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1.  INTRODUCTION 

Underwater cultural heritage (UCH) includes the 
remnants of human activities at sea — shipwrecks, 
plane wrecks, middens, seawalls, industrial infras-
tructure, and much more. Modern litter is generally 
not considered UCH, although perceptions are sub-
ject to change as time goes on. These anthropogenic 
structures become colonized by organisms and con-
stitute integral components of the marine ecosystem 
(Meyer-Kaiser & Mires 2022). They also change over 
time, as factors including wave action, chemical reac-

tions, and fishing activities alter the physical struc-
ture of the habitat (Muckelroy 1998). Climate change 
impacts such as rising temperatures, declining pH, 
and more frequent and intense storms have the poten-
tial to accelerate the degradation of important histori-
cal structures (Wright 2016). Structural changes, in 
turn, influence the biological communities inhabiting 
UCH (Mires & Meyer-Kaiser 2023). A central ques-
tion in the interdisciplinary field of Maritime Her-
itage Ecology is understanding how the structural 
elements of UCH influence biological communities 
(Meyer-Kaiser & Mires 2022). 
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As shallow-water habitats are impacted by climate-
related stressors, habitats at greater depths could 
serve as refuges for shallow-water taxa. In particular, 
mesophotic coral ecosystems are considered refuges 
for hermatypic corals and many associated taxa 
because they are buffered from high temperatures, 
acidification, and storms that affect shallow coral 
reefs (Slattery et al. 2011). Some studies suggest that 
mesophotic habitats could re-seed shallow reefs after 
disturbance (Goodbody-Gringley et al. 2021, Sturm 
et al. 2022). Mesophotic reefs are important sources 
of coral reef fish larvae, and under specific oceano-
graphic conditions, these larvae can disperse to and 
repopulate shallow reefs (Goldstein et al. 2016, Vaz et 
al. 2016). While there have been calls for the protec-
tion of mesophotic ecosystems, they remain under-
studied (Soares et al. 2020a). 

In the Gulf of Mexico/Gulf of America (GoM/
GoA), hard-bottom habitats at mesophotic depths 
(30–150 m) are less continuous than their shallow 
counterparts, thus increasing the importance of anthro-
pogenic structures for connectivity. Shipwrecks tend 
to be isolated and island-like, surrounded by plains of 
sand or mud. Therefore, both naturally occurring and 
anthropogenic mesophotic habitats may follow pat-
terns commonly observed in island-like communities 
(Meyer 2017). The size of a  habitat is an important 
factor influencing species richness, community com-
position, and functional composition. In general, larger 
habitats provide greater heterogeneity and niche 
space and can support a broader range of species than 
smaller habitats (Matthews et al. 2015). 

The distance between island-like habitats influences 
community composition (MacArthur & Wilson 1967). 
A combination of oceanographic currents, species’ 
pelagic larval durations (PLDs), and swimming be -
haviors influence larval dispersal (Young 1995). Tem-
poral variations in flow, including tidal currents, 
internal waves, and interannual cycles such as El 
Niño, impact the distance traveled by larvae (Pineda 
et al. 2007). Furthermore, differences in the size or 
behavior of larvae lead to variations in dispersal 
within a population or cohort (Nanninga & Berumen 
2014). If a species has restricted dispersal, it may 
be  unable to reach an isolated, island-like habitat 
(Meyer 2017). Many marine species have dispersal 
ranges of <1 km (Shanks 2009). For species with long 
PLDs (i.e. weeks to months), swimming behaviors and 
small-scale oceanographic factors such as eddies 
can lead to localized retention of larvae (Pineda et 
al.  2007). This, in turn, can alter connectivity pat-
terns and lead to strong similarities between adjacent 
communities. 

Furthermore, the type of habitat (boulder reef or 
shipwreck) can influence community composition. 
Shipwrecks feature unique microhabitats that do 
not occur on natural hard-bottom reefs and can pro-
vide niches for species that would otherwise be rare 
(Meyer-Kaiser et al. 2022b). For example, trace metals 
released by shipwrecks can infiltrate the surrounding 
water and sediments and be taken up by fauna 
(Rogowska et al. 2015, Hartland et al. 2019). Varia-
tions in the chemical environment can subsequently 
influence community composition on and around a 
shipwreck (Caporaso et al. 2018, Mancini et al. 2019). 
As a result, anthropogenic structures that have been 
in place for many years host communities that differ 
from nearby naturally occurring reefs (Perkol-Finkel 
et al. 2005). 

In this study, we investigated how structural factors 
including size, distance, and type of habitat (naturally 
occurring hard-bottom reef or shipwreck) influence 
invertebrate and fish communities in the meso-
photic zone. We analyzed video imagery from 7 sites 
in the GoM/GoA, including 4 shipwrecks and 3 natu-
rally occurring hard-bottom reefs, to test the hypo -
theses that species richness, community composition, 
and functional composition of the community would 
be driven by habitat size (Hypothesis 1), distance 
between habitats (Hypothesis 2), and habitat type 
(Hypothesis 3). 

2.  MATERIALS AND METHODS 

2.1.  Study design 

We selected 4 shipwrecks (SW1, SW2, SW3, and 
SW4) and 3 natural hard-bottom reefs (HB1, HB2, and 
HB4) in the mesophotic zone for study (Table 1, Fig. 1). 
Sites were chosen from a database of 175 known or 
suspected shipwreck sites based on geophysical and 
visual surveys from the Bureau of Ocean Energy 
Management (BOEM). All sites were located in the 
north-central GoM/GoA, south of the Louisiana coast 
(28°N, 91–92°W). Shipwrecks were selected based 
on their similarity in depth (upper-mid mesophotic, 
~40–80 m), range of sizes, and, due to concurrent 
archaeological research objectives, their potential 
historical significance. All shipwrecks were primarily 
composed of steel and sank in the 20th century. For 
each shipwreck, we identified the nearest naturally 
occurring hard-bottom reef based on geophysical 
data collected during oil and gas lease block surveys 
(BOEM unpubl. data). Distances between shipwrecks 
and the nearest natural hard-bottom reef ranged from 
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~100 m to 21 km. HB1 was the closest natural reef to 
both SW1 and SW3. 

2.2.  Data collection and image analysis 

Side-scan sonar imagery of each site selected for 
this study was collected in 2021 by David Evans and 
Associates (Fig. 2) (Redmayne & Laverty 2021). Sonar 
data allowed the dimensions (length, width, and height 
off the seafloor) for each site to be calculated (Table 1). 
Ultra-high-definition (4K) videos were recorded from 
SW1 and SW2 in 2021 by technical SCUBA divers 
from Marine Imaging Technologies. In 2022, additional 
video recordings were made from each site using a 4K 
camera (Marine Imaging Technologies) mounted to a 
Reliant Robotics SeaRover remotely operated vehicle 
(ROV) deployed from the Aqueos multi-purpose 
support vessel ‘Sea Scout’. Recordings served a dual 
purpose for archaeological and biological investiga-
tions; therefore, diver and vehicle flight paths fol-
lowed key features and observer curiosity rather than 
set transects. Video quality, including altitude, light-
ing, and clarity of fauna, was comparable between the 
recordings. 

Fish were counted directly from video recordings. 
For shoals or schools, the maximum number of indi-
viduals visible in the frame at one time was counted. 
Frame grabs of representative individuals were cap-
tured to enable the identification of each species by 
reference to taxonomic guides (Humann & DeLoach 
2014). In order to quantify invertebrates, frame grabs 
were collected from video any time the habitat 
(shipwreck or hard-bottom reef) was in clear view and 
invertebrate fauna could be clearly discerned (Fig. 3). 
Invertebrates were then counted from frame grabs 

and identified by reference to taxonomic guides 
(Humann & DeLoach 2013, Humann et al. 2013). 

We characterized the functional traits of each inver-
tebrate and fish species. For invertebrates, we charac-
terized traits (and corresponding modalities) follow-
ing Bremner et al. (2003) and Meyer et al. (2015). These 
included morphology (flat or encrusting, mounding, 
oblong, body with legs, upright and simple, upright 
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Site        Description                                                                                            Dimensions       Depth        Video      No. of reps.    No. of reps. 
                                                                                                                                            (m)                   (m)            (min)    (invertebrate)        (fish) 
 
SW1      ‘CP Baker’; early drilling rig, sank on 30 June 1964        102 × 55 × 5.5        58              203                16                      7 
SW2      ‘Hamlet’; Norwegian freighter, sank on 27 May 1942  
                during World War II                                                                152 × 21 × 4.0        60              216                21                     12 
SW3      Unidentified modern shrimp trawler or offshore  
                supply vessel                                                                              27 × 7.0 × 3.3         42              118                 7                       2 
SW4      Small unidentified hull                                                              18 × 5.8 × 4.3         79               16                  1                       1 
HB1      Low-lying boulder reef                                                              145 × 58.5 × 1        51               78                 26                      3 
HB2      Highly turbid reef with boulders and consolidated mud      81 × 57 × 1           50               55                  3                       1 
HB4      Low-lying boulder reef                                                                 19 × 46 × 1           76               48                  6                       3

Table 1. Shipwreck (SW) and natural hard-bottom (HB) sites surveyed in the mesophotic zone. Dimensions of each site are 
based on side-scan imagery (see Fig. 2) (Redmayne & Laverty 2021). Shipwreck identifications are based on historical research 
conducted by the authors. ‘No. of reps’ indicates the number of rarefied pseudo-replicates used in statistical analysis. Coordinates  

(latitude and longitude) are not provided because shipwrecks are protected sites

Fig. 1. Study sites, (A) within the regional context of the 
southeastern USA and Gulf of Mexico/Gulf of America, (B) off 
the coast of Louisiana. Site locations have been altered using 
random perturbation within a fixed radius (Smith 2020). SW: 
shipwreck; HB: hard bottom reef. Depth contours: 500 m
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and branched), mobility (sessile, swimming, crawling), 
coloniality (clonal, ambiguous or sponge, solitary in -
dividual), feeding mode (photosynthetic, suspension 
feeder, deposit feeder, predator), and symbiosis (none, 
facultative, obligate). For fishes, traits and trait modal-
ities for each species were selected following Stuart-
Smith et al. (2013) and Ford & Roberts (2020). These 
included maximum body size (small: 10–20 cm; 
medium: 21–75 cm; large: >76 cm), feeding mode 
(herbivore, planktivore, benthic carnivore, general 
carnivore, omnivore, gelatinous prey specialist, pisci-
vore), water column position (bottom or coral, struc-
ture-oriented, or pelagic), gregariousness or school-
ing behavior (always, sometimes, or never), and tail 
type (truncate, rounded, forked, lunate). Most trait 
modalities could be identified from video, and ad -
ditional information was drawn from literature (Hayse 
1989, Howe 2001, Ellis & Musick 2007, Humann & 
DeLoach 2013, Humann et al. 2013, Cardozo et al. 
2018, Etnoyer et al. 2020). 

Each trait was denoted in a functional trait matrix 
with a ‘1’ for modalities expressed by a given species 
and a ‘0’ for modalities not expressed by that species. 
Only one modality was expressed for each trait for 
a given species. Scleractinian corals feed both het-
erotrophically and autotrophically, so the feeding 
mode was denoted as ‘0.5’ under the photosynthetic 
modality and ‘0.5’ for the suspension feeding modal-
ity. The functional trait matrix was multiplied by the 
abundance of each species at each site to generate a 

matrix of trait abundances. Trait abundances were 
then used in statistical analysis following Bremner et 
al. (2003). 

2.3.  Statistical analysis 

A number of factors led to variations in the data 
quality and coverage between sites. Video surveys 
served a dual purpose for archaeological and biolog-
ical investigations and did not follow standardized 
transects because of conflicting survey requirements. 
Some sites had high turbidity during dives, which 
severely restricted visibility. No lasers were mounted 
on the camera or ROV (to avoid interference with the 
construction of photogrammetric models), so the sur-
face area of each frame grab could not be calculated. 
Furthermore, the treatment of video segments or frame 
grabs as replicate sampling units would have resulted 
in a high number of replicates with very low abun-
dances in each (invertebrates) or a small number of 
replicates with high abundances (fish) and obscured 
patterns between sites. 

In order to standardize data and enable statistical 
analysis of invertebrate and fish communities be tween 
sites, we used rarefaction. All data were summed for 
a given site, and we randomly sub-sampled the commu-
nity without replacement using the ‘rrarefy’ function 
in the ‘vegan’ package (Oksanen 2013) in R (version 
4.1.2; R Core Team 2021). Each sub-sample contained 
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Fig. 2. Side-scan sonar images of each study site. (A) Shipwreck SW1, (B) SW2, (C) SW3, (D) SW4 and hard bottom HB4,  
(E) HB1, and (F) HB2. Scale bar for (D) also applies to (C). Images courtesy of David Evans and Associates
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50 individuals and was treated as a 
pseudo-replicate for statistical tests. 
If more than 50 in dividuals were ob -
served at a given site, then the raw 
data were used as a single pseudo-
replicate. 

As our data analysis was based on 
randomized pseudo-replicates, we 
could not use parametric statistical 
tests. Instead, we relied on non-
parametric and permutational sta-
tistics, which make minimal as -
sumptions about the data. Spearman 
correlations were used to test for 
correlations between species rich-
ness and the size of each site. 
Mann-Whitney U-tests were used 
to test for differences in species 
richness between shipwrecks and 
natural hard-bottom reefs. Mantel 
tests were used to test for spatial 
auto-correlation in species richness, 
community composition, and func-
tional composition. PERMANOVA 
was used to test for differences in 
community composition and func-
tional composition between ship -
wrecks and natural hard-bottom sites 
using the ‘adonis2’ function in  the 
vegan package in R. SIMPER analy-
sis using the ‘simper’ function  in 
the vegan package showed which 
species or functional traits contrib-
uted the most to differences be tween 
shipwrecks and natural hard-bottom 
sites. We used distance-based redun-
dancy analysis (dbRDA) to test for 
the influence of site size and distance 
between sites (calculated using lati-
tude, longitude, and depth) on com-
munity composition of invertebrates 
and fishes using the ‘capscale’ func-
tion in the vegan package in R. For 
all tests, distance  matrices for bio-
logical data (i.e. species abundances) 
were based on a Bray-Curtis method 
using un transformed values, and 
matrices for other metrics (i.e. size, 
distance, species richness, func-
tional traits) were based on Eucli-
dean distance. ANOVAs were used 
to test for the significance of each 
best-fit dbRDA model. 
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3.  RESULTS 

Not all rarefaction curves reached asymptotes, indi-
cating that sampling was not sufficient to capture all 
species in the community for some habitats (Fig. 4). 
The best-sampled habitats were HB1, SW1, and SW2. 
Curves for these 3 habitats reached clear asymptotes 
for both invertebrates and fishes. Invertebrate and 
fish curves for HB4 as well as invertebrate curves for 
HB2 and SW3 barely reached asymptotes, indicating 
sampling was just sufficient. No asymptotes were 
reached by the rarefaction curves for SW4 inverte-
brates or HB2, SW3, or SW4 fishes (Fig. 3). Sites HB2, 
SW3, and SW4 had the lowest organismal abundances. 

3.1.  Species richness 

Hypothesis 1 (size): there was a significant correla-
tion between the species richness of invertebrates and 
the log of site size (Spearman correlation, ρ = 0.38, p < 
0.001). The shape of this relationship follows the classical 
model (Fig. 5). For fishes, on the other hand, the relation-
ship was not significant (Spearman correlation, ρ = 0.17, 
p = 0.37) (Fig. 5). Thus, Hypothesis 1 was supported for 
species richness of invertebrates but not for fishes. 

Hypothesis 2 (distance): there was no significant 
relationship between a distance matrix of species 
richness and the distance between habitats for inver-
tebrates (Mantel test, r = 0.10, p = 0.07) or for fishes 
(Mantel test, r = 0.24, p = 0.06). Thus, there was no 
tendency for sites closer together to have similar spe-
cies richness, and Hypothesis 2 was not supported for 
invertebrates or fishes. 

Hypothesis 3 (type): there was no significant differ-
ence in rarefied species richness of invertebrates 
between sites with different types (shipwreck or natu-
ral hard-bottom reef; Mann-Whitney, U = 859, p = 
0.47) (Fig. 6). For fishes, there was also no significant 
difference in species richness between shipwrecks 
and natural hard-bottom reefs (Mann-Whitney, U = 
94.5, p = 0.36). This hypothesis was not supported for 
species richness of either invertebrates or fishes. 

3.2.  Community composition 

Hypotheses 1 and 2 (size and distance): for inverte-
brates, the best dbRDA model included all factors 
(size, latitude, longitude, depth), was statistically sig-
nificant (ANOVA, F4,75 = 31.7, p < 0.001), and ex -
plained 62% of the community composition (R2 = 
0.62). In addition, there was a significant relationship 
between the community composition of invertebrates 
and the distance between our study sites (Mantel test, 
r = 0.55, p < 0.001). Similarly, the best dbRDA model 
for the fish community included all tested factors 
(size, latitude, longitude, depth), was statistically 
significant (ANOVA, F4,24 = 20.7, p < 0.001), and 
explained 77% of the community composition (R2 = 
0.77). There was also a significant relationship be -
tween fish community composition and distance be -
tween our sites (Mantel test, r = 0.80, p < 0.001). 
Hypotheses 1 and 2 were supported for community 
composition of both fishes and invertebrates. 

Hypothesis 3 (type): there was a significant differ-
ence in invertebrate community composition based on 
site type (shipwreck or natural reef; PERMANOVA, 
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Fig. 4. Rarefaction curves for (A) invertebrates and (B) fishes at each site. Curves that reach asymptotes indicate sampling was  
sufficient to characterize the community at that site. Site codes as in Fig. 2 and Table 1
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pseudo-F1,78 = 29.8, p < 0.001) (Fig. 7). Species driving 
the dissimilarity between shipwrecks and natural hard-
bottom reefs were the sun coral Tubastraea coccinea 
(SIMPER, contribution: 0.13), hydroids (0.13), the feather 
black coral Plumapathes pennacea (0.10), and the white 

encrusting morphotype, which is most 
likely a sponge (0.09). Hydroids and 
T.  coccinea were more abundant on 
ship wrecks, while P. pennacea and the 
white encrusting morphotype were 
more abundant on natural hard-bottom 
reefs. There was a sig nificant difference 
in fish community composition between 
ship wrecks and natural hard-bottom 
reefs (PERMANOVA, pseudo-F1,27 = 
9.32, p < 0.001) (Fig. 7). Species driving 
the dissimilarity between site types were 
the regal de moiselle Neopomacentrus 
cyanomos (SIMPER, contribution: 0.26), 
pigfish Orthopristis chrysoptera (0.16), 
and red snapper Lutjanus campecha-
nus  (0.15). Of these, N. cyanomos and 
L.  campechanus were more abundant 
on ship wrecks, and O. chrysoptera was 
more abundant on natural hard-bottom 
reefs. Hypo thesis 3 was supported for 
community composition of both inver-
tebrates and fishes. 

3.3.  Functional composition 

Hypotheses 1 and 2 (size and dis-
tance): the best dbRDA model for the 
functional composition of invertebrates 
included all factors (size, latitude, longi-
tude, depth), was significant (ANOVA, 
F4,75 = 24.7, p < 0.001), and explained 
56% of the functional composition (R2 = 
0.56). There was a significant relation-
ship between the functional composi-
tion of invertebrates and the distance 
between our study sites (Mantel test, 
r = 0.50, p < 0.001). Similarly, the best 
model for the fish community included 
all tested factors (size, latitude, longi-
tude, depth), was statistically signifi-
cant (ANOVA, F4,24 = 21.1, p < 0.001), 
and ex plained 77% of the community 
composition (R2 = 0.77). There was also 
a significant relationship between fish 
community composition and distance 
between our sites (Mantel test, r = 0.77, 

p < 0.001). Hypotheses 1 and 2 were supported for the 
functional composition of both fish and invertebrates. 

Hypothesis 3 (type): there was a significant differ-
ence in invertebrate functional composition based on 
site type (shipwreck or natural reef; PERMANOVA, 
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Fig. 5. Correlation between species richness (rarefied to 50 individuals) of (A) 
invertebrates and (B) fishes and the size of a site. Statistically significant log-
arithmic trendline for invertebrates is shown. Error bars represent standard  

error. Site codes as in Fig. 2 and Table 1
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pseudo-F1,78 = 44.2, p < 0.001) (Fig. 8). The trait modal-
ities most associated with the difference between ship -
wrecks and natural reefs were ambiguous or sponge 
coloniality (SIMPER, contribution: 0.12), flat morphol-
ogy (0.10), and lack of symbionts (0.08). All 3 of these 
traits were more associated with natural hard-bottom 

reefs than shipwrecks. There was a sig-
nificant difference in fish functional com-
position between shipwrecks and natu-
ral hard-bottom reefs (PERMANOVA, 
pseudo-F1,27 = 12.9, p < 0.001) (Fig. 8). 
The functional traits most associated 
with the difference between site types 
were al ways schooling (SIMPER, con-
tribution: 0.11), forked tail (0.08), small 
body size (0.08), and bottom or coral hab-
itat (0.07). Each of these traits was more 
associated with shipwrecks than natural 
hard-bottom habitats. Hypothesis 3 was 
supported for the functional composi-
tion of both invertebrates and fishes. 

4.  DISCUSSION 

Overall, we found that the commu-
nity composition and functional com-
position of invertebrates and fishes 
were significantly influenced by the 
size, distance between sites, and type 
of habitat (shipwreck or natural hard-
bottom reef) for our sites in the meso-
photic zone. However, species richness 
was much less explained by the factors 
we tested. Low organismal abundances 
and insufficient sampling at some sites 
(as indicated by non-asymptotic spe-
cies-accumulation curves) may have 
biased our results to show lower spe-
cies richness and greater differences in 
community composition and functional 
composition than is accurate. Never-
theless, the broad-scale patterns in 
our data provide important insights for 
ship wrecks and hard-bottom reefs in 
the mesophotic zone. 

4.1.  The influence of habitat size 

Species richness of invertebrates had 
a significant logarithmic relationship 
with habitat size, but no significant re-

lationship was present for fishes. Other studies on 
shipwrecks have reported varied results, with a signifi-
cant relationship for sessile species but not mobile spe-
cies (Meyer et al. 2017) or a complete lack of significant 
relationships (Meyer-Kaiser et al. 2022a). Other factors, 
such as strong gradients in environmental conditions, 
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Fig. 6. Species richness (rarefied to 50 individuals) for (A) invertebrates and (B) 
fishes at each site. Horizontal line: median; box limits: first and third quartiles; 
whiskers: 1.5× the interquartile range; dots: outliers. Site codes as in Fig. 2  

and Table 1
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can be the primary driver of species richness on 
shipwrecks in some cases (Meyer-Kaiser et al. 2022a). 

There are numerous hypotheses that attempt to 
explain species–area relationships. For sessile in -
vertebrates, limited 2-dimensional space can lead 

to  strong intra- or interspecific com-
petition (Sebens 1986). However, our 
study sites had large swaths of empty 
space with no invertebrate fauna, in -
dicating competition was not likely 
the  primary driver of species–area 
dynamics. Studies in other systems 
have also found classical species–area 
relationships in the absence of strong 
interspecific competition (Meyer et 
al.  2016, 2017). The hypotheses for 
species–area relationships that are 
most pertinent to shipwrecks include 
the sampling hypothesis — that larger 
habitats are larger targets for settling 
propagules and support more species 
from the regional pool (Connor & 
McCoy 1979) — and the principle that 
larger habitats have greater hetero-
geneity (Williams 1943, Kallimanis et 
al. 2008). Our invertebrate data sup-
ports both hypotheses, and they are 
not mutually exclusive. 

Habitat size was significantly related 
to community composition and func-
tional composition for both inverte-
brates and fishes. The largest habitats 
in our study were both shipwrecks, SW1 
and SW2, and were characterized by 
high vertical relief. Elevated substrata 
expose sessile suspension feeders, such 
as corals, sponges, and octocorals, to 
swifter currents and higher food supply 
in the benthic boundary layer (Vogel 
1996). Indeed, high densities of suspen-
sion feeders on elevated substrata is a 
near-ubiquitous pattern in the ocean 
(Rogers 1993, Gass & Roberts 2006, 
Baco 2007). Shipwrecks that are sur-
rounded by soft sediments offer the 
only vertical relief in the local area and 
tend to host dense populations of sus-
pension feeders and/or zooplankton 
predators on the upper portion of the 
shipwreck (Meyer-Kaiser et al. 2022b). 

Vertical relief of a habitat also in -
fluences fish communities, with pela-
gic predators being more abundant on 

tall artificial structures (Bryan et al. 2013, Paxton et al. 
2020, 2024). We observed a sandbar shark Carcharhi-
nus plumbeus at SW1 and high abundances of the 
pelagic species greater amberjack Seriola dumerili 
and red snapper Lutjanus campechanus around ship -
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Fig. 7. Non-metric multidimensional scaling plots showing differences in com-
munity composition between sites for (A) invertebrates and (B) fishes. Each 
point represents one rarefied pseudo-replicate; points that are closer together 
have more similar community composition. Site codes as in Fig. 2 and Table 1
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wrecks. Indeed, red snapper and the affiliated traits 
of schooling and a forked tail were strong contrib-
utors to the differences between shipwreck and natu-
ral hard-bottom communities. Large pelagic predators 
may be drawn to shipwrecks because of the availability 

of prey or because of the relative ease 
of finding a large habitat (Paxton et al. 
2020). Given the high turbidity ob -
served at our study sites and the verti-
cal relief provided by ship wrecks in the 
benthic boundary layer, we also sug-
gest that these large structures may 
facilitate visual predation by hosting 
prey species in relatively clearer waters 
than low-lying natural reefs. Ship wrecks 
serve as island-like hotspots for fish 
aggregations (Paxton et al. 2021). 

The natural hard-bottom sites in this 
study were selected based on their 
proximity to shipwrecks, but elsewhere 
in the GoM/GoA, natural hard-bottom 
reefs with high vertical relief can be 
found in the Flower Garden Banks 
(Gardner et al. 1998). These isolated 
banks support stable coral commu-
nities and fishes, including many of the 
same pelagic predators we ob served at 
shipwreck sites (Johnston et al. 2016, 
Sanchez et al. 2023). Differences in 
community composition be tween ship -
wrecks and natural hard-bottom reefs 
in this study were strongly influenced 
by contrasts in habitat size and vertical 
relief. 

4.2.  The influence of distance 
between sites 

The distance between sites had a sig-
nificant relationship with community 
composition and functional composi-
tion for both invertebrates and fishes. 
Shipwrecks form island-like habitats 
that host unique communities and have 
a sphere of influence on the surround-
ing flora and fauna (Bałazy et al. 2019, 
Hamdan et al. 2021). Community com-
position can be controlled by larval 
dispersal, with only a subset of species 
in the regional pool able to disperse to 
the shipwreck’s location (Walker & 
Schlacher 2014, Meyer 2017, Pinto et 

al.  2021). The sites in this study were island-like; 
however, the distances between shipwrecks and natu-
ral hard-bottom reefs (i.e. 20 km or less) suggest that 
dispersal may not be limiting. Marine invertebrate 
species with PLDs of days to weeks have dispersal 

24

Fig. 8. Non-metric multidimensional scaling plots showing differences in func-
tional composition between sites for (A) invertebrates and (B) fishes. Each 
point represents one rarefied pseudo-replicate; points that are closer together 
have more similar functional composition. Site codes as in Fig. 2 and Table 1



Meyer-Kaiser et al.: Mesophotic shipwrecks

ranges on the order of the distances between sites 
in this study (Shanks 2009). Furthermore, the GoM/
GoA is home to thousands of artificial structures asso-
ciated with offshore industry (Sammarco et al. 2004). 
Industrial infrastructure provides habitat for obligate 
hard-bottom species and can serve as stepping-stones 
for the dispersal of corals (Sammarco et al. 2004, Gass 
& Roberts 2006, Macreadie et al. 2011). In addition, 
anthropogenic structures including active and decom-
missioned oil rigs form important habitats for struc-
ture-oriented and pelagic fishes (Ajemian et al. 2015, 
Streich et al. 2017). 

While the distances between our sites may not have 
prevented species from colonizing, dispersal dynamics 
likely had an influence on community composition. 
The larval development of many mesophotic species 
is poorly understood, but previous research suggests 
short PLDs (hours to days) and limited dispersal for 
black corals (Miller 1998) and sponges (Maldonado 
2006). Some species in our study, particularly Tubas-
traea coccinea, have longer and highly plastic PLDs 
(up to 69 d) (Luz et al. 2020). Modeling has shown that 
a PLD of 10–20 d results in high connectivity among 
mesophotic habitats in the GoM/GoA (Garavelli et al. 
2018). However, larval behaviors, particularly swim-
ming downward or remaining near the bottom, can 
restrict dispersal for species with long PLDs (Spo-
naugle et al. 2002). Most coral reef fishes tend to 
recruit back to their natal populations (Swearer et al. 
2002), but plastic PLDs and variable oceanographic 
conditions lead to variations in dispersal distance 
(Hogan et al. 2012). Rising ocean temperatures driven 
by climate change also reduce PLD in fishes and lead 
to more localized recruitment (Raventos et al. 2021). 
Restricted dispersal, even for some species, would 
explain the correlation between distance and both 
community composition and functional com position 
in our data. A hard-bottom species is most likely to 
colonize the nearest shipwreck and may re cruit back 
to the same shipwreck in subsequent generations 
(Appelqvist et al. 2015, Meyer et al. 2017). 

Depth is an important factor in mesophotic habitats. 
Declining light and lower temperatures lead to a near-
universal shift in community composition at ~60 m 
depth (Lesser et al. 2019). The absence of many her-
matypic corals and herbivorous fishes from habitats 
deeper than 60 m provides niche space for sponges, 
octocorals, and planktivorous and piscivorous fishes 
(Semmler et al. 2017). Our study sites spanned ~40–
80 m depth, with HB4 and SW4 being the deepest 
sites. SW4 was the most sparsely colonized site. The 
patterns we observed in community composition and 
functional composition corroborate previous depth-

driven patterns in abundance and community compo-
sition for mesophotic invertebrates and fishes. 

4.3.  The influence of habitat type 

The 2 species with the greatest contribution to the 
difference between natural hard-bottom sites and 
shipwrecks in our study were T. coccinea and the regal 
demoiselle Neopomacentrus cyanomos — both non-
native species in the GoM/GoA. By providing high-
relief structures and unique microhabitats, ship wrecks 
tend to increase regional biodiversity (Perkol-Finkel et 
al. 2006, Church et al. 2009). However, these habitats 
can also support invasive species or species at the 
edge of their geographic ranges (Work et al. 2008, 
Paxton et al. 2019). Shipwrecks can facilitate the 
spread of non-native species, which colonize anthro-
pogenic habitats readily (Hoeksema et al. 2023). 

T. coccinea is native to the Indo-Pacific but has 
spread throughout the Caribbean, GoM/GoA, and 
northern coast of Brazil (Fenner & Banks 2004, Paula 
& Creed 2005). It is a highly opportunistic species that 
thrives on artificial habitats (Sammarco et al. 2004, 
Rezek et al. 2018, Luz et al. 2020). T. coccinea larvae 
tend to settle on the undersides of surfaces, where 
they are protected from sedimentation (Mizrahi et al. 
2014). Overhanging habitats are rare on naturally 
occurring boulder reefs but common on ship wrecks 
(Meyer-Kaiser et al. 2022b). The undersides of over-
hangs also provided preferred habitat for the black 
coral Antipathes pennacea on a Caribbean ship wreck 
(Oakley 1988). Because of the habitats they provide, 
shipwrecks serve as key stepping stones for the dis-
persal of T. coccinea (Soares et al. 2020b, Hoeksema 
et al. 2023). 

N. cyanomos is another Indo-Pacific species intro-
duced to the GoM/GoA (Robertson et al. 2021a). A 
second population has been observed in Trinidad, 
potentially from a different introduction event (Rob-
ertson et al. 2021b). N. cyanomos prefers artificial 
habitats, and indeed, multiple lines of evidence sug-
gest the species was introduced along with oil drilling 
platforms from the Indo-Pacific (Robertson et al. 2018, 
Tarnecki et al. 2021). Similar to T. coccinea, it thrives 
on shipwrecks, suggesting that these structures may 
facilitate its spread throughout the GoM/GoA. 

We observed lionfish Pterois volitans on shipwrecks 
and natural reefs. Mesophotic habitats, below the 
depth limit of recreational diving, represent a refuge 
for lionfish and undermine removal efforts in shallow 
water (Andradi-Brown et al. 2017). Lionfish also occur 
in much higher densities (2 orders of magnitude) on 
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artificial than natural reefs in the northern GoM/GoA 
(Dahl & Patterson 2014). 

4.4.  Conclusions 

Shipwrecks and other UCH are integral to the mar-
ine ecosystem (Meyer-Kaiser & Mires 2022). Large 
shipwrecks present high-relief, heterogeneous hab-
itats that enhance regional biodiversity. In the meso-
photic zone, the effect of artificial structures on bio -
diversity is enhanced by the sparse availability and 
low-lying nature of naturally occurring hard-bottom 
reefs (Bryan et al. 2013). An unfortunate by-product 
of the unique microhabitats provided by shipwrecks 
is the facilitation of non-native species. While the det-
rimental impacts of lionfish are clearly documented 
(Andradi-Brown et al. 2017), it is unclear to what ex -
tent N. cyanomos or T. coccinea could displace native 
species (Almeida Saá et al. 2020, Tarnecki et al. 2021). 
Shipwrecks can also release trace metals or other con-
taminants into the surrounding environment, leading 
to complex positive and negative environmental 
impacts (Renzi et al. 2017, Hartland et al. 2019). Our 
study highlights the role of shipwrecks in supporting 
biodiversity in the mesophotic Gulf of Mexico/Gulf 
of America. 
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