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INTRODUCTION

The Benguela Current upwelling system, 1 of 4 major
upwelling regions in the world, exists along the eastern
boundary of the South Atlantic basin from Cape Agulhas
(35° S, see Fig. 1) to approximately Namibe (15° S). It
comprises the eastern part of the broad, sluggish, South
Atlantic gyral circulation driven by the prevailing south-
east trade winds. Vigorous wind-driven coastal up-
welling occurs along the shoreward margin between 16
and 34° S, bounded, in a very dynamic manner, by warm
currents of tropical origin (the Angola Current in the
north and the Agulhas Current in the south; see Fig. 1).
The Lüderitz upwelling cell and Orange River cone

(LUCORC) area, between 25 and 30° S approximately
(see Fig. 1), represents not only the transboundary re-
gion between South Africa and Namibia, but also a
region with the most active upwelling centre in the world
(Bakun 1996). There are several active upwelling centres
within the Benguela system (Nelson & Hutchings 1983,
Shannon & Nelson 1996), of which Lüderitz is by far
the strongest in terms of persistence and intensity (Par-
rish et al. 1983, Boyd 1987). The LUCORC area also in-
cludes the Orange (Gariep) River cone, the widest part of
the Benguela continental shelf.

The Lüderitz upwelling cell represents an extreme of
the optimal environmental spectrum, in that the persis-
tent high wind speeds generate not only powerful off-
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shore Ekman drift, but also considerable mixing in the
water column, which does not favour retention, con-
centration, or enrichment in the triad of factors consid-
ered important for pelagic fish larval survival (Bakun
1996). Powerful upwelling centres off Cape Blanc in
the Canary Current upwelling system, off Point Con-
ception and Cape Mendocino in the California Current
upwelling system are also areas considered as un-
favourable spawning habitats (Parrish et al. 1983).
Several authors (Shannon 1985, Shannon & Pillar 1986,
Cruickshank et al. 1990, Barange et al. 1992, Field &
Shillington 2006) have noted that oceanographic and
biological characteristics are different on either side
of the LUCORC area, leading to a separation into
‘northern’ and ‘southern’ Benguela subsystems. Many
fish species occur on both sides of the LUCORC area,
but this region appears to act as a barrier to some
species of phytoplankton, copepods, euphausiids and
pelagic fish. Sardines Sardinops sagax are of particular
interest since they spawn over a wide area, from the
east coast of South Africa to southern Angola, in a wide
variety of habitats (van der Lingen & Huggett 2003),
except in the LUCORC area (Olivar & Fortuño 1991,
Hutchings et al. 2002). The rise and decline of the
South African sardine fishery in the period from 1958
to 1963 was separated from that of the Namibian sar-
dine fishery by approximately a decade (van der Lin-
gen et al. 2006), and, whilst the South African popula-
tion has recovered, the Namibian population remains
at low levels, suggesting that the 2 populations are
separate. A tagging study conducted during a time
when both populations were abundant (1957 to 1963)
reported that, whilst some sardine tagged in the north
were recovered in the south (but not the other way
around), the very low proportion compared to the
number of fish tagged (~140 000) indicated that the 2
populations were independent (Newman 1970). Addi-
tionally, the lack of coherence between a biological
time-series for sardine from the northern and southern
Benguela has been taken as indicative of stock separa-
tion (Kreiner et al. 2001). Other important pelagic fish
species, including anchovy Engraulis encrasicolus,
redeye round herring Etrumeus whiteheadi, horse
mackerel Trachurus trachurus capensis and shallow-
water hake Merluccius capensis, have been reported
as spawning on either side of the LUCORC area, but
not within it (Olivar & Fortuño 1991, Olivar & Shelton
1993, Sundby et al. 2001).

A number of questions have recently been raised
regarding this partial environmental barrier (Flo-
renchie 2004), in particular about the mechanisms
involved in generating it, maintaining it and breaking
it down. Mechanisms include the input of freshwater
from the Orange River mouth, which reduces the
salinity of coastal waters, and intense upwelling off

Lüderitz that leads to strong offshore Ekman transport
and a cooling of coastal waters. Low levels of chloro-
phyll concentrations have also been reported in the
LUCORC area (Brown et al. 1991, Demarcq et al.
2003). Agenbag & Shannon (1988) found, however, no
support for strong surface temperature, salinity, or
chlorophyll discontinuity in the region. They therefore
hypothesised that intense mixing in the water column
due to strong upwelling would be responsible for low
primary and secondary production. Drifter trajectories
reported by Gründlingh (1999) and Largier & Boyd
(2001) suggest strong offshore transport off Lüderitz
and northwards. Carr & Kearns (2003) data analysis
suggests particular conditions in the LUCORC area in
terms of Ekman transport and chlorophyll concen-
trations, but not regarding salinity, temperature, or
oxygen. However, Stander (1964) and Duncombe Rae
(2005) identified a discontinuity at the LUCORC area
in the properties of central and intermediate waters,
with high salinity and low oxygen waters present north
of Lüderitz, but not south of the Orange River mouth.

Whether the LUCORC area constitutes a hydrody-
namic, thermal, haline, trophic, or oxygen barrier (or a
combination of these) for the shelf biota remains an
open question. Given that prevailing near-surface cur-
rents in the region are northward, we investigate here
a potential environmental barrier to transport from the
southern to the northern Benguela. We first use the 1 ×
1° World Ocean Atlas 2001 database to build maps of
annual mean salinity, temperature, chlorophyll, dis-
solved oxygen and nutrient concentrations. We then
focus on hydrodynamic aspects of the LUCORC area,
using outputs of a regional circulation model in an
individual-based model that tracks passive particles to
examine the flow field and temperature conditions that
particles would experience when released in the south
of the LUCORC region. We finally discuss the results
regarding the biology of epipelagic and mesopelagic
fish species ichthyoplankton. In doing so, we implicitly
consider ichthyoplankton as being passive entities,
leaving aside, as a first approach, horizontal swimming
and vertical migration. This study complements previ-
ous studies in which individual-based models were
used to investigate the effects of physical and biologi-
cal factors on the dynamics of anchovy and sardine
ichthyoplankton in the southern (Mullon et al. 2002,
2003, Huggett et al. 2003, Parada et al. 2003, Skogen et
al. 2003, Lett et al. 2006, Miller et al. 2006) and north-
ern (Stenevik et al. 2003) Benguela ecosystems.

MATERIALS AND METHODS

Tolerance ranges of ichthyoplankton to environ-
mental variables. For the LUCORC area acting as a

248



Lett et al.: Barrier to ichthyoplankton in the Benguela

barrier, the environment there should consistently fall
outside the tolerance limits of ichthyoplankton for one
or more environmental variables. Unfortunately, infor-
mation on the tolerance ranges of important Benguela
fish species ichthyoplankton is not comprehensive,
and published studies are over 2 decades old. None-
theless, some data on the lower lethal limits for
selected environmental parameters (primarily temper-
ature) are available and are briefly described below.

Laboratory studies showed that a temperature of
10.8°C proved lethal to anchovy eggs, and, whereas
eggs kept at <13.6°C did develop to hatching, subse-
quent larval development was abnormal with larvae
failing to develop pigmented eyes and a functional
jaw (King et al. 1978). Similarly, although sardine eggs
developed to hatching at 11°C, those kept at <13°C
also failed to develop pigmented eyes and a functional
jaw (King 1977). Additionally, sardine eggs were not
affected by salinities ranging from 33 to 36 psu, but
showed a reduction (to <80%) in viable hatch levels at
dissolved oxygen levels of 1.5 ml l–1 and a temperature
of 22°C, leading King (1977) to suggest that low dis-
solved oxygen levels may counteract apparently
favourable temperature regimes. Laboratory studies
on round herring (O’Toole & King 1974) and horse
mackerel (King et al. 1977) eggs indicated that the
lower lethal temperatures for these species were <11.0
and <12.6°C, respectively. Field studies reported that
horse mackerel larvae were found at temperatures as
low as 13.5°C, at salinities down to 35.2 psu, and over
a dissolved oxygen range of 4.6 to 5.0 ml l–1 (O’Toole
1977).

World Ocean Atlas data. The data used here were
extracted from the World Ocean Atlas (WOA) 2001
database (Conkright et al. 2002) and cover the majority
of the Benguela Current region from 20 to 37° S and
from 10 to 20° E, being approximately centred on the
LUCORC area. We used the 1 × 1° objectively analysed
(i.e. squares that do not contain any data are filled
through a process of interpolation and smoothing;
Conkright et al. 2002) annual means of salinity, tem-
perature, chlorophyll, dissolved oxygen and nutrient
(nitrate, phosphate and silicate) concentrations. The
number of observations per square typically ranges
from a few 10s offshore to a few 100s or 1000s along-
shore.

Hydrodynamic model. The hydrodynamic model
employed is the regional oceanic modelling system
(ROMS) (Shchepetkin & McWilliams 2005), which is a
split-explicit, free-surface oceanic model discretised
in coastline- and terrain-following curvilinear coordi-
nates. The model solves the primitive equations in a
rotating environment based on the Boussinesq approxi-
mation and the vertical hydrostatic equilibrium balance.
Short time-steps are used to advance the barotropic

momentum equations, and longer time-steps are used
to solve the baroclinic momentum equations. The
explicit lateral viscosity is zero everywhere in the
model domain, except in the sponge layers near the
boundaries, where the viscosity increases smoothly
toward the lateral open boundaries. The vertical mix-
ing term in the interior and at the planetary boundaries
is derived by the non-local K-profile parameterisation
scheme (KPP; Large et al. 1994).

In order to circumvent the issue of the interaction of
features of highly disparate spatial scales and to pre-
serve efficiency, a nested modelling approach was fol-
lowed. The 1-way grid-embedding capability of ROMS
was employed, in which a sequence of structured grid
models are able to interact with one another (Penven et
al. 2006a). The embedding procedure makes use of the
AGRIF (adaptive grid refinement in Fortran) package.
Temporal coupling of the low-resolution parent and
high-resolution child grids is done at the baroclinic
time-step. Prognostic baroclinic variables (horizontal
velocity components, temperature and salinity) are
interpolated bi-linearly along the s-coordinates (i.e.
terrain-following) and linearly in time for each time-
step of the child model, thereby implying that the bot-
tom topography (or sigma levels) must correspond in
the area of the parent–child boundary.

The parent model employed is the southern Africa
experiment (SAfE) ROMS configuration, which is de-
signed to resolve the major oceanic phenomena that
exist around southern Africa (Penven et al. 2006b). It
has been built using ROMSTOOLS (Penven 2003). The
Mercator grid has an increment of 0.25°, ranging from
2.5° W to 54.75° E and from 46.75 to 4.8° S (Fig. 1). The
horizontal resolution ranges from 19 km in the south to
27.6 km in the north. The vertical resolution is based
on 32 s-coordinate levels, which are stretched towards
the surface, resulting in a resolution of 0.37 to 5.70 m in
the surface layer and 11 to 981 m in the bottom layer. A
radiation scheme exists at the lateral boundaries to
connect the model with its surroundings, while inflow
conditions are nudged toward data. Mean monthly
temperature and salinity data are obtained from the
WOA 2001 database (Conkright et al. 2002).

The high-resolution child model is designed to en-
compass most of the Benguela upwelling area, and has
a temporal and spatial resolution 3 times finer than the
parent grid (approximately 15 min and 8 km, respec-
tively). The child model has 124 × 238 grid points in the
horizontal plane, encompassing the area from 9.5 to
20° E and from 18 to 35.5° S (Fig. 1), and 32 vertical lev-
els that are stretched toward the surface in order to
obtain higher resolution there. The boundary condi-
tions of the child grid are supplied by the parent grid.

Both the parent and child models start from rest and
are forced at the surface by the comprehensive ocean/
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atmosphere data set (COADS) monthly climatology
(Da Silva et al. 1994) and use the general bathymetric
chart of the Worlds oceans (GEBCO) for the bottom
topography. The initial temperature and salinity condi-
tions are for the month of January from the WOA mean
monthly climatology. This parent–child configuration
was run for 10 yr. Plots of volume-integrated kinetic
energy and mean surface kinetic energy (not shown)
reveal that a spin-up time of 2 yr was required in order
to reach statistical equilibrium; therefore, only output
from Year 3 to 10 was analysed.

To test the validity of the model output the annual
mean sea surface temperature (SST) and sea surface
height (SSH) of the child model was compared to SST
and SSH derived from satellite data. The general
shape of the simulated upwelling regime is sufficiently
realistic to reproduce the offshore ‘bulge’ of upwelling
at Lüderitz and, to some extent, in the region of the
Orange River cone. In general, the extent of the mod-
elled upwelling regime is more confined to the coast
and more continuous, and temperatures in a narrow
band all along the coast are somewhat underesti-
mated. This distinct difference has been noted by Pen-
ven et al. (2001), who attributed it to overly strong

coastal wind forcing. In the model and the data there
are negative SSH anomalies in a band along the coast,
which broadens significantly north of Lüderitz, while
positive values dominate the southwest corner of the
domain. Modelled negative anomalies at the coast are
larger than the satellite-derived anomalies, which may
also be related to overly strong coastal wind forcing.

Individual-based model. The individual-based model
makes use of water velocity and temperature fields
stored from the hydrodynamic model simulations every
2 d to transport passive (horizontally and vertically)
particles offline. Velocity and temperature fields are
transformed from the ROMS curvilinear grid into a
Cartesian grid, and trilinear interpolations are used
inside the Cartesian grid to obtain values of velocity
and temperature at any particle location. Transport of
particles relies only on advection, as no diffusion term
is introduced. A forward Euler integration scheme is
used to move particles from one time-step (2.4 h) to the
other.

Two sets of tests of the particle-tracking kernel of the
model were performed. Firstly, the consistency of par-
ticle trajectories was checked in an artificially uniform
velocity field. Secondly, trajectories of particles in the
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Fig. 1. Left panel: the hydrodynamic model parent domain
covering southern Africa, with its high-resolution child domain
covering the Benguela Current upwelling area nested into it
(box). Right panel: the child domain (slightly extended on its
eastern side to include location names), with the 6 areas used for
the release of particles. Nin, Nmid and Noff: northern release
areas; Sin, Smid and Soff: southern release areas. Northern ar-
eas are from 27.5 to 29° S, southern ones from 29 to 31° S; in-
shore (in), mid-shelf (mid) and offshore (off) areas are delimited
by 100, 200 and 1000 m isobaths, respectively. Simulations con-
sist of counting the percentage of particles transported north-
ward to the target box (north of 24° S [up to 18° S] and within
the 1000 m isobath). The isobaths shown are 100, 200, 500 and
1000 m. The Lüderitz upwelling cell and Orange River cone 

(LUCORC) area is at approximately 25 to 30°S
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individual-based model were compared
with those obtained using another off-
line Lagrangian tool (ROMS offline, X.
Capet unpubl. data, available online at
www.atmos.ucla.edu/~capet/Myresearch/
my_research_floats.html). Although the
trajectories simulated by the 2 tools were
not exactly identical, differences were
small and were believed to be of no con-
sequence for the general patterns investi-
gated in this study.

Six areas for the release of particles were
considered (Fig. 1). The northern areas
(Nin, Nmid and Noff) are located at the
southern part of the LUCORC area and the
southern ones (Sin, Smid and Soff) further
south (in, mid and off: inshore, mid-shelf
and offshore, respectively). Areas were po-
sitioned in order to estimate the possibility
for particles to cross the LUCORC area
either partly or entirely. Simulations con-
sisted of releasing 30 000 particles over
these areas, tracking them for 120 d and
counting those that were transported
alongshore north of 24° S (the target box in
Fig. 1). Particles that did so were consid-
ered to have been successfully transported.
The duration of 120 d was chosen as being
long enough for particles to be potentially
transported to this area, knowing that
typical near-surface current velocities in the
region are >10 cm s–1 (Shannon 1985, Boyd
et al. 1992, Gründlingh 1999). Uniform
distributions in space and time were used
for releases. Time (month and year) and
location (area [see above] and depth) of
releases changed between simulations.
Month varied from January to December,
year, from Y4 to Y9, and 5 depth levels (0 to
20 m, …, 80 to 100 m) were used. This
resulted in a dataset of 6 × 12 × 6 × 5 =
2160 values of transport success. The ef-
fects on transport success of the area,
month, year and depth factors were as-
sessed graphically and by performing a
multifactor analysis of variance for a linear
model with 2-way interactions fitted to
the dataset. Normal distribution and homo-
geneity of variances for residuals were
estimated visually by plotting a histogram of residuals
and a plot of fitted versus residual values. All simulations
were finally re-run under the same conditions as above,
except that particles ‘died’ when they encountered
waters <14°C, the estimated limit for anchovy ichthyo-
plankton (see above).

RESULTS

Surface annual mean salinity, temperature, chloro-
phyll and dissolved oxygen concentrations derived
from the 1 × 1° WOA 2001 database are shown in
Fig. 2. No obvious patterns in salinity and temperature
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Fig. 2. Annual mean surface (a) salinity (N = 14 743), (b) temperature (N = 25
322), (c) chlorophyll (N = 1985) and (d) dissolved oxygen (N = 6111) concentra-
tions derived from the 1 × 1° grid World Ocean Atlas 2001 database (darker-
shading: larger values). N is no. of observations over whole area represented
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can be seen (Fig. 2a,b), but minima in chlorophyll and
dissolved oxygen concentrations are notable along the
coast between 25° and 29° S (Fig. 2c,d). Maxima in
nitrate, phosphate and silicate occur between 26° and
27° S (not shown). Annual mean
temperatures and dissolved oxy-
gen concentrations at a depth of
75 m are shown in Fig. 3; again,
no obvious spatial pattern in tem-
perature can be seen, but dis-
solved oxygen levels close to the
coast are lower to the north of the
LUCORC area. Annual mean
salinity at 75 m (not shown) is
very similar to salinity at the sur-
face (Fig. 2a), except that the
values are lower by about 0.1 psu.

Results of the individual-based
model simulations conducted to
assess the possibility of particles
for crossing the LUCORC area
are shown in Fig. 4. The values
of transport success are expressed
as the percentage of particles re-
leased that were transported along-
shore to the north of 24° S (Fig. 1).
Transport success is higher for the
northern areas of release than for

the southern areas, and decreases off-
shore in both. It is maximum in austral
autumn and winter (April to Septem-
ber) and minimal in spring and sum-
mer, shows little interannual variabil-
ity, and shows a dramatic decrease
closer to the surface. In an attempt to
assess the sensitivity of these results to
the particle-tracking duration, simula-
tions were re-run with a duration of
180 d (instead of 120 d). Transport suc-
cess values increased only slightly, and
the influences of the different factors
remained very similar to those shown
on Fig. 4. The main change concerned
depth, with transport success showing
a very small increase for upper depth
levels, but a substantial increase for
deeper levels (from ~26% using 120 d
to ~32% using 180 d for the 80 to 100 m
depth level).

Results of the multifactor analysis of
variance performed on the transport
success values show that all single fac-
tors and all 2-way interactions except
one are significant (Table 1). Area,
Month, Depth, Area × Month and Area

× Depth explain >10% of the variance each, and a
model including only these 5 terms explained 85% of
the variance (not shown). Other factors explain <2%
of the variance each.
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Fig. 3. Annual mean (a) temperature (N = 20 088) and (b) dissolved oxygen
concentration (N = 5784) at a depth of 75 m derived from the 1 × 1° grid 

World Ocean Atlas 2001 database (darkershading: larger values)
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The effect of depth on transport success
for particles released in the northern
areas is emphasised in Fig. 5. Those
released in surface waters (0 to 20 m
depth) were substantially transported off-
shore, whereas those released in sub-
surface waters (60 to 80 m depth) were
essentially transported alongshore. Parti-
cles released further south followed
similar patterns (not shown), after being
first transported northward to the
LUCORC area.

Why there are important Area × Month
and Area × Depth interactions is clear
from Fig. 6. Transport success has a
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Table 1. Results of a multifactor ANOVA performed for a linear model with
2-way interactions fitted on simulated transport success data (***p < 0.001). 

Var.: variance; ns: not significant

Factor df SS MS F-value p % Var.

Area 5 249238 498480 905.8026 *** 25.43
Month 11 120412 109470 198.9154 *** 12.29
Year 5 1940 388 7.0517 *** 0.20
Depth 4 142848 357120 648.9401 *** 14.58
Area × Month 55 209426 3808 69.1924 *** 21.37
Area × Year 25 3262 130 2.3710 *** 0.33
Area × Depth 20 117051 5853 106.3493 *** 11.94
Month × Year 55 14018 255 4.6315 *** 1.43
Month × Depth 44 15982 363 6.6003 *** 1.63
Year × Depth 20 444 22 0.4032 ns 0.05
Residuals 191500 105385 55 10.75

Fig. 5. Number of particles in the upper 100 m depth at the time of release (upper panels) and after a simulated period of 30 d
(lower panels), for the 3 northern release areas. The latitudinal extension of the release zone is 27.5 to 29°S, its longitudinal
extension is from the coast to the 1000 m isobath, and depth ranges from 0 to 20 m (left panels) or 60 to 80 m (right panels);
10 000 particles are initially randomly distributed within this volume. The maps shown are averages of particle release and
tracking experiments repeated every 2 wk during 6 yr (Y4 to Y9). The isobaths shown are 100, 200, 500 and 1000 m. Note 

that scales change from one map to another
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marked seasonal pattern and is highest at 40 to 80 m
depth for inshore areas (Nin and Sin), whereas it shows
little seasonality and increases with depth for mid-
shelf and offshore areas. Transport success is very low
for particles released in the upper 60 m of the mid-shelf
and offshore areas, but it is substantially higher
for those released over that depth range in the
inshore areas.

When simulations are re-run under the same condi-
tions as above except that particles ‘die’ when they are
in waters <14°C, the results change dramatically.
Under these conditions transport success is <3% for
any combination of release area, month, year and
depth level; a reduction of approximately an order
of magnitude compared to simulations without a lethal
temperature. When temperature is included, the high-
est values of transport success are obtained for the
deeper depth levels of the mid-shelf and offshore
northern release areas, and there is a slight increase in
success in both summer and winter months (Fig. 7a–d).
The mean percentage of dead individuals increases
markedly inshore and also with increasing depth, but
shows little seasonal or interannual variability. There is
no difference in death rates between northern and
southern release areas (Fig. 7e–h).

DISCUSSION

The map of annual mean surface
salinity obtained from the 1 × 1° WOA
2001 database (Fig. 2a) reveals no dis-
continuity at the LUCORC area. Simu-
lation results obtained by Florenchie
(2004) do suggest that Orange River
outflow affects the ocean’s salinity, but
in a rather limited area north of the
mouth of the river. Considerable water
extraction along the course of the river
has reduced significant flood events
to once every 15 to 20 yr. In addition,
the fresh water component is generally
restricted to the upper few metres of the
water column, and there appears to
be limited impact on biological organ-
isms. These results, together with oth-
ers (Agenbag & Shannon 1988, Carr &
Kearns 2003) and the reports listed
before indicating that salinity values
observed in the LUCORC area do not
adversely impact (at least not directly)
fish eggs and larvae, suggest that the
LUCORC area does not constitute a
haline barrier. The map of annual mean
surface temperature (Fig. 2b) shows no
unusual feature in the LUCORC area.
From SST remote-sensing data ana-

lysed by Demarcq et al. (2003), it is also not clear
whether the Lüderitz upwelling cell is characterised by
the coldest waters along the southern Africa west
coast, but it presents the largest offshore extension of
cold waters and the smallest seasonal variability.
These 2 results, together with others (Agenbag &
Shannon 1988, Carr & Kearns 2003) and the reports
listed before indicating that surface temperature val-
ues observed in the LUCORC area are above lower
lethal limits of fish eggs and larvae, bring no support to
the LUCORC area being a surface thermal barrier.
Maps of annual mean surface chlorophyll (Fig. 2c) and
dissolved oxygen (Fig. 2d) concentrations do show
local lowest values in the LUCORC area, but concen-
trations there are still high and not dramatically lower
than further south or north. Additionally, observed dis-
solved oxygen levels are well above those reported to
adversely impact fish eggs and larvae. These results,
together with those of Carr & Kearns (2003), suggest
that surface chlorophyll and oxygen are not limiting
factors in the LUCORC area. The WOA data clearly
reveal that the LUCORC area constitutes a transition
between the nitrate- and phosphate-rich northern
domain and the silicate-rich southern one (not shown).
It is believed that nitrate is sometimes limiting in the
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southern Benguela, while silicate is occa-
sionally limiting in the northern Benguela
(Shannon & O’Toole 1999). However, the
LUCORC area itself appears to be rather
rich in nitrate, phosphate and silicate. The
conclusion of this analysis is that there is
no strong evidence in the WOA data of a
surface environmental barrier restricting
northward transport of ichthyoplankton in
the LUCORC area.

However, simulations of a regional cir-
culation model performed to investigate
the dynamics of water masses in the
LUCORC area (Fig. 5) suggest that nearly
passive biological material like ichthyo-
plankton would be massively transported
offshore if released close to the surface. If
released in deeper waters, however, they
could largely be transported across the
LUCORC area from the southern to the
northern Benguela. These simulations also
support the view of the northern part of
the Orange River cone (28 to 29° S) as a
dividing area (J. Largier pers. comm.). A
large number of particles released in sur-
face waters crossed the 200 m isobath
there, and were later transported offshore
(Fig. 5, left panels). In contrast most
particles released in subsurface waters
followed the 200 m isobath alongshore
(Fig. 5, right panels). A series of individ-
ual-based simulations were performed to
assess the permeability of the LUCORC
area by counting particles being trans-
ported across it under different conditions
of time and location of release. These con-
firmed that the depth of release deter-
mines largely this transport success,
together with the offshore distance and
season of release (Fig. 4, Table 1). The
simulations strongly suggest that the
LUCORC area constitutes a hydrodynamic
barrier to transport from the southern to
the northern Benguela near the surface,
but that this result does not hold for sub-
surface layers. However, the WOA data
show that there might be a subsurface
thermal barrier, as water temperature is
<14°C all along the coast (Fig. 3a, at 75 m
depth), and, when simulations included a
lower lethal temperature of 14°C, transport
success was indeed very low (Fig. 7a–d).
The inshore areas, where transport suc-
cess was substantial at all depth levels
without mortality (>10%; Fig. 6), showed
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the most dramatic decrease when mortality was intro-
duced (compare Fig. 7a–d with Fig. 4) as most (>90%;
Fig. 7e–h) individuals released there died. We can
therefore conclude that the combination of a surface
hydrodynamic and a subsurface thermal barrier could
limit the transport of ichthyoplankton from the south-
ern to the northern Benguela.

The partition between low oxygen central and inter-
mediate coastal waters in the northern Benguela and
waters with more oxygen in the southern Benguela, as
identified by Duncombe Rae (2005), is also present in
the WOA data at a depth of 75 m (Fig. 3b). At subsur-
face depths, the oxygen minimum layer alters in the
vicinity of the Lüderitz area from being on the outer
shelf with a salinity signature indicating an origin in
Angola, while south of Lüderitz more oxygenated
water is present on the shelf originating from source
water in the Cape Basin (Duncombe Rae 2005). Low-
oxygen water does persist in shallower shelf waters
close inshore southwards to 33 to 34° S, but is less
intense than the very low oxygen levels on the shelf off
central Namibia (Stander 1964, de Decker 1970). The
impacts of low dissolved oxygen concentrations on
ichthyoplankton are discussed by Ekau & Verheye
(2005), who reported a correlation between the depth
distribution of anchovy, sardine and horse mackerel
larvae and dissolved oxygen concentrations in the
northern Benguela, with near-zero larval densities
found below concentrations of 2.5 ml l–1. Dissolved
oxygen levels in the LUCORC area at 75 m depth are
still above this level, but, whereas exposure to environ-
mental parameters below the lower tolerance level
results in mortality, sublethal effects may well occur at
parameter levels that are some way above the lower
tolerance level. Brownell (1980) assessed sublethal
effects of a variety of water quality parameters, includ-
ing dissolved oxygen, by measuring the incidence of
successful first-feeding by larvae of 8 species of marine
teleosts (none of which were the species listed above,
unfortunately) at different parameter levels, and calcu-
lated both LC50 (parameter concentration at which
50% of larvae die following a 24 h exposure) and EC50

(parameter concentration that reduces first-feeding
incidence by 50% following a 24 h exposure) levels.
That author considered that inhibition of first-feeding
is probably not the most sensitive indicator of stress in
marine fish larvae, but that it is nonetheless a highly
relevant response given that death by starvation is
the inevitable consequence of larvae that fail to feed.
EC50 values ranged between 2.79 and 3.34 ml l–1, and
Brownell (1980) found only minor differences in EC50

values between species, suggesting a general applica-
bility of these results to a wide variety of first-feeding
marine fish larvae. Assuming that this generalisation
does hold, these EC50 values suggest that even sub-

lethal effects due to dissolved oxygen levels at 75 m in
the LUCORC area are probably not large.

Carr & Kearns (2003) and Demarcq et al. (2003)
showed that surface chlorophyll concentrations reach
a local minimum off Lüderitz. In contrast, simulation
results by Machu et al. (2005) indicate enhanced
chlorophyll concentrations and primary production in
the LUCORC area. The spatial horizontal resolution
(1/3°) of the model they used (AGAPE) is too coarse to
resolve coastal upwelling adequately, another model
(ROMS-BIO) run at a higher spatial resolution (1/8°)
results in a local minimum in the LUCORC area (E.
Machu pers. comm.). Phytoplankton species require
nutrients, which are in plentiful supply in the upper
layers in the LUCORC area, but phytoplankton also
needs a degree of stability in the water column in order
to grow. High turbulence and deep mixing may be
responsible for the diminished phytoplankton biomass
in the LUCORC area. A dearth of phytoplankton
implies poor feeding conditions for micro-, meso- and
macrozooplankton and for ichthyoplankton through-
out the LUCORC area. Fish larvae require concen-
trated, productive areas for successful survival, but
they also require some form of retention within the
productive area for successful recruitment. Areas
downstream from active upwelling centres are gener-
ally more favourable for survival of fish larvae and
juveniles, and, unless the organisms have some adap-
tation to cope with poor food and retention within
the LUCORC area, such as strong vertical migratory
ability or considerable motility, there is unlikely to
be much life-cycle closure within that area. The WOA
chlorophyll data in the region are based on a lower
number of observations than for the other environ-
mental variables, and ongoing studies using remote
sensing data to derive phytoplankton biomass (C. H.
Bartholomae pers. comm., H. Demarcq pers. comm.)
should allow a better assessment of the LUCORC area
as a trophic barrier to ichthyoplankton.

The main conclusion from this work is that a combi-
nation of a surface hydrodynamic and a subsurface
thermal barrier could limit the transport of ichthyo-
plankton from the southern to the northern Benguela.
Given the reports listed before of lower temperature
lethal limits this result applies firstly to anchovy, whose
limit can be estimated as 14°C. It also applies to sar-
dine (13°C) and horse mackerel (12.6°C), but to a lesser
extent. Indeed, simulations using a 13°C lethal temper-
ature instead of a 14°C one resulted in a less dramatic
decrease of transport success, with >10% values ob-
tained for some released areas (Nin and Nmid), months
(May to July) and depth levels (60 to 100 m) (results not
shown). The result does not apply well to redeye round
herring, whose limit can be estimated as 11°C. These 4
epipelagic fish species have been reported as spawn-
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ing on either side of the LUCORC area, but not within
it (Olivar & Fortuño 1991, Olivar & Shelton 1993),
although redeye round herring eggs have actually re-
cently been found in the region (C. D. van der Lingen
unpubl. data). Important mesopelagic fish species in
the region include shallow-water hake Merluccius
capensis, lanternfish Lampanyctodes hectoris and light-
fish Maurolicus walvisensis. These species have been
reported to spawn from the surface to 200 m (Olivar &
Shelton 1993), with maximum egg density at 20 to 60 m
for lightfish (Prosch 1991) and 20 to 100 m for hake
(Olivar & Fortuño 1991). According to Fig. 5 particles
released in the subsurface layer would be transported
northwards through the LUCORC area. Since studies
suggest a lower temperature limit (<12°C) for lightfish
(Prosch 1991) and hake (O’Toole 1978, Sundby et al.
2001), temperature is unlikely to be a major limiting
factor for these species. This suggests that the LUCORC
area is not a barrier to these 3 mesopelagic fish species,
which is in agreement with lanternfish and lightfish
spawning within this area, while shallow-water
hakes do not (Olivar & Shelton 1993). Similarly, deep-
water hakes Merluccius paradoxus occur through the
LUCORC region as adults, but very few small juveniles
are found in Namibian coastal waters, in contrast to
coastal shelf waters south of the Orange River. This
would suggest that hakes are not spawning in the
LUCORC region, but are utilising the area for feeding.

The conclusions reached from this work need to be
considered with some caution, given the spatial resolu-
tion of the data and the temporal resolution of the
model forcing used. The WOA 2001 database was used
in this study under the assumption that if there was a
strong environmental barrier in the LUCORC area, it
would be present in these data. With upwelling being
a near-permanent feature in the LUCORC area, annual
averages were used as a reasonable approximation of
shorter time scales as well. However, the locations of
pronounced discontinuities (that may act as barriers)
observed between water masses in different cruises
vary over time. Consequently, such strong discontinu-
ities are expressed as smooth gradients in data like the
WOA, which are relatively coarse 1 × 1° means col-
lected over many research cruises (C. M. Duncombe
Rae pers. comm.). Time series obtained from a fixed
mooring off Walvis Bay (23° S) show that variability
of temperature, salinity and oxygen concentrations
occurs at short (~10 d), seasonal and interannual time
scales (Monteiro & van der Plas 2006, Monteiro et al.
2006). As monthly climatology was used to force the
hydrodynamic model, only the seasonal variability is
present in our study. Temporal resolution of the wind-
stress product used in hydrodynamic simulations of the
southern Benguela was shown to be a crucial factor for
retrieving the short time-scale patterns of SST anom-

alies (Blanke et al. 2005). Short events of positive or
negative temperature anomalies are likely to play an
important role in controlling the opening or closing of
the aforementioned subsurface thermal barrier. A sur-
face thermal barrier must also occur occasionally, as
surface temperatures <11°C have been reported in the
LUCORC area (Boyd 1987). Oxygen availability may
well exert a similar control in deeper waters. In the
present work, we miss short spatial or temporal scale
events that would create temporary barriers, which
may be particularly important for the lethal environ-
mental variables like temperature and oxygen. Our
smoothed version of the system is therefore likely to
result in an underestimated assessment of the environ-
mental barriers. There are also limitations in our indi-
vidual-based model, including the ‘instant death’
assumption and the lack of turbulent particle motion.
The instant death of simulated larvae arising from a
single exposure to water colder than the specified
lower lethal threshold is unrealistic, since larvae, once
they are able to swim, can actively avoid such water, at
least at a small scale and presumably via vertical
migration towards warmer water. Hence, our simula-
tions may have overestimated temperature-induced
mortality, particularly for older larvae that possess bet-
ter swimming capabilities than smaller larvae. How-
ever, our model treated eggs and larvae entirely as
passive entities, and behavioural aspects such as verti-
cal migration were not included. The inclusion of tur-
bulent particle motion in the model would result in a
higher proportion of particles released at the surface
moving to deeper waters, and vice versa, which would
‘blur’ the vertical distribution patterns that we ob-
tained, but could also potentially change them. Distrib-
ution patterns could also be affected in the horizontal
dimension. However, there is still little information
(e.g. drifter trajectories) in the region that would allow
a parameterisation of turbulent motion.
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