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1.  INTRODUCTION 

Ecological systems have inherent nonlinear and 
complex dynamics (Burkett et al. 2005) and exact, 
closed-form representations of the dynamics may be 
fundamentally unknown (Holt et al. 2014, Planque 
2016). Many natural resource industries depend on 
ecosystem functioning, making models or represen-
tations of ecosystem dynamics necessary for bioeco-
nomic studies. However, these representations often 
rely on assuming dynamic functional forms and sta-
tistical regression analysis with limited observations, 
which may not capture key ecosystem complexities. 
Representations in terms of explicit equations are 
intuitive, intellectually stimulating, and align with 
time-honored modeling approaches (May et al. 1979), 
but require considerable efforts to deal with issues 

such as parameterization and model fit (Kvamsdal & 
Sandal 2015, Ekerhovd & Kvamsdal 2017). Moreover, 
the assumptions and simplifications inherent in 
closed-form models may lead to less relevant man-
agement decisions. 

Neural networks (NNs) are recognized for their pre-
diction power and ability to infer hidden patterns and 
behaviors (Joseph 2020). They are adaptive and flexi-
ble nonlinear mapping structures that are ‘universal 
approximators’ for any data, which is especially prac-
tical when the underlying relationships are unknown 
(Lek & Guégan 1999). By using NNs fitted to stock dy-
namics, we circumvent the issues related to imposed 
dynamic equations. Properly trained NNs can sur-
mount some of the fundamental limitations of closed-
form models but still maintain attributes required for 
bioeconomic analysis, such as flexibility and speed. 
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Recognized as powerful instruments for ecological 
modeling, machine-learning methods are increas-
ingly pursued for their potential in advancing ecosys-
tem studies (Willcock et al. 2018, Malde et al. 2020, 
Scowen et al. 2021). Applications of NNs in ecologi-
cal modeling are widespread, including emulation of 
climate models (Krasnopolsky et al. 2005), prediction 
of population outbreaks or species distribution (Ram-
mer & Seidl 2019, Deneu et al. 2022), simulation of 
various types of ecosystem components (Lu et al. 
2016), and evaluation of fisheries management 
(Russo et al. 2014, 2019). However, most of these 
applications lend themselves to what-if type analyses 
where the research objective is scenario simulation 
or system prediction. 

Our present objective, the representation of eco-
system dynamics in bioeconomic models, requires us 
to take into consideration several features beyond 
the skill of capturing dynamic behavior. This skill is 
crucial for the relevance of a model, but we need to 
further consider dimensionality and run time. The 
challenges brought by the curse of dimensionality 
and computation time may be waning as advanced 
optimization methods are being developed (Cai & 
Lontzek 2019, Springborn & Faig 2019), but we are 
still limited by them. Bioeconomic models are useful 
for decision analysis, incorporating links between 
biological and economic production, but are in most 
settings only feasible with a somewhat limited 
dimensionality, that is, involving a handful of dyn -
amic variables (Crépin et al. 2011, Levin et al. 2013, 
Kvamsdal & Sandal 2015). Run time is essential on 
account of the iterative procedures used in decision 
analysis and related work (Ni & Sandal 2019, Kvams-
dal et al. 2020b). Recent techniques, for example 
reinforcement learning (Malo et al. 2021, Tahvonen 
et al. 2022), involve decision-making algorithms that 
are iterative as well. 

A comprehensive empirical basis is essential for 
NNs to be effective, making data scarcity a funda-
mental challenge, particularly for marine ecosystems 
that are difficult to observe. The limitation of em -
pirical evidence is severe for extensive ecosystem 
models, as well as for compact models (Ekerhovd & 
Kvamsdal 2017). The lack of observations is further 
aggravated by the non-ergodicity of ecosystems, that 
past states cover only a small fraction of possible fu-
ture states (Planque 2016). Nevertheless, comprehen-
sive end-to-end ecosystem models, such as the At-
lantis model (Audzijonyte et al. 2019, Fulton et al. 
2011), exist and can provide a synthesized reality that 
is relevant for ecosystem-based management. We ac-
knowledge the skill of state-of-the-art Atlantis models 

to capture the general nature of ecosystem dynamics 
(Olsen et al. 2016). These large-scale models are con-
venient vehicles for summarizing and communicating 
data and knowledge in a form that can be captured by 
models such as NNs. We refer to the outputs from At-
lantis models as synthetic data. Rather than using lim-
ited empirical data, we use relatively abundant syn-
thetic data to train NNs and thereby also achieve 
better control for input data quality. 

We aim to establish mathematical structures, in the 
form of NNs, that can represent the dynamics in the 
training data to a sufficient degree, such that key 
complexities are captured. Meanwhile, the represen-
tation should be compatible and computationally 
efficient to allow for bioeconomic analysis, feedback 
policies, optimization, or what-if analysis. The high 
level of complexity and dimensionality of models 
such as Atlantis models makes applications in such 
analyses infeasible; the levels of aggregation are 
conflicting. NNs can readily be defined on the appro-
priate aggregation level. The proposed NN approach 
could enlarge our toolbox when efficient updates of a 
system are needed. 

2.  MATERIALS AND METHODS 

2.1.  Earlier work on neural networks 
for ecosystems 

The main effort thus far to apply NNs fitted to mar-
ine ecosystem dynamics, with particular application 
in bioeconomics, has been that of Russo et al. (2014). 
A similar but further developed approach was used 
in Russo et al. (2019). The NNs in these studies rep-
resent development of ecosystem components (age 
classes of fish stocks, harvest effort, and environmen-
tal conditions) at a relatively detailed spatial scale. 
For example, the spatial grid used in Russo et al. 
(2014) contains almost 400 cells. The level of detail 
and aggregation places their NNs closer to the 
Atlantis model than what we presently set forth to 
develop. As shown by Russo et al. (2014, 2019), the 
networks support what-if analysis of changes in 
management, for example with respect to spatial clo-
sures. Our aim, however, is primarily to develop net-
works to support bioeconomic analysis and other 
applications where decision-making is needed, par-
ticularly under uncertainty. Our example networks 
will be defined on an aggregation level relevant for 
this purpose. 

The level of aggregation is a key feature for eco-
system-based management problems, and thus for 
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the formulation of relevant models. Consider, for 
example, the use of harvest control rules (Kvamsdal 
et al. 2016). A harvest control rule is typically formu-
lated on the stock level and has a feedback nature; it 
provides the level of harvest as a function of the stock 
level. A decision model for analysis of harvest control 
rules will then naturally be formulated with stock 
levels as state variables. In comparison, a stock in the 
NNs formulated by Russo et al. (2014), as well as in 
Atlantis models (Hansen et al. 2019b), is represented 
by several age classes distributed across a spatial grid. 
Thus, many different states in the Russo or Atlantis 
model corresponds to a given point in the state space 
of the decision model. The lack of correspondence 
between state spaces is a problem for what-if analy-
sis of harvest control rules and optimization methods. 
That is, the mismatch in dimensionality makes direct 
application of highly detailed models infeasible in 
decision-making frameworks. Put differently, the 
ecosystem model of the subsystem must be designed 
to fit the decision framework. While the models devel-
oped by Russo et al. (2014, 2019) serve a similar pur-
pose to ours, they differ in their compatibility with 
bioeconomic analysis methods such as stochastic 
optimization (Sandal & Steinshamn 1997). 

2.2.  Synthetic data 

The synthetic data used for training feedforward 
NNs (i.e. NNs where the information flows in only 
one direction; that is, forward) are provided by the 
Nordic and Barents Seas Atlantis model (NoBa 
Atlantis), which includes 53 species and functional 
groups, a grid of 60 polygons covering an area of 
roughly 4 million square kilometers, and multiple 
layers representing the environment and its ecosys-
tem in the Nordic and Barents Seas (Hansen et al. 
2019b). NoBa Atlantis is an end-to-end ecosystem 
model that simulates daily changes in the system and 
is forced by daily input of temperature, salinity, and 
volume fluxes from a set of regional ocean modeling 
system (ROMS) models (Shchepetkin & McWilliams 
2005). It uses an RCP 4.5 scenario for the climate pro-
jections (Sandø et al. 2014, Skogen et al. 2018), which 
can be categorized as optimistic (Hansen et al. 
2019b), with a temperature increase in the Barents 
Sea at around 1°C over the simulation period (i.e. by 
2070). The ecosystem components are linked to -
gether through a diet matrix, where the overlap 
between the predator and prey is defined. Harvest-
ing is applied at a constant rate within a year and to 
the entire stock, including juveniles, for all commer-

cial species. NoBa Atlantis updates daily with some 
processes even at smaller internal time steps, and the 
outputs are printed and stored 5 times per year. 

A simple harvest approach has been applied to the 
simulations in Hansen et al. (2019b), which are used 
as data for training the NNs. For the historical simu-
lation period (1981−2016), the historical harvest rates 
have been calculated from stock assessments (ICES 
2020, 2018) for the commercial stocks from 1981 to 
2016 and are applied in Atlantis simulations without 
modifications. For the future simulation period 
(2017−2068), the maximum sustainable yields (MSY) 
and the corresponding fishing mortality rates (MMSY) 
are calculated for the commercial species within 
NoBa Atlantis (Hansen et al. 2019b). The MMSY 
 values are multiplied with 4 scalars — 0.6, 0.8, 1.0, 
and 1.1 — forming 4 different harvesting scenarios 
throughout the future simulation period. For the 
scalar of 1.0, fishing occurs at MSY levels for all har-
vested species; for a smaller scalar, for example 0.6, 
fishing pressure is reduced, and the scenario reflects 
sustainability considerations. For every scenario, 
there are 14 runs, each following an individual pat-
tern of mesozooplankton growth. This introduces 
some degree of randomness in the simulated results 
under the same harvesting scenario. NoBa Atlantis 
has been extensively calibrated and tested, with 
respect to diets, population development, individual 
weights, total biomass, catches, patterns, and distri-
butions, for those species where available observa-
tions could be found (Hansen et al. 2019a,b) 

The key commercial fish in the Barents Sea is the 
Northeast Arctic cod, around which several related 
species are often modeled together in bioeconomic 
analysis (Helstad 2001, Aanestad et al. 2007). In this 
study, we employed feedforward NNs to learn the 
dynamics of a 3-species subsystem consisting of cod, 
capelin, and juvenile Norwegian spring-spawning 
herring (hereafter herring). Cod is the predator of the 
other two, and there is also predation on capelin lar-
vae by juvenile herring. Note that our biomass model 
specifies the juvenile part of the herring stock 
because the juveniles interact with cod and capelin 
in the Barents Sea, while the adult herring are mostly 
found in the Norwegian Sea. From here on, juvenile 
herring refers to one state in the 3-dimensional sys-
tem. This setup corresponds to the models in Durant 
et al. (2008), Kvamsdal & Sandal (2015), and Kvams-
dal et al. (2020b). While the trained networks are 
modeled to represent the dynamics of the subsystem, 
the training data from NoBa Atlantis reflect the full 
ecosystem reality and contain comprehensive eco-
system knowledge. 
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2.3.  Training of feedforward neural networks 

Feedforward NNs feature a straightforward archi-
tecture without cycles or loops. A standard feed -
forward NN comprises 3 layers: an input layer 
responsible for receiving data; a hidden layer that 
incorporates nonlinearity through a nonlinear acti -
vation function; and an output layer that applies a 
linear activation function. NNs estimate internal 
parameters, called weights and biases. Compared to 
the estimates from traditional regression equations, 
these internal estimates are less intuitive to interpret. 
Hyperparameters are external parameters that deter-
mine the network structure and the learning process. 
To ensure successful training, key hyperparameters 
need to be tuned (Scowen et al. 2021) according 
to the specific problem, for example, through grid 
search or trial and error (Hutter et al. 2015). 

We built a feedforward NN structure with 3 layers 
using ‘fitnet’ in the MATLAB neural network fitting 
tool. We adopted the Rectified Linear Unit (ReLU) 
activation function (Goodfellow et al. 2016) for the 
hidden layer. It is a piecewise linear function that has 
emerged as the default choice for many types of NNs 
due to its ease of training and superior performance 
to traditional sigmoid activation functions (Javid et 
al. 2020). We applied a process function of ‘mapstd’ 
that normalizes the inputs and targets such that they 
have zero mean and unit standard deviation. The 
performance function measures the accuracy of net-
work prediction, with mean squared error (MSE) 
serving as the default metric. A smaller MSE corre-
sponds to a higher degree of accuracy in reproducing 
the training examples. In our problem, MSE is 
applied in conjunction with standard normalization, 
which normalizes errors between −2 and 2, a feature 
suited for networks with multi-element outputs. The 
training algorithm minimizes the normalized MSE 
and the default algorithm for ‘fitnet’ is Levenberg−
Marquardt backpropagation (Møller 1993). 

One critical matter in NN modeling is mitigating 
overfitting to ensure that the trained network can 
generalize well to new, previously unseen data 
(Goodfellow et al. 2016). Weights within a NN spec-
ify the strength of connections between nodes and 
convergence to large weights is often a sign of over-
fitting, implying significant importance of specific 
input examples that is likely to impede network gen-
eralization. To evaluate the networks’ ability to gen-
eralize, we adopted the holdout method, that is to 
withhold 10% of the data as an independent test set, 
untouched during training. We utilized MSE for the 
holdout test set and the sum of squared weights as 

metrics for assessing network generalization, with 
lower values signifying lower risk of overfitting. 
 Furthermore, under each network specification, we 
retrained 5 networks starting with different parame-
ter initializations and initial data divisions. The final 
simulation outcome for a given specification was 
derived by averaging the predictions of the 5 net-
works. 

Ecosystem data, available in the form of long time 
series, were treated as iterative mappings of the sys-
tem, providing input examples for the transition 
dynamics. While we acknowledge critique concern-
ing the reliability of long-term ecosystem projections, 
short-term predictions can be accurate (Planque 
2016, p. 205). And the credibility of our model only 
relies on the quality of one-time-step transitions 
because we treated synthetic time series data as suc-
cessive realizations of the same data-generating pro-
cess over a time step. 

Given 5 observations per year in the data, we con-
sidered there to be 5 seasons, noted by a season indi-
cator s. The total annual harvest was determined at the 
beginning of a year by multiplying the stock biomass 
with an annual MMSY. One-fifth of this determined 
amount is removed from the stock each season, that is, 
biomass removal is constant throughout the year. We 
assumed that system transitions can be captured by 
the following general relationship: 

                              xt = F(xt–1,s) – ht                           (1) 

where xt is the biomass vector of the system at time t, 
ht is the harvest vector of the system during (t−1) to t, 
and F is the transition function of the system. The 
mapping function F can be approximated by: 

                            F(xt,s) = xt+1 + ht+1                         (2) 

To achieve the approximation, the vector of the 
biomass xt and the corresponding season indicator s 
are fed into NNs as training inputs; total biomass 
before harvest at the next time step, (xt +1 + ht +1), and 
the season indicator of (t + 1) are set as the training 
targets. In total, there are 17 010 examples of system 
transitions: 2506 (36 yr, 5 observations per year, 14 
runs) during the historical simulation period and 
14 504 (52 yr, 5 observations per year, 14 runs, 4 har-
vest scenarios) during the future simulation period. 
The seasonal effects in the dynamics are picked up 
by the NNs automatically through the season indica-
tor s in the learning process. 

Fig. 1 provides a detailed illustration of our net-
work structure. The input layer has 4 nodes: 1 each 
for cod, capelin, and juvenile herring biomass levels, 
and 1 for season. The output layer has 3 nodes repre-
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senting the biomass levels before harvesting in the 
next period. The number of hidden nodes, a key hyper-
parameter not specified in Fig. 1, dictates the struc-
tural complexity and overall predictive power of the 
network. According to the universal approximation 
theorem, a feedforward NN with only one hidden 

layer is capable of approximating any 
relation given enough hidden nodes 
(Hornik et al. 1989). However, overfit-
ting may occur if the network’s capac-
ity significantly exceeds the de mands 
of the problem at hand. Thereby, we 
implemented a grid search to optimize 
the number of hidden nodes, striking 
a balance between prediction accu-
racy and generalization, with the re -
sults shown in Fig. 2. 

Fig. 2a reveals that the MSE for the 
holdout test set is higher than that of 
the training set, indicating larger 
errors when predicting outside the 
learned examples. The MSE for the 
training set decreases as the number 

of hidden nodes increases, but this trend plateaus 
beyond 30 nodes. Fig. 2b shows that both the MSE 
for the holdout test set and the sum of squared 
weights decrease with increased network complexity 
until around 30 hidden nodes. This is partly due to 
a  mechanism in the training algorithm called early 

5

Fig. 1. Neural network (NN) structure: 4 nodes in the input layer representing 
biomasses for the three species and the season indicator, a varying number of 
nodes in the hidden layer, 3 nodes in the output layer representing sums of 
biomass and harvest for the three species. Thin grey lines: connection weights 
between nodes. Rectified linear unit (ReLU) activation function in the hidden 
layer, and linear activation function in the output layer (diagrams at bottom)

Fig. 2. Measures of neural network (NN) performance. (a) Indicators of NN prediction (orange squares: maximum sustainable 
yield, MSE, of the training set; blue diamonds: MSE of the holdout test set). (b) Indicators of NN generalization (blue 
 diamonds: MSE of the holdout test set; red circles: sum of squared weights). Note that for better visualization of the results,  

the MSE is not normalized in this figure
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stopping that prevents overtraining and overfitting 
with a large number of nodes. These observations 
suggest that beyond 30 hidden nodes, marginal 
improvements in prediction accuracy are observed 
without further gains in  network generalization. 
Consequently, in the fol lowing applications, we 
selected 3 network structures with 35, 36, and 37 hid-
den nodes respectively and used the average of the 
15 outputs (note there are 5 networks trained per 
structure) as the final output. The absence of abnor-
mally large weights reinforces our argument that the 
selected networks are trained properly and can be 
used for simulation and forecasting. 

2.4.  Neural network forecasting 

Prediction using NNs is referred to as forward 
propagation or simulation, which is usually straight-
forward and fast (Krasnopolsky et al. 2005). Iterative 
simulations in a feedback loop over a longer period is 
what we call NN forecasting. To be more specific, 
NN forecasting is achieved by calling the trained 
NNs repeatedly in a closed loop, using outputs from 
the previous simulation as basis for inputs for the 
next simulation. Since the output layer for regression 
problems has a linear activation function, extreme or 
meaningless outputs could emerge, especially when 
NNs extrapolate outside of the data range. The like-
lihood of having paths leaving the data range in -
creases as the prediction errors accumulate over 
time. Thus, we applied a lower boundary to prevent 
negative values for the new state after harvesting. 
Any negative new state was set to a small number 
(2000 tonnes) to avoid an absorbing zero boundary. 

As uncertainties are pervasive in fisheries and eco-
system dynamics, incorporating stochasticity can en-
hance our analysis to be more relevant for real-world 
situations. We applied stochastic NN forecasting by 
adding a multiplicative noise factor to the process: 

                            xt+1 = μF(xt,t) – ht+1                        (3) 

where the noise factor μ is a 3-dimensional vector 
with independent components, each drawn from a 
truncated normal distribution such that 0.9 < μ < 1.1. 
Put differently, the networks’ final output will, at 
each time step, experience a random multiplicative 
kick, which could be positive or negative, of a maxi-
mum of 10% in scale during forecasting. We advo-
cate for imposing kicks that are a maximum of 10% 
based on its alignment with the ICES stock assess-
ment (ICES 2021). In the assessment of cod, the esti-
mated spawning stock biomass (SSB) is presented in 

conjunction with a high value and a low value, which 
are typically 10 to 20% deviated from the mean. 
Therefore, the formulation in Eq. (3) aligns with 
established practices, which bolsters relevance and 
reliability of the NN forecasting outcomes. 

3.  RESULTS 

In this section, we present 3 distinct analyses: (1) 
the application of NN forecasting using harvest rates 
derived from the training data, incorporating both 
deterministic and stochastic approaches; (2) the 
implementation of stochastic NN forecasting with 
state-dependent, adaptive harvest rates, updated on 
an annual or seasonal basis; and (3) reintroducing 
the yearly updated harvest rates from the second 
analysis back into the Atlantis model and comparing 
the simulation outcomes between the 2 representa-
tions. Analogous to the first analysis, which com-
pares the 2 models using the same set of harvest 
rates, the innovative aspect of the last analysis is that 
the realized harvest rates are not sourced from the 
training data. Instead, they comprise previously 
unseen, new policies both for the NNs and the 
Atlantis model. 

In analyses 1 and 2 concerning stochastic NN fore-
casting, we simulated 100 trajectories for each policy 
specification and calculated the corresponding mean 
path and standard deviations. In the first analysis, the 
stochastic forecasting process runs for the historical 
and future simulation periods separately: the mean 
state of the 100 runs at the end of the historical period 
is used as the initial state for the future simulation 
period. Note that the first state in 1981 is the only 
external input to initiate the simulations. The NN 
system is run for 440 time steps, free from external 
calibrations. In the second analysis, forecasting is 
applied in one go for the entire time span, with 
updating of harvest rates occurring at different fre-
quencies, yearly and seasonally. 

3.1.  Forecasting with trained neural networks 

The primary objective of the first analysis is to eval-
uate whether the system trajectories forecasted by 
NNs, given the same harvest rates, resemble the 
original data paths. We applied harvest rates from 
the training data and we select one out of 4 harvest-
ing scenarios as in Hansen et al. (2019b). The imple-
mented harvest rates in this analysis are historical 
harvest rates during the historical simulation period 
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(1981−2016) followed by a constant harvest rate of 
0.8 × MMSY during the future simulation period 
(2017−2068). 

Fig. 3 displays the forecasted progression of the 
subsystem in the absence of stochasticity, achieved 
by excluding the noise parameter μ from Eq. (3). The 
forecasted paths demonstrate that NNs can replicate, 
to a large degree, the data trajectories of cod, 
capelin, and juvenile herring under the same harvest 
policy. For the cod stock, the forecasted path largely 
resembles the observed data in terms of behavior, 
with regard to both seasonal variations and interan-
nual fluctuations. The high level of synchronization 
between network outputs and data paths is more evi-
dent in the historical simulation period. For the future 
simulation period, the forecasted path is mostly at a 
constant level with regular seasonal variations. 

Concomitantly, Fig. 3 includes a 2-SD range sur-
rounding the mean, derived from the 14 runs that 
constitute the dataset. Notably, this interval is par -
ticularly narrow for cod. The narrow range of data 
means that cod is fairly robust to the variations 
in mesozooplankton forcing that the NoBa Atlantis 
model incorporates. However, cod is under the influ-

ence of additional stochastic forces and a closer fit of 
the NN forecast to the data would probably be over-
fitting. Capelin, as a pelagic stock, has high variabil-
ity in general, and the forecasted path could capture 
some of the dynamics in the historical simulation 
period but less in the future simulation period. It 
seems that given a constant harvest rate, the capelin 
stock simulated by the NNs has stable seasonal 
cycles. For juvenile herring, the range of data covers 
a wide band which includes the NN path most of the 
time. The biomass of juvenile herring keeps shrink-
ing during the entire period, and the seasonal varia-
tions are reduced and smoothed towards the end 
when stock is collapsed, which is reflected in the 
forecasted path. 

Fig. 4 demonstrates forecasted paths with stochas-
ticity, following the model in Eq. (3). We observed 
that the mean paths of the 100 runs depicted in Fig. 4 
are essentially equivalent to the paths in Fig. 3, indi-
cating that the average stochastic trajectories are 
highly representative of their deterministic counter-
parts. The 2-SD bands of the simulated paths cover 
the range of data paths completely for the cod stock. 
For capelin, some peaks and troughs of seasonal 
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Fig. 3. Paths created by NN forecasting (blue solid line) plotted against the 2-SD range of data (yellow band: historical simula- 
tion period 1981−2016; red band: future simulation period 2017−2068) for (a) cod, (b) capelin, and (c) juvenile herring
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variations in the data stretch beyond the scope of the 
simulated paths bands. It seems that the NNs gener-
ate seasonal dynamics of capelin that have a stronger 
contraction toward an equilibrium level compared 
with the Atlantis model. During the historical simula-
tion period of juvenile herring, the 2-SD bands of the 
data and forecasted paths overlap to a large extent, 
but the forecasted values seem to be dragged down 
during the future simulation period. This downward 
dragging phenomenon is possible when stochasticity 
is present, especially when the noise term is multi-
plicative (Poudel et al. 2015). 

3.2.  Forecasting under an alternative 
management policy 

To demonstrate that the trained NNs can be 
applied for relevant decision analysis, we present a 
second analysis where we specify harvesting rules 
with adaptive features (Ussif & Sumaila 2005). We 
applied a simple feedback policy without interaction 

among species; that is, the harvest decision is inde-
pendent of information on other species. For a given 
stock, the updated harvest hτ+1 is adapting according 
to the state xτ, the target biomass level Bτ and the 
harvest hτ in the previous period, as well as a con-
traction parameter η, as given in Eq. (4): 

                                        (4) 

Continuous implementation of this harvest rule will 
contract the stock toward the target biomass level at 
a speed determined by η: a larger η indicates a faster 
contraction. 

We consider both seasonal and yearly updating of 
hτ+1. While yearly decisions over the harvest level are 
in line with current fisheries management practice, 
there may be good reasons for considering intra-
annual management interventions (Smith 2012, 
Huang & Smith 2014). When the harvest is updated 
seasonally, the unit of τ is season; when updating 
happens yearly, the unit of τ is years. Similar to the 

h 1 max( 0, h 1 z( ))

z
x

B
1 , 1

8

Fig. 4. Mean paths created by NN forecasting (blue solid line) plotted against the 2-SD range of 100 simulated paths (light blue 
band) and the 2-SD range of data (yellow band: historical simulation period 1981−2016; red band: future simulation period  

2017−2068) for (a) cod, (b) capelin, and (c) juvenile herring
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simulations in the Atlantis model, yearly updated 
harvest implies a constant biomass removal through-
out the year, based on the predetermined amount at 
the beginning of the year. Conversely, seasonal 
updating entails adjusting harvest levels more fre-
quently, 5 times a year, in response to the situation in 
the previous season. 

Upon each updating of harvest, we encounter 1 of 
the 3 situations, as summarized in Eq. (5): 

       (5) 

When the state-target ratio  is larger than 1, the 
updated harvest hτ+1 will be higher than harvest in 
the previous period, hτ; when the state-target ratio is 
lower than a critical moratorium level of , the 
updated harvest is zero; and when the state-target 
ratio is between the moratorium level and 1, the 
updated harvest is positive but smaller than the har-
vest in the previous period. A stronger contraction 
(larger η) implies a higher precautious stock level to 
activate the moratorium. In this way, the harvest rule 
represented in Eq. (4) will guide the system toward 
the target biomass levels in a feedback fashion. Note 
that hτ as harvest in the previous period refers to the 
most recent non-negative harvest such that zero har-
vest, which is activated once the stock falls below the 
moratorium level, will not be carried forward indefi-
nitely even when the stock has grown back. 

The harvest control rule in Eq. (4) bears resem-
blance to the current fisheries management in the 
Barents Sea (Kvamsdal et al. 2016). The prevailing 
management plan for cod in the Barents Sea (ICES 
2021) is determined by comparing the current SSB 
to  a precautionary reference SSB level. When the 
observed SSB is at or above the precautionary level, 
the exploitation rate is increased, and conversely, it is 
reduced when the SSB falls below the reference. 

In this analysis, initial biomass levels are proximate 
to Atlantis model states in 1981 and initial harvests 
are calculated using the MMSY (0.4 for cod and 0.05 
for capelin) from Hansen et al. (2019b). We applied 2 
different contraction speeds for cod: η = 1.2 and η =  
3. used a small contraction parameter η = 0.1 for the 
capelin stock. There is no harvest of juvenile herring 
in this analysis, following real-world practices. In 
Fig. 5, we display the stochastic paths for cod and 
capelin forecasted by NNs and the corresponding 
cod harvest under the 2 different contraction speeds 

and updating frequencies. The harvest of capelin, 
being negligible in both volume and value, is not 
reported. 

For the cod stock biomass, we observe from 
Fig. 5a,c that with more frequent updating of harvest, 
the state contracts toward the target faster and leads 
to more frequent oscillations around the target. 
Towards the end of the simulated period, the biomass 
trajectories of both seasonally and yearly updated 
policies end up in the vicinity of the target level. For 
cod harvests in Fig. 5b,d, the average trajectories 
appear smoother with the yearly updated policy, and 
exhibit fewer fluctuations when the contraction is 
slow. Some delay between harvest and biomass 
development is expected, and it is more noticeable 
when the contraction speed is slower and when pol-
icy updates are less frequent. 

One interesting observation regarding the cod 
stock is that the fast contraction in the harvest rules 
has a similar effect as strong stochasticity in the state 
simulations, especially when updating occurs fre-
quently. The 2-SD band of the seasonally updated 
policy under fast contraction is the widest throughout 
the 15 yr period we considered and even falls below 
the moratorium level several times. The effects of 
strong contraction in the policy are twofold: signifi-
cant reduction in harvest when the state is low and 
aggressive harvesting when the state is high. While 
the former is less of a concern from a conservation 
aspect, the latter, together with stochasticity, could 
lead to a dangerous combination of high fishing 
 pressure and overestimated stock level or abruptly 
reduced stock biomass. Therefore, in the presence of 
stochasticity, aggressive harvesting should be dealt 
with cautiously, even when the stock seems abun-
dant above the target level. 

The aforementioned observations and interpreta-
tions are sensible and intuitive, demonstrating that 
the trained NNs are capable of simulating relevant 
system dynamics, which could potentially inform pol-
icymaking. However, this analysis is only one in -
stance of a specific type of functional form represent-
ing the policy. It is tractable to assess a broad range 
of candidate  policies within a reasonable timeframe 
using NNs, thereby laying the foundation for rele-
vant bioeconomic analysis. 

3.3.  NoBa Atlantis simulations under 
the alternative management policy 

To further test whether the trained NNs can cap-
ture the dynamics embedded in NoBa Atlantis out-
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Fig. 5. (a,c) Cod and capelin biomass level paths under stochastic NN forecasting and (b,d) the corresponding cod harvest 
given 2 contraction speeds η. Red solid line: mean path of biomass or harvest under the seasonally updated policy. Green solid 
line: mean path of biomass or harvest under the yearly updated policy. Light red band in a and c: 2-SD of the 100 biomass 
paths under the seasonally updated policy. Light green band in a and c: 2-SD of the 100 biomass paths under the yearly up-
dated policy. Light red band in b and d: 0.5-SD of the 100 harvest paths under the seasonally updated policy. Light green band 
in b and d: 0.5-SD of the 100 harvest paths under the yearly updated policy. Blue dashed line: target biomass level for cod.  

Orange dashed line: target biomass level for capelin
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puts, we recorded the harvest rates realized during 
the NN forecasting process of the previous analysis 
(section 3.2). We fed these harvest rates back into the 
Atlantis model and compared the simulation out-
comes. This particular version of NoBa Atlantis does 
not have a harvesting module that can deal with 
feedback policies during an ongoing simulation. 
Consequently, the harvest rates are not adaptive 
within Atlantis; however, when the harvest rates are 
equal in both models, they provide a robust founda-
tion for comparing the Atlantis model with the NNs 
representation. In this analysis, only yearly updated 
harvest rates are utilized (see green lines and bands 
in Fig. 5), as Atlantis enforces constant biomass re -
moval within a year. For commercial species other 
than cod and capelin, harvesting at MMSY is imple-
mented in Atlantis throughout the 15 yr period. Fig. 6 
illustrates the forecasted biomass trajectories of cod 
and capelin by both models. 

The average biomass trajectories of cod overlap to 
a large extent between the 2 models: both exhibit 
highly comparable seasonal variations and inter-
annual trends. These observations serve as com-
pelling evidence that, when provided with the same 
harvest rates, trained NNs can produce cod paths 
nearly identical to those of the Atlantis model. The 
cod paths created by Atlantis are slightly smoother, 
exhibiting lower peaks and shallower troughs com-
pared to those generated by NNs. A potential infer-
ence of this phenomenon is that NNs represent a 
reduced, lighter system that is more dynamic, while 
Atlantis simulations carry forward extensive details 
and dimensions, leading to an averaging or smooth-
ing effect when aggregated to the stock level. 

Within a range of 2 SD, the NN predictions of cod 
biomass completely encompass the Atlantis projec-
tions. This observation highlights the differing mani-
festation of randomness in the 2 models: Atlantis 
accounts for the biological variations arising from 
predator−prey relationships, with cod’s position far 
from mesozooplankton in the food chain, thus being 
less impacted; whereas NN forecasting incorporates 
various forms of uncertainty, including observation 
uncertainty, environmental shocks, and modeling 
errors. For the pelagic stock capelin, which is closer 
to primary production in the food web, the differ-
ences in uncertainty between the 2 models are 
smaller: the 2-SD bands by NNs are only slightly 
wider than those by Atlantis (see Fig. 6c,d). 

The simulation outcomes from the 2 models show a 
high degree of similarity overall, indicating that NNs 
effectively capture the essential dynamics of the cho-
sen system, especially the valuable cod stock, repre-

sented by Atlantis. While there are some discrepan-
cies between the forecasted paths, these variations 
fall within an acceptable range for bioeconomic 
analysis. The general agreement between the 2 mod-
els strengthens the credibility of the NN representa-
tion, which is the central argument in our analyses. 

4.  CONCLUDING REMARKS 

In this study, we employed 3 analyses to progres-
sively validate the effectiveness of our approach. The 
first analysis showcases that NNs as function repre-
sentations can capture key dynamics of the subsys-
tem and replicate the trajectories of the training data 
to a large extent. Stochasticity can be added to the 
dynamics in a straightforward and flexible manner. 
The second analysis illustrates that the trained NNs 
can efficiently evaluate various alternative policies, 
offering significantly reduced run time and greater 
ease in storage and application. The last analysis 
demonstrates that NNs are able to generalize to new 
sequences of harvest rates and produce almost iden-
tical trajectories as Atlantis for the commercially 
valuable cod stock. The finding that NNs can reason-
ably predict the behavior of the Atlantis model under 
a feedback rule is valuable and interesting because 
the underlying version of the Atlantis model cannot 
directly implement feedback harvest rules. Our find-
ings suggest that the precision provided by NNs is 
adequate for high-level decision-making, and NNs 
can serve as relevant representations of large-scale 
ecosystem simulators. 

The main challenge in applying NNs to represent 
ecosystem models is the need for abundant and rele-
vant training data. In our analyses, we benefited 
from the effort put into the NoBa Atlantis model that 
provided us with synthetic data (Hansen et al. 
2019b). In this regard, we emphasize that using syn-
thetic data makes our networks vulnerable to weak-
nesses in the Atlantis model. Therefore, it is para-
mount that NNs are built upon data generated by 
simulator models that are comprehensive, cutting-
edge, and state-of-the-art. 

We promote the mathematical structure of feedfor-
ward NNs to represent ecosystem dynamics, poten-
tially as representations of large-scale ecosystem 
simulators for various applications. Sustainable and 
ecosystem-based management decisions require an 
integrated and quantitative representation of com-
plex and high-dimensional dynamic systems (Bots-
ford et al. 1997, Levin et al. 2012). State-of-the-art 
ecosystem simulators, such as Atlantis-type models 
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Fig. 6. Biomass level paths in tonnes of cod and capelin generated by stochastic NN forecasting (blue y-axis on the left) versus 
the Atlantis simulator (orange y-axis on the right) under the yearly updated adaptive policy with 2 contraction speeds η: (a,c) 
slow and (b,d) fast. Blue solid line: mean path of biomass generated by NNs. Orange solid line: mean path of biomass gener-
ated by  Atlantis. Light blue bands: 2-SD of the 100 biomass paths generated by NNs. Light orange bands: 2-SD of the 14 bio- 

mass paths generated by Atlantis
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(Fulton et al. 2011), are comprehensive representa-
tions of the knowledge and empirical experience 
regarding ecosystems, but require substantial com-
putational resources (Hansen et al. 2019b) and are 
not particularly designed for dynamic decision analy-
sis. NNs are universal nonlinear function approxima-
tors (Willcock et al. 2018) that satisfy the demands for 
efficiency and flexibility concerning the iterative 
algorithms used in bioeconomic analysis (Clark 1990, 
Sandal et al. 2021). 

Earlier bioeconomic analyses predominantly relied 
on explicit closed-form models. The NN approach 
grants us freedom from the necessity to assume func-
tional forms, which is an advantage given that our 
biological knowledge about ecosystems in general is 
still limited and developing. Further, by using syn-
thetic data, we bypass problems with infrequent and 
incomplete ecosystem observations. To incorporate 
seasonal dynamics in the model often makes the 
bioeconomic problem more complex (Ni & Sandal 
2019, Sandal et al. 2021), but it is important given the 
inherent seasonal variations in many natural systems 
(Kvamsdal et al. 2020a, Sandal et al. 2021). While it is 
not unachievable in closed-form models, using NNs 
to include seasonality is conceptually easier and does 
not require additional modeling work. 

Uncertainty is another fundamental feature of eco-
system dynamics. Dealing with uncertainty involves 
several aspects. Two are: representing the uncer-
tainty (modeling), and making decisions under un -
certainty (evaluating solutions). The NNs can repre-
sent uncertainty in a similar fashion as stochastic 
differential equations and support decision analysis, 
thus being relevant to both aspects. However, with 
feedforward NNs, uncertainty cannot, to our knowl-
edge, be included directly. In our setup, the networks 
represent the expected drift. Once the networks are 
trained, we can easily model uncertainties outside 
the network structures and specify the form and 
magnitude of the stochasticity. One idea is to use 
deviations between the network predictions and the 
training data to build an empirical distribution for the 
stochasticity. This should be addressed in future 
research. 

The main contributions of our approach to modeling 
ecosystem dynamics are its extensive and potential 
applications, unlocking new doors and opportunities 
in this field of research. While many existing ecosys-
tem models (Plagányi 2007) and some studies that ap-
ply NNs (Krasnopolsky et al. 2005, Russo et al. 2014, 
2019) can perform various what-if analyses, the poli-
cies implemented in these models are usually limited 
by specified structures. Moving from what-if type 

analyses to optimization enables thorough evaluation 
of a broader range of candidate policies. Even when 
we consider only what-if type analyses, it can be in-
tractable for simulator models, which carry extensive 
details, to implement scenario projections defined on 
a higher level of aggregation. Our NN approach can 
aggregate to a desired aggregation level, initiate from 
any starting state, adopt policies in feedback form, 
and be coupled with iterative decision algorithms 
such as dynamic optimization. Bioeconomic analysis 
relies on transition equations such as Eq. (1), and if the 
trained NNs can represent the mapping function in 
the equation, our approach applies. 

In conclusion, NNs serve as a bridge, facilitating 
more comprehensive decision-making with an ex -
panded policy space while retaining the empirical 
knowledge embedded in ecosystem simulators such 
as NoBa Atlantis. Thus, our application of NNs builds 
on and leverages the extensive development of eco-
system models to progress ecosystem-based man-
agement (Link 2010, Link et al. 2020) and ecosystem 
wealth assessments (Yun et al. 2017, Kvamsdal et al. 
2020b) that underpin a sustainable development of 
the ocean economy (Fenichel et al. 2020). Future 
work along this line of research also includes appli-
cations of our NN approach to decision science 
frameworks, such as dynamic programming and 
reinforcement learning for natural resource manage-
ment (Malo et al. 2021, Tahvonen et al. 2022). 
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