assuming that individuals were perma-
nently absent after their last detection (Appert et al. 
2023, Kraft et al. 2023). To test for differences in the RI 
between the upwelling and non-upwelling seasons, 
the seasonal RI for each individual was estimated. 
Given the non-parametric nature of the data, a Krus-
kal-Wallis test was applied. 

To investigate the extent to which individual fish of 
both species used the entire bay, a roaming index 
(RoI) was used. The RoI was calculated for each indi-
vidual by dividing the number of receivers with detec-
tions by the total number of receivers in the array. The 
range of the RoI is from 0 to 1, with a value of 1 indica-
ting that the individual was present at all receivers. 
The mean RoI was calculated for each species across 
the entire study period. To test for differences in the 
RoI between the upwelling and non-upwelling sea-
sons, the seasonal index was estimated for each indi-
vidual fish. Given the non-parametric nature of the 
data, a Kruskal-Wallis test was applied. To assess 
temporal shifts in movement extent at a finer tempo-
ral scale, the mean monthly RoI was estimated for 
each species, similar to Matley et al. (2016). Despite 
the deployment of receivers at greater densities in 
certain areas (e.g. mangroves), the majority of receiv-
ers were spaced at similar distances along the coast, 
thereby encompassing all available habitats bordering 
the bay. This approach provided an effective method 
to quantify the relative space use of snappers. 

2.3.2.  Spatial and temporal patterns of habitat use 

The detections at each region of the bay, hereafter 
referred to as habitat type (i.e. mangrove, transitional 
and reef), were estimated for each species to explore 
the relative importance of different habitats. To assess 
potential biases related to the differences in habitat 
availability, i.e. area of coverage of each habitat, we 
estimated the number of detections relative to the 
area covered by each habitat (Table S1). We mea-
sured relative habitat availability by creating a buffer 
ring of 250 m from the bay’s coastline using a QGIS 
buffer tool and then estimating the area correspond-
ing to each habitat type. Additionally, to assess differ-
ences in habitat use across the bay and seasons, we 
calculated a standardized receiver-specific metric 
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quantifying detections by dividing the number of 
detections by the number of individuals detected at 
each corresponding station and habitat, i.e. as an 
average. This approach reduced the potential bias of 
a single individual or a few individuals inflating pres-
ence at certain locations, which might be misleading. 

To evaluate movement across habitat types over 
time (i.e. how the abundance of individuals shifted 
over time across habitat types), we applied a general-
ized additive model (GAM) with a Poisson distribu-
tion, with the number of snappers detected across the 
3 habitats each day as the response variable. Habitat 
type was included as a categorical predictor and the 
month of study was used as a temporal predictor, 
ranging from 1 (January 2021) to 21 (September 
2022). Data from November and December 2020 was 
excluded to start the analysis from January 2021 to 
ensure a complete and consistent data set for the 
entire year. To assess model performance, the null 
and full models (MFULL: Number of individuals 
~s(month, by = habitat) + habitat) were compared 
with each other using Akaike’s information criterion 
(AIC). The model with the lowest AIC value was 
selected. The analysis was conducted using the ‘gam’ 
function from the ‘mgcv’ package in R (Wood 2011). 

2.3.3.  Drivers of snapper occurrence patterns 

Generalized additive mixed models (GAMMs) with 
binomial distribution were used to evaluate the effect 
of biological (fish size), environmental (water tem-
perature, wind speed, moon illumination, rainfall) 
and temporal (day of year [DOY] and season) predic-

tors on the occurrence of both species within the bay 
on any given day (Table 1). The response variable, 
‘occurrence’, represented the presence (coded as 1) 
or absence (coded as 0) of fish individuals. The bino-
mial distribution included in the model transforms 
the binomial response variable (presence–absence) 
to a probability scale (i.e. probability of occurrence in 
this case) (Zuur et al. 2009). Predicted probabilities 
close to 0 indicate a low probability of fish occur-
rence, while probabilities close to 1 suggest a high 
probability of occurrence within the acoustic array on 
a given day. Additive models were selected to incor-
porate smooth functions to model predictor variables 
with non-linear relationships with the response vari-
able. A mixed model approach was used to treat indi-
vidual fish as a random factor. All environmental vari-
ables were estimated for each day to match the 
temporal scale of the daily presence–absence estima-
tions. Water temperature near the seafloor was 
obtained from 5 in situ temperature loggers deployed 
at specific receivers (see Fig. 1), programmed to 
record every 10 min and then averaged for the entire 
bay for each day. To analyze temporal patterns of fish 
occurrence, we incorporated the DOY (0–365), sea-
son (upwelling and non-upwelling) and study year 
(2021 and 2022) into the models. The use of the DOY 
and the daily environmental measures allows for the 
observation of fine-scale seasonal dynamics and tran-
sitions. The study time overlapped with 3 calendar 
years; however, data from 2020 was excluded to 
reduce biases in the models, as it was sampled for less 
than 2 mo. Additionally, data exploration suggested 
that probability of occurrence patterns differed across 
habitats; therefore, habitat was included as an inter-
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Variable                                    Data source                                                                                                                                  Splines 
 
Environmental                                                                                                                                                                                        
Water temperature (°C)       Temperature loggers in situ (HOBO U22 Water Temp Pro v2;                          Cubic regression 
                                                    Onset Computer)                                                                                                                               
Rainfall (mm)                          Weather station: 72153 Santa Elena, La Cruz                                                          Cubic regression 
                                                    (Instituto Meteorológico Nacional)                                                                                             
Wind speed (m s–1)               Weather station: 72191 Asada La Cruz Guanacaste                                               Cubic regression 
                                                    (Instituto Meteorológico Nacional)                                                                                             
Moon illumination (%)         R package ‘lunar’ (Lazaridis 2022)                                                                              Cubic regression 

Temporal                                                                                                                                                                                                   
Day of the year                       Calendar                                                                                                                        Cyclic cubic regression 
Season                                       Based on approximate upwelling (Dec–Apr) and non-upwelling                    Cubic regression 
                                                    months (May–Nov)                                                                                                                          
Year                                            Calendar                                                                                                                              Cubic regression

Table 1. Environmental and temporal predictor variables considered as fixed effects for probability of occurrence in generalized  
additive mixed models
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action term with day of year to account for the vari-
ability between years. 

Models were developed for each species separately. 
The full model for both species included all selected 
predictors (MFull: Occurrence ~ 1 + (1|tag) + fish 
length + s(DOY, by = habitat) + habitat + season + 
year + s(temperature) + rain + s(wind speed) + moon 
illumination), and further candidate models were de-
veloped by removing 1 predictor at a time. These com-
binations of explanatory variables were compared 
using AIC to assess model performance. The model 
with the lowest AIC value was selected. If 2 models 
had very similar AIC values, the one with the most de-
grees of freedom and weight was selected. The se-
lected model was assessed by calculating the marginal 
R2, which represents the variation explained by fixed 
effects, and the conditional R2, which ac counts for the 
variation explained by both fixed and random effects. 
The GAMMs were fitted using the ‘gamm4’ function 
in the ‘gamm4’ R package (Wood & Scheipl 2020). 

3.  RESULTS 

3.1.  Residency and movement extent 

Fish were tagged on 2 consecutive days in Nov -
ember 2020 and monitored for 645 d inside Santa 
Elena Bay (Fig. 2, Table 2). The sizes of all 14 individ-
uals of Lutjanus colorado (range: 28.8–48.9 cm, mean: 
35.5 cm) were above reported lengths at maturity 
(~25  cm) and thus were classified as mature. All 16 
individuals of L. novemfasciatus were considered 
immature, as they were below the reported size at 
maturity of 58 cm (range: 22.5–49.3 cm, mean: 35.5 cm). 
During this period, we recorded a total of 1 891 411 
detections for both species (1 017 852 detections of L. 
colorado and 873 559 detections of L. novemfasciatus). 
Over 50% of the tagged individuals were detected 
regularly for at least 1 yr of the study and 30% were 
still present within the study site by the conclusion of 
the monitoring period. The shortest period of detec-
tion was approximately 5 mo for 1 individual. Consis-
tent detections over extended periods indicated suc-
cessful tag implantation and normal post-surgery 
behavior up to the date of their last detection. Both 
species were detected inside Santa Elena Bay for over 
60% of the monitoring days, showing a high mean 
(±SD) RI (L. colorado: 0.64 ± 0.31; L. novemfasciatus: 
0.65 ± 0.29). Some L. colorado individuals exhibited 
periodic absences of weeks at times (Fig. 2 & Fig. S3). 
The largest L. colorado (ID: T-55368) showed the long-
est absence, leaving in May 2021 and returning 9 mo 

later in January 2022. In the case of L. novemfasciatus, 
absences occurred across a variety of sizes (Fig. 2 & 
Fig. S4). Detection plots showed that individuals of 
both species stayed close to specific groups of neigh-
boring receivers for the first few weeks or months after 
being tagged. Over time, however, they were detected 
in receivers farther away (Figs. S3 & S4). Detection of 
some individuals decreased or ceased completely 
over the course of the study (Fig. 2). Cessation of 
detections could have been indicative of emigration 
or mortality events. The tagged fish did not exhibit 
either stationary behavior in specific receivers, indi-
cating mortality events, or sudden, rapid movements, 
indicative of predation or fishing (Figs. S3 & S4). 
Therefore, mortality events could not be confirmed. 
There was no significant difference in the RI between 
seasons for L. colorado or L. novemfasciatus (χ2 = 
1.7205, df = 1, p > 0.05 and χ2 = 1.4556, df = 1, p > 0.05, 
respectively). 

On average, both species used a large proportion of 
the receiver array, with L. colorado detected on up to 
24 receivers (RoI: 0.85 ± 0.15) and L. novemfasciatus 
detected on up to 22 receivers (RoI: 0.79 ± 0.16) 
(Table 2). The RoI showed temporal variation over the 
study period, with both species exhibiting significantly 
higher roaming values during the upwelling season 
(L. colorado: χ2 = 9.5477, df = 1, p = 0.01; L. novemfas-
ciatus: χ2 = 7.0938, df = 1, p = 0.01) (Fig.  S5). The 
mean monthly RoI values indicated that higher RoI 
occurred during specific months of upwelling (Fig. 3). 
For L. novemfasciatus, a peak in roaming was particu-
larly evident during months of upwelling in the sec-
ond study year (Fig. 3). 

3.2.  Habitat use patterns 

All 14 L. colorado individuals were detected in man-
groves, with 13 observed in transitional and 12 in reef 
habitats. For L. novemfasciatus, all 16 individuals 
were present in all habitats. The number of detections 
standardized by available habitat area was higher for 
both species in mangroves, followed by the tran-
sitional and reef environments. The highest number 
of detections for L. colorado was recorded in man-
grove habitats, with 59 970.1 detections standardized 
by habitat area (number of detections per km2), repre-
senting 66.1% of the total detections. In contrast, tran-
sitional habitats yielded 24 906.5 detections (6.4%) 
and reef habitats contributed only 5854.1 detections 
(27.4%). Similarly, L. novemfasciatus exhibited a higher 
use of mangrove habitats, with 41 265.5 detections 
standardized by habitat area (60.3%). Transitional hab-
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itats accounted for 18 085.7 detections (13.3%) and 
reef habitats showed a comparable number of detec-
tions at 9124.0 (26.4%). 

Overall, regardless of season, both species were 
predominantly detected at receivers positioned in 
mangrove habitats (Fig. 4A). However, there was an 
increase in detections at receivers located in tran-
sitional and reef habitats during the upwelling season 
compared to the non-upwelling season. Seasonal shifts 
in the proportion of detections across habitats were 
observed (Fig. 4B). During non-upwelling periods, 
L.  colorado exhibited 75.5% of detections in man-
groves, 24% in transitional and 0.5% in reef habitats, 
whereas L. novemfasciatus exhibited 77.8% of detec-
tions in mangroves, 19.8% in transitional and 2.2% in 
reef habitats. In the upwelling season, L. colorado 
exhibited a slight increase in detections in the reef 
habitat (11.5%) compared to the non-upwelling sea-

son. Similarly, L. novemfasciatus showed increased 
detections in transitional and reef habitats, 22.2 and 
21.2%, respectively, during the upwelling relative to 
non-upwelling periods. 

Based on GAMs, the number of individuals detected 
for both L. colorado (R2 = 0.882, deviance explained = 
84.4%) and L. novemfasciatus (R2 = 0.792, deviance 
explained = 78.6%) varied significantly between hab-
itats and months (Table 3; see model selection sum-
mary in Table S2). The number of individuals de -
tected was significantly higher in mangroves than in 
transitional and reef habitats. The predicted number 
of individuals detected in mangroves and the tran-
sitional habitats decreased over time. There was a 
slight increase in the number of individuals detected 
in reef habitats between December 2021 and May 
2022, which was more evident for L. novemfasciatus 
than for L. colorado (Fig. 5). 
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Species    Tag ID      Total     Weight     Stage of            Date             No. of days    No. of days      No. of          RI        No. of       RoI 
                                    length        (g)         maturity          tagged           monitored       detected    detections               receivers 
                                      (cm)                                           (dd/mmm/yy) 
 
LCO           55346       28.8          460              M            14/Nov/20              644                   643             148153       1.00          23          0.82 
LCO           55367         29            480              M            13/Nov/20              645                   552             106584       0.86          23          0.82 
LCO           55351       30.1          545              M            14/Nov/20              644                   411              62377        0.64          12          0.43 
LCO           55358         31            500              M            13/Nov/20              645                   588              59813        0.91          27          0.96 
LCO           55353       32.4          650              M            14/Nov/20              644                   387              36969        0.60          23          0.82 
LCO           55370         33            660              M            13/Nov/20              645                   190              39952        0.29          25          0.89 
LCO           55360       33.6          630              M            13/Nov/20              645                   565             148255       0.88          28          1.00 
LCO           55371       33.8          640              M            13/Nov/20              645                   549             131024       0.85          25          0.89 
LCO           55364       35.7          850              M            13/Nov/20              645                   603              95003        0.93          26          0.93 
LCO           55362       36.5          700              M            13/Nov/20              645                   101              14894        0.16          21          0.75 
LCO           55349       37.7          910              M            14/Nov/20              644                   605              86519        0.94          28          1.00 
LCO           55359       41.4          900              M            13/Nov/20              645                   169              40262        0.26          23          0.82 
LCO           55345       44.6          450              M            14/Nov/20              644                   199              26961        0.31          23          0.82 
LCO           55368       48.9         1500             M            13/Nov/20              645                   202              24264        0.31          28          1.00 
LNO          55372       22.5          250                I             13/Nov/20              645                   596             179638       0.92          21          0.75 
LNO          55350       23.5          280                I             14/Nov/20              644                   188               3403         0.29          23          0.82 
LNO          55347       26.7          270                I             14/Nov/20              644                   643             113640       1.00          24          0.86 
LNO          55366       26.9          270                I             13/Nov/20              645                   342              48365        0.53          23          0.82 
LNO          55369       27.8          NA                I             13/Nov/20              645                   637              66543        0.99          23          0.82 
LNO          55363       29.5          440                I             13/Nov/20              645                   538              41476        0.83          28          1.00 
LNO          55356       30.9          500                I             13/Nov/20              645                   611              60503        0.95          26          0.93 
LNO          55373         34            350                I             13/Nov/20              645                   469              55670        0.73          27          0.96 
LNO          55348         35            400                I             14/Nov/20              644                   197              35134        0.31          16          0.57 
LNO          55355       35.5          790                I             13/Nov/20              645                    50                 805          0.08          13          0.46 
LNO          55344         42          1000               I             14/Nov/20              644                   292              28719        0.45          25          0.89 
LNO          55365       42.7         1000               I             13/Nov/20              645                   458              37965        0.71          22          0.79 
LNO          55361       42.9         1100               I             13/Nov/20              645                   288              28770        0.45          14          0.50 
LNO          55357       43.1         1100               I             13/Nov/20              645                   493              42031        0.76          25          0.89 
LNO          55352       46.9         1100               I             14/Nov/20              644                   339              46896        0.53          25          0.89 
LNO          55354       49.3         1600               I             14/Nov/20              644                   606              86200        0.94          20          0.71

Table 2. Colorado snapper Lutjanus colorado (LCO) and Pacific dog snapper L. novemfasciatus (LNO) monitored in Santa Elena 
Bay, north Pacific coast of Costa Rica, from November 2020 to August 2022. RI: residency index (number of days detected rel-
ative to the number of days monitored); RoI: roaming index (number of receivers that detected the individual relative to the  

total number of receivers available for monitoring); I: immature; M: mature
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3.3.  Drivers of the probability of fish occurrence 

For L. colorado, the selected model (see candidate 
models in Table S3) included DOY, year, season, TL, 
temperature, rain and moon illumination, habitat and 
its interaction with DOY and explained 21% of the varia-
tion in probability of occurrence (Table 4). The con-
ditional R2 for the selected model was 0.54 and the mar-
ginal R2 was 0.42, indicating that fixed effects accounted 
for 42% of the variation in the model and the random 
effects (i.e. ID) accounted for 12%. The probability of oc-
currence was higher in the mangroves, followed by the 
transitional and reef habitats throughout the monitoring 
period. Overall, the probability of occurrence was lower 
in 2022 than in 2021 (Fig. 6) and season had no signifi-
cant effect. There was a significant negative relationship 
between TL and probability of occurrence, with larger 
individuals having a lower probability of occurrence. 
Although the effect sizes of environmental drivers 
were small, there was a slight positive relationship be-
tween moon illumination and probability of occurrence. 

One L. novemfasciatus detected for only 55 d was re-
moved from the GAMMs to reduce biases in long-term 
occurrence patterns. For L. novemfasciatus, the se-
lected model (see candidate models in Table S3) in-
cluded DOY, year, temperature, wind speed, habitat 
and the interaction between DOY and habitat (Table 5). 
The model explained 18% of the variation in probabil-
ity of occurrence of this species. The conditional R2 for 
the selected model was 0.43 and the marginal R2 was 

0.36, indicating that fixed effects ac-
counted for 36% of the variation in the 
model and the random effects (i.e. ID) 
accounted for 7%. The probability of 
occurrence was higher in the man-
groves, followed by the transitional and 
reef habitats throughout the monitor-
ing period. Overall, probability of oc-
currence de creased by the second 
monitoring year (Fig. 7). Water tem-
perature and wind speed had signifi-
cant but relatively weak effects on fish 
occurrence. Overall, probability of fish 
occurrence was slightly higher at lower 
temperatures and at intermediate wind 
speeds (~7–12 m s–1). 

4.  DISCUSSION 

Understanding the spatial ecology of 
commercially exploited fishes is cru-
cial for identifying critical habitats 

that improve species survival and population connec-
tivity (Allen et al. 2018), which has direct application 
to fisheries and spatial management planning. Our 
study demonstrated how habitat-use patterns of 
young individuals of Colorado Lutjanus colorado and 
Pacific dog L. novemfasciatus snappers within Santa 
Elena Bay are influenced by seasonality and ontoge-
netic shifts. Specifically, we found that acoustically 
tagged snappers (1) spent significant time within 
Santa Elena Bay, using all available habitats along its 
entire coastline, (2) exhibited higher use of the man-
grove habitat compared to other available habitats, 
(3) underwent habitat shifts from inner estuarine to 
outer reef habitats over time, (4) exhibited a gradual 
decline in probability of occurrence in the bay over 
the study period, suggesting increased movements to 
deeper regions and outside the bay, (5) had their 
probability of oc currence only slightly influenced by 
environmental drivers and (6) expanded their space 
use within the bay during upwelling compared to the 
non-upwelling season. 

Multiple studies have shown that different snapper 
species exhibit high residency to specific coastal hab-
itats for extended periods, including rocky or coral 
reefs (Williams-Grove & Szedlmayer 2020) and estuar-
ine environments (Hammerschlag-Peyer & Layman 
2010). Both of our study species spent most of their 
monitoring time within Santa Elena Bay using all 
available habitats, with a higher frequency of detec-
tions recorded in mangroves relative to transitional 
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estuarine and reef habitats. Mangroves 
have been identified as essential fish 
habitat for several aquatic species, 
including snappers at early life stages 
(Martinez-Andrade 2003), as they pro-
vide food and refuge from predators. 
This was expected based on previous 
studies highlighting the relevance of 
estuarine habitats for L. novemfascia-
tus, particularly at early life stages, 
and for L. colorado at both immature 
and early adult life stages (Martinez-
Andrade 2003, Vega et al. 2015). It is 
important to consider that the lack of 
receivers in the centre of the bay may 
have underestimated the RI and RoI. 
However, the centre of the bay is also a 
deep (25–30 m) soft-mud area with rel-
atively low water circulation and oxy -
gen levels (A. Tisseaux pers. comm.). 
Therefore, our initial receiver configu-
ration along the entire coastline of 
Santa Elena Bay was intended to maxi-
mize areas of high snapper use. Perma-
nent movements outside of the bay over 
time must also be interpreted with cau-
tion, as it is possible that individuals 
that were no longer detected died in 
an area without receiver coverage. 

Our study showed that most of the 
monitored snappers were consistently 
detected at receivers located in the 
innermost areas of Santa Elena Bay, 
but many individuals also exhibited 
intermittent movements away to adja-
cent or more distant receivers, or even 
detection gaps of varying durations. 
Snappers may exhibit high residency 
to specific locations, while occasionally 
expanding movements to explore other 
areas (e.g. Topping et al. 2005, Top-
ping & Szedlmayer 2011b, Piraino & 
Szedlmayer 2014, Heidmann et al. 
2021). Tidal and diel-related changes 
and their interplay can also determine 
habitat selection (Hartill et al. 2003, 
Dorenbosch et al. 2004, Ramirez-
Martínez et al. 2016). Indeed, the same 
individuals tracked for this study were 
found to use intertidal mangrove hab-
itats during high tide, especially at 
night (Tisseaux-Navarro et al. 2024). 
These natural fluctuations can help 
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explain why most snappers were present in all habitat 
types at different times despite their preference for 
mangroves and their periodic short absences from 
monitored regions. 

The absence of multiple individuals for long periods 
(weeks or months) suggests that some individuals 
likely utilize nearby rocky or coral reef habitats to dis-
perse outside Santa Elena Bay. Prolonged absences of 
snappers from their residency areas may be triggered 
by unsuitable weather conditions like storms (Top-
ping & Szedlmayer 2011b, Matley et al. 2019, Bacheler 
et al. 2021) or by offshore spawning aggregations 
(Luo et al. 2009, TinHan et al. 2014, Heidmann et 
al. 2021). In this study, most L. colorado were consid-
ered mature. Detection gaps in which multiple L. col-
orado individuals were not detected for extended 
periods partially coincided with reported spawning 
peak seasons of other snapper species along the Paci-
fic coast of Costa Rica and Panama, from March–May 
and September–October (Vega & Maté 2016, Soto-
Rojas et al. 2018). However, detailed information on 
the spawning sites, timing, frequency and duration 
of  L. colorado is limited. The extended absences of 
mature L. colorado may indicate spawning migra-
tions, but further research is needed to confirm this 
hypothesis. The lack of receivers in deeper areas of 
the bay limits our ability to determine if absences 
were due to  movement out of the bay or if the fish 
remained in deeper regions where no receivers were 
placed. Previous studies indicate that deeper regions 
of the  bay have low habitat complexity and oxygen 
levels (BIOMARCC-SINAC-GIZ 2012, Lizano & Alfaro 

2015), making it unlikely that tagged individuals 
would remain there for long periods. While the use 
of  deeper regions of the bay cannot be completely 
discarded for short-term gaps, the long-term pres-
ence of smaller individuals and the return of some 
fish after extended absences, sometimes of weeks or 
months, were likely indicative of movements outside 
the bay. 

In this study, we observed a shift in habitat use over 
time for both studied species, with individuals tran-
sitioning from inner and middle bay mangrove and 
transitional habitats to outer reef habitats. This shift 
was accompanied by a gradual decrease in the prob-
ability of occurrence within the bay. We hypothesize 
that both these shifts occurred as the snappers grew: 
they gradually moved towards the reef and outside 
the bay. Snappers typically remain in estuarine and 
mangrove habitats, seeking sheltered refuges for 
safety from predation (Hammerschlag-Peyer & Lay-
man 2010) before transitioning to rocky or coral reefs 
as they grow (TinHan et al. 2014, Williams-Grove & 
Szedlmayer 2020). Most fish, including snappers, 
exhibit rapid growth rates at early life stages (Bever-
ton & Holt 1959, Ángel Pérez 2011, Duncan et al. 2011, 
Soto Rojas et al. 2013). Therefore, our study period 
may have been long enough for them to exhibit hab-
itat use changes related to their growth and the asso-
ciated gradual shifts in space use behavior. 

For L. colorado, the negative effect of fish size on 
occurrence probability further supports the observed 
ontogenetic shift, indicating that larger individuals 
were more likely to be outside the bay or in deeper 
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Parameter                                                                                 Estimate ± SE                95% CI                       z                      df                   p 
 
Colorado snapper Lutjanus colorado                                                                                                                                                              
Mangroves                                                                                  1.69 ± 0.02               [1.65, 1.72]                89.67            1480.38        <0.001 
Transitional                                                                                  –0.29 ± 0.03            [–0.34, –0.23]             –10.31            1480.38        <0.001 
Reef                                                                                                –1.18 ± 0.08            [–1.34, –1.03]             –15.08            1480.38        <0.001 
s(month-year) × mangroves                                                                                                                             616.47               5.09        <0.001 
s(month-year) × transitional                                                                                                                            200.25               5.53        <0.001 
s(month-year) × reef                                                                                                                                          45.96               5.01        <0.001 
n = 1499, R2 = 0.882, deviance explained = 84.4%                                                                                                                                      

Pacific dog snapper L. novemfasciatus                                                                                                                                                          
Mangroves                                                                                  1.92 ± 0.02               [1.88, 1.95]                 119.19            1537.89        <0.001 
Transitional                                                                                  –0.25 ± 0.02            [–0.30, –0.20]                –10.4               1537.89        <0.001 
Reef                                                                                                  –1.33 ± 0.1              [–1.51, –1.14]             –13.89            1537.89        <0.001 
s(month-year) × mangroves                                                                                                                             551.15               5.32        <0.001 
s(month-year) × transitional                                                                                                                               182                  8.49        <0.001 
s(month-year) × reef                                                                                                                                           219.59                8.3          <0.001 
n = 1563, R2 = 0.792, deviance explained = 78.6%

Table 3. Summary of generalized additive model used to evaluate differences in abundance across habitats and months for the 
Colorado Lutjanus colorado and Pacific dog L. novemfasciatus snappers monitored inside Santa Elena Bay, north Pacific coast  

of Costa Rica
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regions out of detection range, at least for short 
periods of time, where their presence is considered 
rare as noted before. Some studies have reported an 
increase in the size of L. novemfasciatus with increas-
ing distance from mangrove habitats (Lyons & 
Schneider 1990, Vega et al. 2015). However, in our 
study of L. novemfasciatus, no relationship between 
size and probability of occurrence was found, likely 
due to our sample including only immature individ-
uals (Luo et al. 2009, Hammerschlag-Peyer & Layman 
2010, Duncan et al. 2011). According to Duncan et al. 
(2011), even under optimal growth conditions, it can 
take over 2 yr for L. novemfasciatus to reach maturity. 

Given the size of the individuals 
tagged in this study, it is probable that 
they doubled or quadrupled in size 
without reaching maturity (Duncan et 
al. 2011) by the end of the 2 yr tracking 
period. This limitation affects our abil-
ity to detect strong ontogenetic shifts 
in terms of residency within the bay for 
L. novemfasciatus. 

In Santa Elena Bay, Arias Zumbado 
(2021) found a higher biomass of 
snappers in the outer region than in 
the inner mangrove region, also sug-
gesting ontogenetic habitat use differ-
ences between inner and outer areas of 
the bay. Our results potentially pro-
vide evidence for when and how this 
ontogenetic transition occurs. Estuaries 
with fringing mangrove forests or with 
continuums of adjacent heterogenous 
habitats facilitate ontogenetic tran-
sitions for snappers (Faunce & Serafy 
2007). The connectivity of diverse hab-
itats from fringing mangrove patches 
and rocky outcrops within transitional 
habitats of the bay potentially facili-
tates ontogenetic shifts of our study 
species and their eventual migrations 
to other coastal habitats. The extent 
to which juvenile and adult fish habi -
tats are interconnected is a key pro-
cess in maintaining viable populations 
(Gillanders et al. 2003) and should 
be further investigated in the north 
 Pacific coast of Costa Rica. 

Climate-driven environmental vari-
ability can lead to changes in fish hab-
itat use (Topping & Szedlmayer 2011b, 
Piraino & Szedlmayer 2014). Tempera-
ture changes during processes like the 

El Niño–Southern Oscillation or upwellings can 
induce relocations of fish as they search for more suit-
able conditions (Woodson et al. 2019). Given that 
Santa Elena Bay is generally warmer than the sur-
rounding waters, it may offer physiological advan-
tages during the cold upwelling months (Fey et al. 
2019). Contrary to expectations, environmental fac-
tors and season were not significant drivers of occur-
rence probability for L. colorado or L. novemfasciatus 
within the bay. However, a slight increase in the 
occurrence probability of L. novemfasciatus with 
lower temperatures could support the idea of the bay 
serving as a thermal refuge. Wind speed also mar-
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Santa Elena Bay based on generalized additive models for (A) Colorado Lutja-
nus colorado and (B) Pacific dog snapper L. novemfasciatus. Shaded regions:  

approximate upwelling season
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Parameter                                                       Estimate ± SE                        95% CI                             z                         df                          p 
 
R2 = 0.21; R2 marginal = 0.42; R2 conditional = 0.54 
Intercept                                                            2.68 ± 0.29                        [2.12, 3.25]                      9.30                24958.89              <0.001 
Total length                                                       –0.08 ± 0.00                    [–0.08, –0.07]                   –25.29                24958.89              <0.001 
Habitat: transitional                                        –0.73 ± 0.04                    [–0.82, –0.64]                   –16.44                24958.89              <0.001 
Habitat: reef                                                       –3.65 ± 0.04                    [–3.73, –3.56]                   –82.26                24958.89              <0.001 
Season: upwelling                                            –0.15 ± 0.11                      [–0.36, 0.07]                      –1.32                24958.89                  0.19 
Year 2022                                                            –1.09 ± 0.20                    [–1.47, –0.70]                    –5.57                24958.89              <0.001 
Rain                                                                    –0.003 ± 0.001                    [–0.01, 0.00]                      –1.93                24958.89                  0.05 
Moon illumination                                          0.13 ± 0.05                        [0.03, 0.23]                      2.50                24958.89                  0.01 
s (DOY) × habitat mangroves                                                                                                                39.38                    5.76              <0.001 
s (DOY) × habitat transitional                                                                                                               35.01                    6.81              <0.001 
s (DOY) × habitat reef                                                                                                                             325.41                    7.49              <0.001 
s (temperature)                                                                                                                                         7.71                    3.04                  0.05

Table 4. Summary of selected generalized additive mixed model of the effects of multiple drivers on probability of occur-
rence for the Colorado snapper Lutjanus colorado in Santa Elena Bay, Costa Rica, from January 2021 until August 2022.  

DOY: day of year
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ginally affected the occurrence of L. novemfasciatus, 
likely due to the lack of more locally specific wind 
speed data or the fact that wind intensity was not as 

relevant as the duration of sustained wind speeds 
(Bohaboy et al. 2022). It is also unlikely that the wind 
hindered receiver detection efficiency, as previously 
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Parameter                                                       Estimate ± SE                        95% CI                             z                          df                          p 
 
n = 26775; R2 = 0.18; R2 marginal = 0.36; R2conditional = 0.43 
Intercept                                                             016 ± 0.19                      [–0.21, 0.53 ]                     0.86                26743.34                 0.39 
Habitat: transitional                                         –0.65 ± 0.04                    [–0.72, –0.57 ]                   –17.06                26743.34               <0.001 
Habitat: reef                                                        –3.18 ± 0.04                    [–3.25, –3.10 ]                   –84.02                26743.34               <0.001 
Year 2022                                                             –0.87 ± 0.17                    [–1.20, –0.54 ]                   –5.21                26743.34               <0.001 
s (DOY) × habitat mangroves                                                                                                                46.01                    7.24               <0.001 
s (DOY) × habitat transitional                                                                                                               45.18                    6.96               <0.001 
s (DOY) × habitat reef                                                                                                                             306.73                    7.18               <0.001 
s (temperature)                                                                                                                                          14.94                    3.14                0.002 
s (wind speed)                                                                                                                                            28.29                    3.14               <0.001

Table 5. Summary of selected generalized additive mixed model of the effects of multiple drivers on probability of occur-
rence for the dog snapper Lutjanus novemfasciatus in Santa Elena Bay, Costa Rica, from January 2021 until August 2022.  

DOY: day of year
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tested (Matley et al. 2022). Environmental drivers not 
ac counted for in this study could also influence space 
use by our study species; for example, hypoxia, which 
has been reported near the mouth of the bay (Lizano 
& Alfaro 2015, Stuhldreier et al. 2015). Short-term 
temperature fluctuations can affect space use of 
snappers due to physiological mechanisms like diges-
tion (Williams-Grove & Szedlmayer 2017, Bacheler et 
al. 2021, Bohaboy et al. 2022). Therefore, analyses at 
finer temporal scales may clarify how environmental 
variability shapes the snappers’ use of the bay. A 
meta-analysis by Erisman et al. (2020) indicated that 
density-dependent mechanisms, particularly compe-
tition, predation, habitat quality and availability, may 
be more significant drivers of red snapper L. campe-
chanus densities than physical environmental vari-
ables, particularly for juveniles. Thus, the low effect 
of environmental variables in our study suggests that 
biological condition and interactions may play a more 
critical role in shaping the spatial behavior of the 
studied snappers within Santa Elena Bay. The lack of 
significant effects from temperature or wind may indi-
cate some level of resilience to environmental change. 
However, other variables like oxygen concentration 
should also be considered to assess how changes in 
habitat suitability affect them. 

Studies in the bay and region have revealed shifts in 
the spatial assemblages of fish between upwelling 
and non-upwelling periods (Eisele et al. 2020, Arias 
Zumbado 2021). In our study, although occurrence 
probability did not exhibit clear seasonal patterns, 
movement extent did. During upwelling, snappers 
roamed more widely and utilized habitats they typi-
cally did not frequent often, particularly outer reef 
areas, more extensively. Upwelling alters both the 
biomass and assemblages of fishes as a cascading 
effect along with the physical conditions that in -
fluence habitat suitability (Kämpf & Chapman 2016). 
Thus, this seasonal shift in space use could be attrib-
uted to either biological factors, such as changes in 
resource availability and intra- or interspecific inter-
actions, or physiological reasons due to the mosaic of 
oceanographic conditions in the bay. 

On the one hand, Arias Zumbado (2021) carried out 
a study of the assemblages of different trophic levels 
of fish and described an increase in planktivorous fish 
within Santa Elena Bay during the first 2 mo of the 
upwelling and a lagged increase in carnivorous fish in 
the following months. Fish biomass in the bay, par-
ticularly of piscivores, peaked around March and 
April. This increase in the biomass of planktivorous 
fish likely provides more prey availability and ulti-
mately influences their movement patterns (Arias-

Zumbado 2021). On the other hand, a study con-
ducted during non-upwelling months showed that 
heterogenous conditions across the bay may occur 
given its geomorphology and water circulation pat-
terns (Tisseaux-Navarro et al. 2021). The reefs are 
where a higher abundance of snappers occurred, par-
ticularly in the case of L. novemfasciatus, during 
upwelling months. This was more evident during the 
second year, coinciding with a stronger La Niña index 
(https://origin.cpc.ncep.noaa.gov/products/analysis
_monitoring/ensostuff/ONI_v5.php), which inten-
sifies upwelling conditions (Leung et al. 2019). Thus, 
the change in the movement extent of snappers be -
tween seasons could potentially be explained by the 
combined effects of environmental variability and 
resource availability. Based on previous studies on 
other snapper species where densities were mostly 
shaped by density-dependent mechanisms rather 
than physical environmental conditions (Erisman et 
al. 2020), we consider that the evidence of our study 
suggests mostly a seasonal pattern related to changes 
in resource availability. However, a deeper examina-
tion of the conditions within Santa Elena Bay coupled 
with trophic ecology may help elucidate if shifts are 
driven by changes in habitat suitability conditions or 
due to density-dependent mechanisms. 

The findings of this study have important implica-
tions for fisheries management, particularly in estuar-
ine tropical bays. Our results suggest that Santa Elena 
Bay may act as a nursery for L. novemfasciatus and for 
transitional stages for early adult L. colorado, which 
likely contributes to their adult populations and fish-
eries through spillover as the snappers grow. Apart 
from contributing to the adult populations, the key to 
confirming Santa Elena Bay as a nursery ground is to 
compare its relative importance to other sites in terms 
of juvenile density and contribution (Beck et al. 2001). 
Since we focused on single life stages for each of our 
tagged species, further demographic studies coupled 
with movement analyses on a variety of life stages at 
different sites could help confirm the nursery ground 
function of Santa Elena Bay. Although we initially 
expected environmental variables to significantly 
influence the movement and habitat use of our study 
species due to upwelling, the behavior of the young 
snappers tracked in Santa Elena Bay appeared to be 
primarily driven by a complex interaction among 
ontogenetic, biological and environmental dynamics. 
Longer-term monitoring across multiple years that 
includes other environmental variables like oxygen 
levels would provide a more comprehensive under-
standing of how snappers respond to environmental 
change. Implementing spatial protection measures in 
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similar settings that protect habitats suitable for 
snapper populations at different life stages and ensur-
ing connectivity between them to support growth and 
reproduction can benefit snapper populations. Ad -
ditionally, our results suggest that further evaluation 
and attention to seasonal patterns is key to guiding 
potential seasonally dynamic management measures, 
as the occurrence of snappers in the bay may vary 
across habitats between upwelling and non-upwel-
ling months. Further research is essential to unravel 
the dynamics driving the spatiotemporal patterns 
of  fish within the bay. This involves investigating 
trophic ecology and the coexistence of snapper spe-
cies inhabiting the bay and the degree of connectivity 
between Santa Elena Bay and other habitats along the 
coast. Additionally, a finer-temporal-scale examina-
tion of snapper spatial behavior, accounting for envi-
ronmental drivers of habitat use not considered in this 
study, should be carried out. Increasing our under-
standing of these patterns would contribute substan-
tially to more accurate predictions. 
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