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INTRODUCTION

Marine ecosystems are changing rapidly in res -
ponse to natural processes, human activities, and cli-
mate change (Beaugrand et al. 2010). Phytoplankton
are ecologically and biogeochemically relevant indi-
cators of marine ecosystem change because they
conduct a large proportion of system-scale primary
production and C cycling and are sensitive to envi-
ronmental pressures (Boyce et al. 2010). Phytoplank-
ton are dominant marine primary producers; they
mediate nutrient flux and cycling and transfer or ga -
nic matter to the benthos via vertical flux (Wassmann
et al. 2003), as well as to higher trophic levels. As key

primary producers, phytoplankton reflect the imme-
diate effects of changes in the input of nutrients in
coastal ecosystems. Demographic traits of phyto-
plankton make them particularly suitable for com-
parative analysis of ecosystem changes across local
to regional to global scales.

Phytoplankton can be quantified by relatively sim-
ple and intercomparable sampling methods (HEL-
COM 1988). Researchers and governmental agencies
around the world have relied on phytoplankton as a
key indicator of water-quality monitoring programs.
Many data sets are available now and have been pre-
sented in conferences and research papers (Moe et
al. 2008, Jurgensone et al. 2011). However, our
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understanding of marine ecosystem change is incom-
plete because we have not adequately explored,
inventoried, nor compared data sets collected by var-
ious independent researchers, agencies and coun-
tries. This is unfortunate because producing quanti-
tative phytoplankton data is costly in terms of time
and expertise required.

We believe the fragmentation of data is largely a
methodological issue. Often, unifying and harmoniz-
ing phytoplankton data from a variety of sources has
methodologically proven to be more challenging
than anticipated (Moe et al. 2008). The problems
stem from the independent and widely different for-
mats in which the data are stored by various institu-
tions. Equally challenging are the different traditions
in taxonomic conventions, the ever-changing nomen-
clature and taxonomic knowledge.

Notes on phytoplankton abundance and even algal
blooms in the Baltic Sea date back to the mid 19th
century (Eichwald 1847, Olli 1996, Finni et al. 2001).
Data sets with species abundances and biomasses,
taken and processed with modern methods, are
available since the mid-1960s (Wasmund et al. 2008,
Jurgensone et al. 2011). Since then, a variety of
national agencies and academic institutions around
the Baltic Sea have engaged in monitoring phyto-
plankton composition and biomass and auxiliary
chemical and physical properties of seawater. The
Baltic Marine Environment Protection Commission
(HELCOM, est. 1974) has been coordinating phyto-
plankton sampling schedules and binding methods
through the Baltic Sea Monitoring Program (BMP,
later COMBINE) since 1979.

The objective of this paper is to communicate our
experience and potential pitfalls in the procedures of
combining and harmonizing different phytoplankton
data sets from several countries and institutions
around the Baltic Sea. Next, we analyze the overall
spatial and temporal distribution of the joint data set
samples and the comparability of the phytoplankton
data from different countries. In particular, we ana-
lyze whether differences in the sample-counting
practices in different countries, e.g. the taxonomic
resolution used, can be revealed from the data. Using
the Baltic Sea phytoplankton data set as a case study,
we encourage a wider use of historic data sets to
tackle present-day ecological questions, like chang-
ing biodiversity or adaptation of communities to cli-
mate change. Through re-analysis of historic obser-
vational data, our second objective is to resolve some
of the long-standing challenges in phytoplankton
community structure that cannot be efficiently dealt
with by using limited-scale local data sets. Firstly, we

focus on autocorrelation to reveal scales of repeating
patterns in phytoplankton observational field data.
Common statistical tests make the assumption of
independence of observations. This assumption can-
not be rigorously assessed and is often violated in
field studies with modest sample size. Statistical
inference from temporally and/or spatially separated
points can thus be incorrect, unless autocorrelation
structures are used in the models. Second, predicting
ongoing changes in biodiversity is one of the press-
ing issues in ecology and conservation biology
(Hooper et al. 2012, Reich et al. 2012). Estimates of
local or regional species richness depend on sample
size and sampling effort and have commonly been
evaluated by extrapolating from species accumula-
tion curves (Colwell & Coddington 1994, Gotelli &
Colwell 2001, Tjørve 2003, Ugland et al. 2003, Chap-
man & Underwood 2009). The form and model to
describe species accumulation curve varies between
organism types and habitats. Here we use the exten-
sive data set to test the performance of common spe-
cies accumulation curve models with phytoplankton
filed samples. In model testing we go beyond the
commonly used assessment of goodness of fit with
data. We analyze the stability of model parameters
with increasing sampling effort, which adds confi-
dence to extrapolated species richness estimates.

MATERIALS AND METHODS

Data compilation procedure

Nine academic institutions around the Baltic Sea
(Table 1) provided the quantitative phytoplankton
data. The historic phytoplankton data were counted
from Lugol fixed samples under an inverted micro-
scope after settling for 24 h (Edler 1979, HELCOM
1988). In the late 1960s and early 1970s, Keefe’s solu-
tion (Keefe 1926) was used as fixative by the City of
Helsinki Environment Centre (Finni et al. 2001).
Older samples (1975 to 1992) provided by the Insti-
tute of Aquatic Sciences, University of Latvia, were
formalin fixed and counted using a settling method
(for details see Jurgensone et al. 2011). Phytoplank-
ton sampling involved pooling discrete surface sam-
ples from pre-defined depths or taking an integrated
sample with a sampling hose. Species-specific cell
volumes were used to calculate the total phytoplank-
ton biovolume (Edler 1979).

Prior to data manipulation, the original data tables
from providers were transformed into read-only text
format source files. All subsequent data manipula-

54



Olli et al: Patterns in phytoplankton community structure

tion was sequentially implemented and documented
in a hierarchical system of Perl language scripts. The
central data manipulation policy was to implement
all modifications in a single linear scripted workflow,
while keeping the source files strictly unchanged.
The essential information (Table 2) from each
provider’s data was extracted into a rectangular

table. Data entries were supplemented with a code
identifying the data provider for later tracking. First,
we identified and re moved duplicate samples, which
arose either from  erroneous inclusions of more than
one entry of a sample into the file by the providers, or
from reporting the same sample both by national
agencies and  HELCOM.

Data set structure

The final data set was made up of 4 interlinked
tables: sample, species, count and environment
tables (Table 2). The sample table contained the
essential information about individual samples (coor-
dinates, date, depths, provider), with a primary key
being the sample ID code. The number of records
corresponded to the total number of samples in the
data set. The species table incorporated information
about the recorded taxa, with a species ID code as
the primary key. The number of records was equal to
the number of recorded taxa in the data set. The
count table incorporated the actual abundances and
biomasses of taxa in each sample and was linked to
the sample table by sample ID code and to the spe-
cies table by species ID code. The environment table
contained all the physical and chemical parameters
and was linked to the sample table by the sample
ID code.

Sample table

Sample was the main operational unit in later ana -
lysis. The inconsistency in sample coding conven-
tions rendered the unique sample codes by providers
less useful, and we created new sample ID codes for
operational purposes but retained provider codes for
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Data provider                                                                                 Acronym                 No. of samples                  No. of records

Finnish Environment Institute                                                         SYKE                            2395                               70 379
Finnish Institute of Marine Research                                              FIMR                            461                               19 417
City of Helsinki Environment Centre, Finland                               HEL                             4018                               122 591
Institute of Aquatic Sciences, Latvia                                                 LV                              1534                               35 831
Stockholm University, Sweden                                                         SWE                            1415                               31 828
Institut für Ostseeforschung Warnemünde, Germany                    IOW                             1195                               40 472
National Environmental Research Institute, Denmark                  NERI                            3296                               113 153
Estonian Marine Institute, Estonia                                                    EST                             1047                               27 567
Terttu Finni (private researcher), Finland                                      TERT                            504                               24 100

Total                                                                                                                                        15 865                               485 338

Table 1. Data providers with acronyms used in the figures and the number of phytoplankton samples and data records from 
each provider

Variable                                      Format (unit)        Tables

Sample ID                                        integer             S, C, E
Sampling ID                                    integer             S, C, E
Latitude                                    decimal degree           S
Longitude                                 decimal degree           S
Station name                                 character                S
Sampling date                            yyyy-mm-dd             S
Minimum sampling depth          integer (m)              S
Maximum sampling depth          integer (m)              S
Data provider                                character                S
Species ID                                        integer              SP, C
Rank of the taxon                          character               SP
Genus                                             character               SP
Species                                           character               SP
Subspecies                                     character               SP
Variety                                           character               SP
Order                                              character               SP
Class                                               character               SP
Division                                          character               SP
Corrected species name               character             SP, C
Original species name                  character                C
Species descriptor                         character                C
Cell biovolume                           integer (µm3)            C
Units counted                                  integer                 C
Abundance                               real (cells ml−1)           C
Wet weight                                   real (µg l−1)              C
Carbon biomass                         real (µg C l−1)            C
Parameter name                            character                E
Parameter value                                 real                    E
Data source                                    character                E

Table 2. Variables in the final data set system of 4 inter-linked
tables, which are joined by ID variables. S: sample table, SP: 

species table, C: count table, E: environment table
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back reference. Samples were defined as a unique
combination of coordinates, date, and sampling
depth range. In addition we inserted sampling ID, a
code that could encompass more than one sample in
case the phytoplankton sample was taken from dif-
ferent depths (e.g. 0 to 10 m and 10 to 20 m). A verti-
cal profile of phytoplankton samples shares the same
sampling ID but has unique sample ID codes for
every sampled layer.

Station-naming conventions also varied between
providers and were retained only for back reference.
We did not explicitly create station codes into the
sample table. In the analysis phase, stations were
identified as a unique geographic location with an
arbitrarily defined precision to account for wind drift
of the research ship and GPS precision.

Species table and taxonomic harmonization

The purpose of the species table was to provide a
final list of taxa at the lowest identifiable level and
the higher-rank taxonomic categories for summary
purposes. Taxonomic harmonization was one of the
most demanding tasks and started with a raw list of
unique taxon names as provided. Correcting typing
errors and common abbreviations narrowed the list.
Non-nomenclatural comments, e.g. size class, were
cut but retained as a separate variable. Narrative
comments about the presence or absence of flagella,
photo- or heterotrophy, and presence or absence of
theca in dinoflagellates were used to narrow down
the distinctiveness of unidentified or partly identified
taxa. In the worst case, unidentified eukaryote was
the closest acceptable identity. The original naming
convention of the data providers was preserved in
the count table for later reference. The rank of iden-
tification (subspecies, species, genus, order, higher
taxon or NA for unidentified taxa) was added as an
additional variable for summary purposes.

Tracing the plethora of taxonomic synonyms in the
data was based on the Baltic Sea phytoplankton
checklist by Hällfors (2004), and only on rare occa-
sions the Catalogue of Life (www. catalogueoflife. org/)
was used. Changes in nomenclature over time,
caused by advances in taxonomic knowledge, have
often led to recognition of earlier names as synonyms.
The multiple historic synonyms were always lumped
to the latest legal taxon name. The opposite process,
splitting a single name historically denoting a species
complex into multiple modern legal names, could
not be resolved. For example, Microcystis reinboldii
sensu Pankow (1976) has been split into 6 species of

Aphanocapsa and 1 species of Microcystis (Häll fors
2004). As the only alternative, we suggest using the
modern names when possible, but also keeping the
old name with the historic records in the data set.
However, attention must be exercised in the later
analysis phase, where splitting may influence statisti-
cal inference, like long-term changes in diversity.

Count table

The count table was the largest, containing 1 row
for each recorded taxon within each sample. The
essential information in the count table was cell
abundance (cells ml−1), the biovolume of the cells or
other counting units (µm3), and wet weight biomass
(µg l−1). If only 2 were given, the third could be cal-
culated. If only wet weight or abundance was given,
the other could not be calculated without knowl-
edge of the cell volume. In this case we used the
cell volume of the same taxon by the same provider,
or if not available, by other providers. The number
of cells counted (or colonies, filaments, other count-
ing units) is a vitally important variable that defines
the statistical precision of a count but was frequently
neglected by the analysts. Species and sample ID
codes were added to each row by joining from the
respective record in the species and sample tables.
For back reference, the original unchanged taxon
name was re tained as a separate variable in the
count table.

Environment table

The environment table contained all the envi -
ronmental variables, which were recorded by the
provider together with the phytoplankton data, aug-
mented with variables extracted from publicly avail-
able data sets (e.g. Sokolov et al. 1997). Data from ex -
ternal sources were linked with the phytoplankton
samples using common geographic coordinates, sam-
pling time and depth intervals. To account for a mod-
est wind drift of the research ship, we permitted a 0.5
km discrepancy in all directions for a positive match.

Statistical analysis

Frequency distributions were used to describe the
long-term temporal, seasonal and spatial sampling
efforts, and the commonness of taxa. For spatial fre-
quency distribution, latitude and longitude coordi-
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nates were truncated to 0.1 and 0.05°, respectively.
One of our concerns was the comparability of data
sets between providers. To reveal differences in the
taxonomic resolution between the data providers we
analyzed (1) the number of recorded species per
genus (graphically and with linear regression mod-
els) and (2) the proportion of sample biomass that
was identified to at least species and genus levels.
Identity of the most commonly observed taxa and
also the long tail of rare taxa in the joint data set were
revealed with taxon frequency distribution analysis.

Spatial autocorrelation was analyzed to describe
scales of spatially repeating patterns in the phyto-
plankton data. First, log transformed wet weight bio-
mass as a univariate descriptor was analyzed with a
correlogram based on a Moran I statistic (Legendre
& Legendre 1998). Second, multivariate spatial auto-
correlation in the community composition domain
was analyzed by means of a Mantel correlogram. A
normalized Mantel statistic was computed between a
Bray-Curtis community dissimilarity matrix among
samples and a matrix where pairs of samples belong-
ing to the same distance class received a value of 0
and the other pairs a value of 1 (Legendre & Legen -
dre 1998). To reveal autocorrelation patterns, the
Mantel statistic was calculated for a range of ran-
domly generated distance classes. For the analysis
we created a whole Baltic Sea test data set of 2234
samples from June and August to avoid excessive
seasonal variability and from 1990 to 2008 to restrict
the long-term temporal trend, with the additional
exclusion of coastal samples (<3 km from coast). The
spatial scale of autocorrelation depended on the ex -
tent of the data, i.e. the total area covered by the ana -
lysis. To demonstrate the scale dependency, both cor-
relograms were done with the full extent of the Baltic
Sea data, as well as with a subset geo-
graphically restricted to the Gulf of
Finland (779 samples).

Temporal autocorrelation was ana-
lyzed with a Mantel correlogram as
described above, but the distance
classes in this case were time inter-
vals. To avoid confounding by spatial
variability we used a subset of sam-
ples from the central Gulf of Finland
provided by the City of Helsinki Envi-
ronment Centre, taken from a com-
pact geographic area within ca.
30 km distance. By further restricting
the data to years 1990 to 2008, we
obtained a community matrix of 1439
samples and 213 taxa (excluding rare

taxa present in less than 10 samples). The maximum
temporal difference between the samples was set to
920 d, which covers 3 yr and thus shows the seasonal
pattern in sample similarity.

Taxon richness was estimated by first making the
assumption that the total phytoplankton taxon rich-
ness in a water body is a finite entity and that this
entity can be approximated with the asymptote of the
species accumulation models. Thus, only asymptotic
models of species accumulation curves are consid-
ered in the following.

Species accumulation curves are plots of the cumu-
lative number of species recorded with increasing
levels of sampling effort. To assess the taxon richness
based on a set of phytoplankton samples, we first
used rarefaction to calculate a smooth sample based
species accumulation curve. Rarefaction procedure
re-samples randomly an increasing sub-set of sam-
ples multiple times and calculates the average num-
ber of taxa as a function of the number of samples.
Then we fitted an asymptotic non-linear model to the
species accumulation curve and used the asymptote
as an estimate of total taxon richness.

Recent literature provides various non-linear mod-
els to analyze species accumulation curves (Tjørve
2003, Dengler 2009, Williams et al. 2009). Here we as-
sessed the accuracy and performance of 9 commonly
used models to obtain asymptotic estimators of taxon
richness from phytoplankton monitoring samples. To
select the best performing model, we first followed
the common approach and assessed the goodness of
fit of the models to the empirical data. We used
Akaike’s and Bayesian information criteria (AIC,
BIC), which both measure the likelihood function,
and introduced a penalty for the number of para -
meters in the model to avoid over-fitting (Table 3).
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Model                          Parameters            Formula                    AIC        BIC

Negative exponential         2               a [1 − exp(−bx)]            23 161    23 179
Monod                                 2                   ax / (b + x)                20 442    20 459
Rational function                3              (a + bx) / (1 + cx)           17 138    17 162
Logistic                                3         a / {1 + exp[(b − x) / c]}      20 549    20 572
Gompertz                            3            a exp [−exp(−bcx)]         20 071    20 093
Lomolino                             3               a / [1 + blog(c/x)]             8167     8189
Weibull3                              3              a [1 − exp(−bx c)]           10 513    10 536
Weibull4                              4          a − b exp[−exp(c) xd]       2978     3006
Asymptotic regression       2          a {1 − exp[−exp(b) x]}       23 161    23 179

Table 3. Asymptotic non-linear functions examined in this study. In the for-
mulae, a is the asymptote, and b, c, and d are the curve shape parameters of
the models. Akaike (AIC) and Bayesian (BIC) information criteria describe
the fit of the model to the smoothed species accumulation curve of 2200 

samples (the terminal points in Fig. 10)
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Estimating total taxon richness with an asymptotic
model involves the inherent danger of extrapolation
beyond the actual data. To provide extra confidence
to the results beyond the overall fit of the model, we
analyzed if and to what extent the asymptote of
the models depend on the sampling effort (number
of samples used in the analysis). An unsatisfactory
property of many species accumulation models is
that the asymptote tends to increase with the number
of available samples. For a robust asymptotic estima-
tor of taxon richness one would expect the asymptote
to be insensitive to sampling effort. With the large
number of samples available, we tested the stability
of the model asymptotes and their sensitivity to
 sample size.

We used our previous test data set to construct a
2234 × 731 samples to species community composi-
tion matrix. From this matrix we drew N random
samples, calculated the rarefaction curve, fitted the 9
non-linear models to the rarefaction curve and saved
the parameter estimates for later reference. The pro-

cedure was repeated 60 times. N was increased from
50 to 2200 samples with an increment of 50. As a
result we generated a relationship between the sam-
ple size and the model asymptote. The final selection
of the best performing model was based on both
goodness of fit to the data (AIC and BIC, the smaller
the better) and the stability of the asymptote as the
sample size was increased.

RESULTS

Spatio-temporal sample distribution

The spatial distribution of samples was strongly
aggregated, but the overall basin coverage was
 reasonably good (Fig. 1). Much of the sampling
effort was concentrated into coastal areas; 20 and
38% of the samples were taken from less than 3 and
5 km from the shore, respectively. The temporal
range of the samples was from 1966 to 2008, and
the sampling effort almost doubled in the mid 1980s
(Fig. 2A). Summer months were more frequently
sampled (Fig. 2B).

Data quality and comparability between providers

We extracted data records indentified to taxonomic
level of species or lower, and plotted the number of
species against the number of genera per sample
(Fig. 3). Most of the provider specific linear regres-
sion slopes were relatively similar and varied from
1.11 to 1.35 species per genus, although, due to the
large sample size, the slopes were statistically differ-
ent. However, NERI data had a substantially higher
slope of 1.74 (Fig. 3).

The proportion of the total wet weight biomass that
was identified to at least species (Fig. 4A) or genus
levels (Fig. 4B) indicated provider-specific differ-
ences. On average, the proportion of biomass inden-
tified to species level was ca. 0.7, while the mean pro-
portion was considerably higher (0.99) in the Latvian
data set. The average proportion of at least genus
level biomass was 0.92, while Estonian and Latvian
data sets had consistently higher  proportions.

Frequency distribution of taxa

The total taxon count of the whole data set was
1270. Most taxa were identified to species level or
below (972) or genus level (251), the rest were identi-

Fig. 1. Spatial distribution of phytoplankton samples in the
data set. The size of the symbols (lower right scale) is propor-
tional to the number of samples in each location. Top left list
shows the total number of samples in the major basins: GOB:
Gulf of Bothnia, BP: Baltic Proper, GOF: Gulf of Finland, GOR:
Gulf of Riga, BS: Belt Sea and Kattegat, SND: the Sound
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fied to a higher taxonomic level. The most diverse
algal classes were diatoms (344 taxa), followed by
chlorophytes (308, including 24 prasinophytes and
63 desmids), dinoflagellates (193) and cyanobacteria
(183). All other major groups had less than 100 taxa.
The most diverse phytoplankton genera were Chae -
to ceros (43 spp.), Protoperidinium (31 spp.), Ana ba -
nea (26 spp.), Gymnodinium (25 spp.), Des modesmus
(22 spp.) and Thalassiosira (21 spp.).

The most common taxa, Pyramimonas spp., un -
identified cryptophy tes, and Ebria tripartita, were en -

countered in 64, 53 and 55% of the samples, respec-
tively (Fig. 5). At the rare end, 174 taxa were encoun-
tered in only one sample and further 99, 62 and 49
taxa were encountered in 2, 3 and 4 samples respec-
tively. Overall, 502 taxa, i.e. ca. 40% of the total
taxon count, were recorded in less than 10 samples.
Reichert et al. (2010) classified taxa in an assemblage
as rare, intermediate or common based on oc cur -
rence in <1, 1 to 10 or >10% of the samples, respec-
tively. Using this classification, rare taxa (i.e. oc -
curring in <1% of the samples) constituted 74% of
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Fig. 2. Temporal distribution of phytoplankton samples indicating the long-term (A) annual and (B) seasonal sampling 
frequency. Frequency distribution is color-coded according to data provider (see Table 1)

Fig. 3. Differences in the taxonomic resolu-
tion between data providers (see Table 1), ex-
pressed as the number of species per genera
in a sample. Only records identified to species
level or below are considered. The inscription
shows the provider-specific slope estimates
with the standard errors, listed in descending
order. National Environmental Research In-
stitute, Denmark (NERI) has a substantially
higher slope than the other providers. The
gray symbols use transparency to show dark 

color when overlapping
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the total taxon pool, and taxa with intermediate and
common oc currence made up 20 and 6% of the taxon
pool, respectively.

Spatial and temporal autocorrelation

Any analysis of field data, or design of a sampling
program, should consider autocorrelation. Here we
utilized our extensive data set to analyze the scales
and extent of spatial and temporal autocorrelation in
phytoplankton field data.

The univariate Moran correlogram of the Baltic Sea
phytoplankton biomass revealed positive autocorrela-
tion up to 400 km distance and a negative autocorre-
lation at larger distances (Fig. 6A). The scale of posi-
tive autocorrelation was in the order of 50 km when
the extent of the analysis was geographically re-
stricted to the Gulf of Finland only (Fig. 6B). When the
Moran correlogram was calculated from original sam-
ple data, a high degree of temporal variability resulted
in a relatively damped range of spatial autocorrela-
tion. When the temporal variability was averaged out
by calculating a mean biomass for every unique loca-
tion (defined by spatial coordinates), the strength of
the spatial autocorrelation at short distances in-
creased, but the overall pattern remained unchanged.

At the whole Baltic Sea extent the multivariate
Mantel correlogram showed a positive spatial auto-
correlation up to a scale of 100 km (Fig. 7A). At the
geographically restricted Gulf of Finland extent, the

positive autocorrelation of community composition
was on a 50 km spatial scale (Fig. 7B).

There was a strong temporal autocorrelation be -
tween samples taken within a less than 30 d time
window, but overall the similarity between samples
de creased rapidly with time (Fig. 8). However, the
positive temporal autocorrelation pattern was re -
peated once the samples were taken a year or two
apart, but within the same seasonal time frame.
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How many phytoplankton taxa are in the Baltic Sea?

The species accumulation curve of the whole data
set did not reach an asymptote. The high end of the
curve revealed an appearance of a new taxon after
every 93 samples (Fig. 9). Three of the models (Wei -
bull4, Weibull3 and Lomolino) fitted the complete ob-
servational data set extremely well, while the others
revealed clearly unsatisfactory performance (Fig. 9).

With most models the asymptote continued to in -
crease as a function of sampling effort, when fitted to
the smoothed species accumulation curves (Fig. 10).
Further, 4 of the models converged at an asymptote
below the actual taxon count, which indicates poor fit
of the models (Fig. 10). Notable exceptions were the
Lomolino and the Weibull4 models, which both had a
relatively stable asymptote at a substantially higher
level than the actual taxon count (Fig. 10). Both
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showed a steeply increasing asymptote at low sam-
pling effort, but thereafter the performance of the 2
models departed. The asymptote of the Lomo lino
model stabilized at a higher sample size (Fig. 10).
Model evaluation revealed substantially better per-

formance of the Weibull4 model, as it had lower AIC
and BIC values compared to the Lomolino model
(Table 3). On these grounds we considered Weibull4
as the best out of the 9 tested models to estimate the
asymptotic taxon richness of the phytoplankton field
data. Using the Weibull4 model, the asymptotic taxon
richness of phytoplankton in the Baltic Sea, which
could be revealed by routine microscopy, was esti-
mated to be 1824 (Fig. 9).

DISCUSSION

Joining a large part of the publicly available data to
a joint data set is a demanding, but revealing exercise.
The Baltic Sea phytoplankton monitoring data show
a considerable  spa tial and temporal aggregation of
samples. Many statistical analysis me thods, e.g. spa-
tial interpolation, benefit from random sample distri-
bution and special care must be exercised to overcome
the observed un even sampling effort. On the other
hand, time series analysis benefit from a large number
of samples from a geographically re stricted region,
like the high sample density in the Helsinki archipel-
ago, provided by the City of Hel sinki Environmental
Centre. Overall, a compromise between the temporal
and spatial coverage is never perfect, depending on
questions asked and the intended analysis.

The various academic backgrounds and traditions
in different countries add a degree of heterogeneity
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when compiling and harmonizing the data. It is en -
couraging that the taxonomic resolution, approxi-
mated as the average number of species per genus,
ap pears reasonably similar between the data pro -
viders. NERI data had a higher mean number of spe-
cies per genus, but we do not consider this a human
factor, as the Danish coastal waters with high salinity
have a very different biodiversity pattern compared
to the rest of the Baltic Sea. On the other hand, we
found notable data provider  specific differences in
the proportion of total phytoplankton biomass identi-
fied to species or genus  levels. This in dicates the ten-
dency to ignore un known and un identified taxa and
may justify careful corrections of the total phyto-
plankton biomass data when basin-wide compari -
sons are made. We could also identify an opposite
subjective tendency — to readily record species which
are very easy to identify under light microsopy. The
most frequent taxa, Pyramimonas spp., cyptophytes
indentified to class level, and the enigmatic hetero-
trophic flagellate Ebria tripartita, are all easy to
 recognize by morphology even to an inexperienced
analyst. We believe that top frequency of morpho -
logically easily recognized taxa is not by chance, but
reflects a true bias in light microscopic phytoplank-
ton monitoring. This im plies a major qualitative
 difference when microscopy-based phy to plank ton
monitoring will be compared to or replaced by meta -

genomics-based approaches in the future (Cuvelier
et al. 2010, Yan & Yu 2011).

Despite the potential biases, compiling a large
multi-source data set enables questions to be asked
and analyzed, which would not be possible with
regional or smaller-scale data. In a recent analysis we
demonstrated a conspicuous long-term change in the
Baltic Sea phytoplankton community structure over
the last 4 decades (Olli et al. 2011). We suggest that,
partly, the overall trend reflects the response of the
ecosystem to human-induced eutrophication and
changes in species composition, but also shifts in
the dominance of major functional groups (e.g. Was-
mund & Uhlig 2003, Suikkanen et al. 2007, Jur -
gensone et al. 2011). On the other hand, dramatic
changes in the proportion of diatoms and dinoflagel-
lates in the Baltic Sea spring bloom are difficult to
relate to direct human impacts, and rather reflect cli-
matic fluctuations combined with pronounced ex -
pansion of dominant spring bloom dinoflagellates in
parts of the Baltic Sea, e.g. in the Gulf of Finland
(Klais et al. 2011). Whenever conventional statistical
tests are used to detect phytoplankton trends, the
independence of samples is not a safe assumption.
Here we demonstrate the utility of a large compiled
data set to detect the strength and scales of temporal
and spatial autocorrelation in phytoplankton data.
Thereafter we discuss how an extensive data set can
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be utilized to assess phytoplankton species rich-
ness, which is a fundamental concept in conservation
bio logy.

Spatial and temporal  autocorrelation

Dispersal limitation and local se lective processes
are the main mechanisms that determine patterns
of bio logical diversity and community composition
(Rick lefs 2004). Community-level autocorrelation de -
 pends on whether dispersal rates are high re lative to
local demogra phic rates. Large body size often scales
with poor  dispersal ability, leading to more clumped
distribution and greater spatial autocorrelations in
community composition (Shurin et al. 2009). In con-
trast, the high dispersal capacity of small aquatic
organisms is frequently used to explain the distri -
bution of small-bodied organisms: ‘everything is
everywhere, but the environment selects’ (Green
et al. 2008). This is in line with the modest spatial
autocorrelation in our data, both at community com-
position and biomass levels. The positive autocorre-
lation of total phytoplankton biomass had a larger
spatial scale compared to the autocorrelation of the
community composition, confirming that the overall
productivity determines the total biomass, which can
be made up by a community with different composi-
tion at any given productivity and biomass level.
Notably the highest correlation coefficients of the
multivariate Mantel correlogram, both spatial and
temporal, remain below 0.25, suggesting a relatively
low correlation between the community composition
of samples taken from close proximity in time or
space.

The evidence from our analysis points to statisti-
cally significant, but ecologically modest, spatial and
temporal autocorrelation patterns in the phytoplank-
ton biomass and community composition. With large
data sets even small departures from randomness
will be detected, and statistical significance often is
not a significant concept. In the following we there-
fore focus more on the ecological interpretation. Low
autocorrelation suggests low predictability of the
local community structure from a single phytoplank-
ton sample. Low predictability is often related to high
noise level in the data (Attayde & Bozelli 1998) and
with scale effects (Beisner et al. 2006, Soininen et al.
2007). Temporal scales deserve special attention in
this context because of the importance of short-term
environmental variation on the structure of phyto-
plankton communities (Acuña et al. 2007). The differ-
ence between the autocorrelation of phytoplankton

biomass between original samples and time-aver-
aged values (Fig. 6) further highlights the short-term
temporal variability in the phytoplankton field data,
which largely masks autocorrelation and results in
low autocorrelation coefficients.

The temporal autocorrelation of community com-
position indicated highest similarity between sam-
ples taken within a ca. 30 d time period. Interestingly,
community similarity was repeated between samples
taken at the same time of different years, which
shows repeatability of the seasonal succession pat-
tern. Also, the similarity between samples taken 1 yr
apart was higher than between samples taken 2 yr
apart, indicating a memory effect of the system.

The extent of autocorrelation is important to con-
sider when designing sampling programs and in the
later data analysis phase. The extent of the planned
sampling scheme determines also the range of the
spatial autocorrelation. For example, with a sampling
scheme covering the whole Baltic Sea, samples from
1 sub-basin all show positive autocorrelation. When
the sampling program covers just 1 sub-basin, auto-
correlation scales are smaller. Thus autocorrelation
depends on the context and scope of the study, and
no universal scale exists. Regular statistical tests as -
sume independence of samples and autocorrelation
violates this assumption, inflating the significance
levels of the tests. Usually appropriate autocorrela-
tion structures can be used in the statistical models
to correct for autocorrelation. However, simultaneous
consideration of temporal and spatial autocorrelation
is not well resolved in statistics, and requires some
understanding of characteristic spatial and temporal
scales (Gurarie & Ovaskainen 2011).

Taxon richness of the Baltic Sea phytoplankton
community

Obtaining complete information about species com -
position in an area or ecosystem is a difficult task. A
number of methods are available to estimate taxon
richness from a limited collection of samples (Colwell
& Coddington 1994, Gotelli & Colwell 2001). Most
of these fall into 2 categories: (1) estimates based on
the extrapolations from models fitted to randomized
species accumulation curves and (2) analytical ex -
pressions of nonparametric estimators of total rich-
ness using either presence absence or abundance
data (Borges et al. 2009).

Assessment of the performance of the methods
generally depends on how the ‘true’ species richness,
against which the estimations are compared, is ob -
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tained. Usually no inventory is so exhaustive that all
the species present are recorded, although excep-
tions exist for taxonomic groups where species can
be identified easily, such as birds or higher plants
(Colwell & Coddington 1994). Therefore the common
justification of the chosen model relies on the R2 val-
ues close to 1 while fitting the curves, or some other
goodness of fit parameter; the assumption being that,
if the model approximates the observed accumula-
tion curve, its extrapolation must be quite close to the
true species richness. Ugland et al. (2003) argued
that extrapolation of the randomized accumulation
curves will in general not provide reliable informa-
tion of the true species richness. They developed a
modified method that accounts for heterogeneity in
species diversity in sub-areas. However, the valida-
tion of their method depends on a priori knowledge
of the true species list (Reichert et al. 2010).

Here we use a completely different approach to
assess the performance of commonly used models,
which, to the best of our knowledge, has not been
used before. As the number of phytoplankton sam-
ples can be increased infinitely, we expect a good
model to have relatively robust parameter estimates,
which are independent of the sampling effort. Thus a
good model is circumscribed not only with a perfect
fit to the existing data but also stability of parameter
estimates, particularly the asymptote, when new data
are added. We found 3 models (Weibull4, Weibull3
and Lomolino) to have a very close fit to the data, but
when also considering the stability of the asymptote
as a function of sampling effort, Weibull4 clearly out-
performed the others. Several models showed unac-
ceptable fit and gave asymptote estimates, which
were in fact lower than the number of taxa in the data
table. Conspicuously, most models gave a strong pos-
itive relationship between the asymptote and sam-
pling effort (Fig. 10), which is a serious problem in
assessing total biodiversity.

Our approach to select the best performing model
does not assume prior knowledge of ‘true’ species
richness, which, in the case of phytoplankton filed
data, cannot be assessed with conventional methods.
Our data indicate that, even with almost 16 000 sam-
ples, the taxon list continues to increase, though with
a decreasing rate. Thus, at the high end, in creasingly
more samples need to be analyzed to discover a new
taxon. We interpreted it as a taxon discovery effort,
which increases close to linearly in the range of our
actual amount of data, with only a minor upward cur-
vature (Fig. 9). The curvature becomes readily visible
when the curve is extrapolated to several orders of
higher sampling effort (not shown). Therefore we

conclude that increasing sampling effort within any
realistic ranges does not give a true species richness.
We believe this is at least partly due to the very
nature of phytoplankton community structure, which
has a relatively high proportion of rare taxa, as
was revealed by the long tail of the taxon frequency
distribution.

Ugland et al. (2003) developed an analytical me -
thod which gives exact cumulative number of species
and obviates the need for randomization and curve
fitting. However, their analytical method is sensitive
to the proportion of rare taxa (Reichert et al. 2010).
Also, their estimate of total taxon richness in an area
makes use of the (usually very small) proportion of
the area covered by sampling, which is a concept not
readily applicable to phytoplankton monitoring data.
Similarly, nonparametric estimators, e.g. Chao and
the Jackknives, perform poorly in terms of precision
and bias under circumstances of numerous rare spe-
cies (Chapman & Underwood 2009), and were not
considered in this study.

We do not pretend our selected model, or even the
method of selection, to be the most appropriate for
other organism types, other habitats or even other
scales. He & Legendre (2002) analyzed a species-rich
assemblage and concluded that there is no model
that is universally best, all depending on sampling
scales. We suggest the best model depends in addi-
tion on the type of organisms and ecosystems stud-
ied, the sampling methods and the habitat hetero-
geneity, which determines the variability in biodiver-
sity. Our test data set of 2234 samples in clu ded the
habitat heterogeneity from the whole Baltic Sea
salinity range but was seasonally re stricted to late
summer. The analysis revealed that about 400 ran-
dom phytoplankton samples were needed before the
extrapolated total taxon richness estimate leveled off.
This is a conservative, high-end estimate, as most
phytoplankton data sets have lower internal hetero-
geneity and likely require smaller sample size to reli-
ably estimate taxon richness.
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