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1.  INTRODUCTION 

Nitrogen (N) is essential for primary production 
(Howarth 1988), and the quantity and speciation of N 
not only exerts control on phytoplankton growth, but 
also on the biotic community composition. For in -
stance, N-rich water columns favour diatoms (Marga-
lef 1978), while depletion of surface N promotes 
nano- and pico-size species (Hallegraeff 2010). An in -
crease in ammonium (NH4

+) over nitrate (NO3
–) 

supply can cause a similar shift in community compo-
sition, leading to harmful blooms (Glibert et al. 2016). 
Additionally, the speciation of N, i.e. the availability 
of reduced over oxidized and organic versus inor-
ganic forms of N, is also a forcing factor of key micro-

bial pathways (Devol 2015, Hu et al. 2019, Kuenen 
2020). A central process of the N cycle controlling the 
speciation of oxidized and reduced forms of inorganic 
N is nitrification. 

Nitrification begins with the oxidation of NH4
+ to ni-

trite (NO2
–). This step, considered to be rate-limiting, 

is carried out by ammonia-oxidizing archaea (e.g. Ni-
trosopumilus maritimus) and bacteria (e.g. Nitroso-
monas spp.). In addition to NH4

+, these organisms can 
also use urea, cyanate and polyamines as substrates, 
making them flexible and thus expanding their role in 
dissolved organic N cycling (Damashek et al. 2019, 
Kitzinger et al. 2019). NO2

–-oxidizing bacteria are 
 primarily responsible for the subsequent oxidation of 
NO2

– to NO3
– in the oxic ocean (Ward 2011) and re-
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cently, comammox (complete ammonia oxidation) 
bacteria were found to be capable of fully oxidizing 
NH4

+ in estuaries and coastal waters (Xia et al. 2018, 
Sun et al. 2020). As nitrification is a recycling pathway, 
it is a key process in the N cycle, as it produces sub-
strate for assimilation, dissimilatory NO3

– reduction 
to NH4

+, anammox and denitrification, thus determin-
ing the distribution of N species among the different 
dissolved inorganic N (DIN) pools. 

Nitrification can be regulated by a wide variety of 
factors, such as temperature, salinity and ambient 
oxygen concentration, and has long been assumed to 
only occur below the euphotic zone because of inhi-
bition by light and competition for NH4

+ in the sur-
face ocean (Merbt et al. 2012, Smith et al. 2014, Wan 
et al. 2018). But while nitrification is a dominant pro-
cess in the dark mid-depths of the ocean (Wuchter et 
al. 2006), there is also increasing proof for nitrifier 
activity in the euphotic zone, suggesting that new 
production estimates based on the assumption that 
NO3

– is purely allochthonous would be overesti-
mated (Ward 2005, Clark et al. 2007, Smith et al. 2014, 
Peng et al. 2018, Stephens et al. 2020, Laperriere et al. 
2021). Therefore, constraining the underlying regu-
latory mechanisms and the significance of nitrifica-
tion for the euphotic zone N budget is key to unravel-
ling the controls on primary production. 

This is even more crucial in the case of strongly 
stratified environments, such as estuaries and river 
plumes, where nutrient resupply from deeper waters 
is hampered by the salinity gradient, leading to in -
creasing dependency of surface communities on re -
generated forms of N for their growth (Pomeroy 1974, 
Eppley & Peterson 1979, Azam et al. 1983). But 
estuaries are diverse ecosystems, with widely varying 
levels of nutrients (i.e. from low to eutrophic levels), 
productivity, turbidity and tidal range, complicating 
the relationships between N supply and productivity 
(Nixon et al. 1986, Paerl et al. 2014). Thus, under-
standing rates of N cycle processes, such as nitrifica-
tion, and their role in comparison to riverine N loads 
in a variety of estuaries is needed to improve coastal 
management. However, even though nitrification 
rates have been measured in a variety of regions 
(Tang et al. 2023), many coastal ecosystems remain 
understudied. 

The Amazon River estuary is no exception, even 
though the significant freshwater load (6 × 1015 l yr–1, 
16.8 μM DIN; DeMaster & Aller 2001) impacts the bi-
otic community structure and its productivity on the 
entire area of the shelf (Goes et al. 2014), as well as the 
biochemistry of surface water as far as the Caribbean 
(Froelich et al. 1978, Muller-Karger et al. 1988, Coles 

et al. 2013). During periods of maximum discharge in 
winter and spring, the Amazon River is even poten-
tially responsible for Sargassum blooms in the tropical 
Atlantic (Aquino et al. 2022). Primary production and 
carbon export were reported to be high in some of the 
habitats generated by the plume, where dinitrogen 
fixation is not significant (Subramaniam et al. 2008, 
Loick-Wilde et al. 2016), underlining the importance 
of other sources of N for production in the Amazon 
River plume. These observations call for improved 
knowledge about the use and transformation of N 
species along the river plume, and while biogeochem-
ical models were applied to the region (Stukel et al. 
2014, Louchard et al. 2021), there is no proof that re-
mineralization rates are correctly represented. Nitrifi-
cation rate measurements were carried out in the re-
gion in 2019, but only 6 stations were sampled in the 
northern plume beyond 5° N (Starr et al. 2022). Ques-
tions regarding the extent of this process at the river 
mouth and on the entire Brazilian shelf are therefore 
still unanswered. Still, quantifying remineralization 
as nitrification and characterizing its environment 
both remain challenging, as nitrification may overlap 
with NO3

– assimilation and its relationship with envi-
ronmental variables might be highly non-linear. 

Machine-learning algorithms provide a new tool for 
exploring the components of an ecosystem describ-
able by a large number of features, requiring little 
time and reasonable computing power. Machine 
learning has been used to describe intricate ecosys-
tems using the microbial community composition 
(Cordier et al. 2017, Sperlea et al. 2021, 2022) and 
made it possible to improve water quality prediction 
in coastal environments (Deng et al. 2021). Machine-
learning algorithms have also been used in the N-
cycle field, notably for predicting dinitrogen fixation 
rates in the ocean (Tang et al. 2019). This tool has 
been increasingly used in environmental sciences 
(Sun & Scanlon 2019), as many machine-learning 
models can handle the highly non-linear relation-
ships prominent in environmental systems. 

In the Amazon River plume, the role of nitrification 
in DIN speciation has never been investigated. Here, 
we measured bulk nitrification rates from the Amazon 
River mouth to the most northern part of the plume for 
the first time. To highlight the main characteristics of 
environments with the highest nitrification rates along 
the plume, we applied 7 machine-learning models to 
our data set. This way, we aimed to (1) quantify the 
 nitrification rates along the Amazon River plume and 
(2) discuss the role of environmental variables linked 
to elevated nitrification rates along the Amazon River 
plume. 
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2.  MATERIALS AND METHODS 

2.1.  Study site and sample collection 

Samples were collected during the M-174 cruise 
undertaken in April and May 2021, during maximum 
river discharge, along the Amazon River plume 
aboard the R/V ‘Meteor’ (Fig. 1). In total, 18 stations 
were sampled along the plume, from the river mouth 
to Bajan waters (15° N), to explore the variability of 
nitrification as river waters move northward. In this 
way, we covered several habitats, differing in their sea 
surface temperature and salinity, as well as the depth 

of the chlorophyll maximum, mixed layer depth and 
NO3

– availability (Pham et al. 2024). These habitats 
were called riverine (RI), young plume core (YPC), 
western plume margin (WPM), and modified and 
oceanic sea water (MOW and OSW, respectively; 
Fig. 1). Water samples were obtained using a Seabird 
Electronics SBE-32 rosette mounted with 21 Free 
Flow bottles of 10 l. Vertical profiles of temperature 
and salinity, dissolved oxygen, turbidity and fluores-
cence were obtained from a Seabird Electronics SBE-
911plus (SN-0603) CTD, SBE43 dissolved oxygen 
sensor, D&A OBS-3 turbidity sensor and a WETStar 
fluorometer, respectively, mounted on the rosette. 

2.2.  Photosynthetically active 
radiation  measurements 

The Seabird Electronics device was 
used to measure photosynthetically 
active radiation (PAR) throughout the 
water column. As some casts were not 
taken during daylight hours, a first 
selection of all casts measured be -
tween 09:00 and 20:30 h was made. A 
total of 67 casts were taken between 
08:00 and 20:00 h and judged suitable 
for further %PAR (as a percentage of 
surface irradiance) calculations. The 
light attenuation coefficient, Kd(PAR), 
was calculated from a simple linear fit 
of log-transformed PAR data versus 
depth (Kirk 1994). The resulting %PAR 
was calculated as follows: 

                                              (1) 
The depth where the %PAR reaches 
1% is, by definition, the depth of the 
euphotic zone. 

2.3.  Nutrient analysis 

Samples for nutrient analysis were 
filtered (0.2 μm pore size) immedi-
ately after collection. Nutrient (silicate 
[SiO2], phosphate [PO4

3–], NO3
–, 

NO2
– and NH4

+) concentrations were 
de termined shortly after filtration, on a 
continuous flow autoanalyser (QuAA-
tro, SEAL analytics) following (Grass-
hoff et al. 1999) and HELCOM guide-
lines (2014), with a precision of 0.3 

exp 100PAR K z– PARd #= ` j; E

3

Fig. 1. Study site. The riverine habitat (RI) is located in front of the river 
mouth and is followed by the young plume core (YPC) and western plume 
margin (WPM) habitats. The most distant stations are part of the modified 
oceanic seawater habitat (MOW). An oceanic seawater reference point was 
also sampled (OSW habitat; Stns 5–7). Surface chl a data were obtained for 
May 2021 from 2014.0 OCI chlorophyll data (AQUA/MODIS, NASA). The  

plume is discernable, with surface chl a values above 5 mg m–3
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(SiO2), 0.01 (PO4
3–), 0.02 (NO3

–), 0.006 (NO2
–) and 

0.02 μM (NH4
+). 

2.4.  Nitrification rate measurements 

Nitrification rates were measured using the 15N-
NH4

+ tracer incubation method (Santoro et al. 2010, 
Smith et al. 2014, Damashek et al. 2016). Water was 
collected at each station from 1 to 3 depths (usually at 
the surface, mid-depth or chlorophyll maximum and 
bottom or deeper than the chlorophyll maximum; 
Table S1 in Supplement 1 at www.int-res.com/
articles/suppl/m730p001_supp1.xlsx), in triplicate, 
in 1 l PC bottles and was immediately amended with 
15N-NH4Cl (ISOTEC, Sigma Aldrich, 98 atom%) at 
approximately 10% of the ambient concentration. 
Samples for the initial conditions (T0) were filtered 
directly after tracer injection onto precombusted 
(450°C for 4 h) 25 mm GF-075 filters (Advantec, GF-
075; 25 mm, nominal pore-size 0.3 μm) while endpoint 
samples were incubated for 3–6 h before filtration. 
One set of endpoints was incubated in the dark, at 
ambient surface temperature, and one set, when the 
station was sampled during the day, at in situ light 
intensity and temperature. After filtration, 50 ml ali-
quots of each sample were collected in Falcon tubes 
and frozen at –20°C until analysis. During the incu-
bation, the labelled 15N-NH4

+ was converted into 15N-
NO2

– and 15N-NO3
– (15N-NOx), which was analyzed 

using the bacterial denitrifier method (Sigman et al. 
2001). Samples with a NOx concentration above 
0.2 μM were run on a Thermo Scientific Delta V 
Advantage isotope ratio mass spectrometer con-
nected to a PAL autosampler and a Finnigan Gas-
Bench II. Nitrate standards (IAEA-N3 and USGS34) 
emulating sample concentrations were used for cali-
bration, with an uncertainty of 0.2‰. Nitrification 
rates depend on the amount of tracer added, the size 
of the NO2

– + NO3
– pool and the excess 15N-NOx 

measured during the incubation time (ΔT) and were 
calculated as follows (Damashek et al. 2016): 

                                                                          
(2)

 

where NR is nitrification rate  (nmol l–1 h–1), 15N-NOx 
is the difference in 15N content (AP, in atom%) of the 
end (TF) and the beginning (T0) samples: 

                                                                   
(3) 

This incubation experiment does not discriminate 
be tween NH4

+ oxidation to NO2
– and further NO2

– 
oxidation to NO3

–. Three samples were re-analyzed 
after removing all NO2

– by treatment with sulfamic 
acid prior to bacterial conversion to N2O, according 
to the protocol of Granger & Sigman (2009). We ob -
served that more than 90% of the labelled NH4

+ in -
jected ended in the NO2

– pool (Fig. S1 in Supplement 
2 at www.int-res.com/articles/suppl/m730p001_
supp2.pdf; for all supplemental figures). It is therefore 
likely that the nitrification rates reported here mainly 
reflect NH4

+ oxidation rates. 

2.5.  Light and dark incubation experiment 

At stations sampled during the day (between 09:00 
and 20:00 h), incubations of bottles collected in the 
euphotic zones (depth of <50 m) were performed in 2 
sets. One set was incubated in the dark, to limit poten-
tial competition between nitrifiers and phytoplankton, 
and one set was incubated under in situ light con-
ditions. The aim of the experiment was to study the 
effect of light on bulk nitrification rates along the Ama-
zon River plume. Results were grouped by PAR levels, 
which were arbitrarily chosen to be less than 1% (out-
side of the euphotic zone), 1–10%, 10–50% and above 
50% PAR. The effect of temperature is assumed to be 
modest, as little variation (±2°C) was observed in water 
temperature between the sampled depths (Fig. S2). 

2.6.  Detection limit of nitrification rates 

The detection limit of nitrification rates was deter-
mined for every incubation following (Santoro et al. 
2013) and is dependent on the 15N enrichment of the 
substrate pool and the concentration of the product 
pool. Detection limits for nitrification rates ranged 
from 0.003 to 0.400 nmol l–1 h–1 at RI stations and 
from 0.003 to 0.050 nmol l–1 h–1 at YPC stations. Sta-
tions located in the WPM habitat exhibited detection 
limits ranging from 0.001 to 0.06 nmol l–1 h–1, while 
MOW and the oligotrophic station OSW had detec-
tion limits of 0.001–0.01 and 0.001–0.08 nmol l–1 h–1, 
respectively. 

2.7.  Statistical analyses 

A total of 7 machine-learning models from the R 
 package ‘caret’ (v.4.6-14; Kuhn 2008) were used to 
explore the correlations between a set of environmental 
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variables and bulk, log10-transformed nitrification rates 
(in nmol l–1 h–1): linear model (lm), elasticnet model 
(enet), random forest (rf), extreme gradient boosting 
(xgbTree), support vector machines with linear and 
radial kernel (svmLinear, svmRadial) and k-nearest 
neighbours (knn). Eleven variables were used as input: 
temperature, oxygen concentrations, fluorescence, 
turbidity, salinity, particulate organic N (PON), depth 
and nutrient concentrations (PO4

3–, NO3
–, NO2

– and 
NH4

+). All variables without missing values were taken 
into account in this analysis, and 2 variables were 
excluded (silica and particulate organic carbon con-
centrations), as they had the same variability as another 
variable (with salinity and PON, respectively). 

To prevent low (n = 45) sample size-related bias and 
overfitting in algorithm selection, a leave-one-out 
cross-validation scheme was applied to evaluate 
models: a separate model was trained for each sample 
on all the data points except for the sample in ques-
tion. Then, the fitted model was used to predict the 
target variable based on the held-out data point. The 
predictions were collected and compared to the 
respective measured values to assess the model. As 
performance metrics, the coefficient of determination 
(R2, explained variance), root-mean-square error 
(RMSE, standard deviation of the residuals) and 
model average error (MAE, average absolute differ-
ence between predicted and original values) were cal-
culated using the ‘postResample’ function from the R 
package ‘caret’ (v.4.6-14; Kuhn 2008). 

Two algorithms were selected based on their per-
formance metrics, with a maximal R2 and minimal 
RMSE and MAE as indicators of a good fit. For the 
variable importance analysis, the ‘varImp’ function 
(‘caret’ package v.4.6-14) was used after re-training 
these 2 algorithms on the entire data set. That way, 
complex and non-linear relationships between mea-
sured variables and bulk nitrification rates could be 
detected, and all the data was included in the ranking 
of the variables selected for explaining bulk nitrifica-
tion rates along the Amazon River plume. The differ-
ences among the means of different groups based on 
the habitats described earlier were explored using 
Tukey’s test for multiple comparisons. 

3.  RESULTS 

3.1.  Environmental variables along the  
Amazon River plume 

The 5 plume habitats sampled exhibited different 
environmental characteristics. Close to the river 

mouth, the water column showed a strong stratifica-
tion between 5 and 10 m depth, with potential density 
increasing from 0 to 25 kg m–3 (Fig. 2A). With dis-
tance from the river mouth, the water column depth 
increased and the potential density of the water col-
umn became more homogeneous, with a difference of 
only ~5 kg m–3 between the upper and lower layer of 
the water column (Fig. 2A). 

Oxygen was close to saturation (200–250 μM; 
Fig. 2B) in the upper 10 m along the Amazon River 
plume. It decreased to 80–100 μM below the halo-
cline (10 m depth) at shallow stations from the RI and 
YPC habitats, while in more distant habitats, oxygen 
concentrations started decreasing between 80 and 
200 m depth (Fig. 2B). 

N species concentrations (NO3
–, NO2

– and NH4
+) 

were higher in the river mouth (RI habitat), with 
NO3

– being at least 10 times higher (up to 18.4 μM) 
relative to other habitats, while N concentrations 
were close to oligotrophic conditions (<0.5 μM). The 
N to phosphorus (P) ratios, calculated from the ratio 
between NO3

– and PO4
3– concentrations, revealed 

that NO3
– is rapidly depleted, as all but the RI hab-

itats showed N/P values below the Redfield ratio 
(16/1). 

Nitrification rates showed strong spatial variability. 
In the RI habitat, nitrification rates were homoge-
neous throughout the water column, while in other 
habitats along the plume, nitrification rates were 
close to 0 at the surface and up to 100 times lower than 
in deeper waters (Fig. 2G). 

3.2.  Nitrification rates along the  
Amazon River plume 

Bulk nitrification rates also changed along the 
Amazon River plume. Rates were higher in habitats 
more strongly influenced by the Amazon River, as 
they ranged between 301.6 nmol l–1 d–1 at the river 
mouth and 0 at more distant habitats (Fig. 3A). The 
MOW habitat exhibited nitrification rates in the same 
range as our oceanic reference (OSW habitat), even 
though the plume’s influence was still noticeable at 
the surface of this habitat, as previously shown in the 
density profiles (Fig. 2A). 

In addition to the apparent spatial variability of 
bulk nitrification rates, rates also seemed to vary with 
light conditions (Fig. 3B). In cases where in situ %PAR 
exceeded 50%, bulk nitrification rates in both incuba-
tions were close to 0. As the %PAR decreased, bulk 
nitrification rates measured under dark conditions 
increased, while the in situ light incubation virtually 
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measured no conversion. In light-depleted environ-
ments, where %PAR is below 1%, nitrification rates 
were maximum and rates measured under in situ light 
were in the same order of magnitude as those mea-
sured in dark conditions (Fig. 3B). 

3.3.  Descriptors of habitats with high  
nitrification rates 

To further untangle the relationship between the 
environmental conditions encountered in each hab-
itat, such as turbidity of the water column, oxygen 
and nutrient concentrations on the one hand and bulk 
nitrification rates on the other, we applied a machine-
learning feature-importance analysis. To this end, we 

first identified machine-learning models that best 
capture this relationship using leave-one-out cross-
validation. Models were evaluated using the R2, 
RMSE and MAE. The optimal model will produce 
minimal MAEs and RMSEs and R2 values close to 1; 
departures from this optimal value can be either 
accredited to an ill fit of the model or unobserved 
variables. We found that the rf, xgbTree and svmRa-
dial outperform the other models, with rf explaining 
68% of the variation in the nitrification rate based on 
the environmental parameters (Table 1). In contrast to 
the other models used here, the models with high per-
formance are known to be able to model highly non-
linear relationships. Therefore, our results stress the 
importance of non-linear processes in the environ-
mental control of nitrification rates. 

6

Fig. 2. Diversity of different habitats along the plume, shown by the vertical profiles of (A) density (sigma-theta), (B) dissolved 
oxygen, (C) NO3

–, (D) NO2
–, (E) NH4

+ and (F) N/P ratios, some variables that might be related to (G) log10-transformed bulk 
nitrification rates at the RI (black), YPC (red), WPM (yellow), MOW (cyan) and OSW (blue) habitats (see Fig. 1 for habitat ab-
breviations). Low NO3

– NO2
– and NH4

+ concentrations (<0.5 μM) and rates possibly below the detection limit (<0.4 nmol l–1 
h–1) are highlighted by the grey area. The grey line on the N/P profiles is set at 16, with values above showing excess of NO3

– 
and values below a deficit of NO3

– relative to PO4
3– according to Redfield ratios (see Section 3.1). Circles indicate  

sampling depth. For simplification, only the first 0–30 m, 0–60 m or 0–200 m of the water column are presented here
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Applying feature-importance analysis to the most 
performant model (rf), we found that NO2

– and 
PO4

3– concentrations as well as turbidity and fluores-
cence are the variables that best describe environ-
ments with high bulk nitrification rates (Fig. 4), as 
higher NO2

– and PO4
3– concentrations and turbidity 

co-occur with high bulk nitrification rates (Fig. 5). 
Fluorescence and bulk nitrification rates varied simi-

7

Fig. 3. (A) Bulk nitrification rates (bNR; nmol l–1 h–1) vary with habitat. Shared letters above boxes indicate non-significant dif-
ferences between habitats (Tukey test, p > 0.05); habitat abbreviations as in Fig. 1. Boxplots represent the interquartile range. 
(B) NR measured under dark and in situ PAR conditions. The turbidity of each sample is represented by the size of the marker.  

In both panels and for each box, the median is represented with a bold line

Model                   R2                    RMSE                    MAE 
                                                 (nmol l–1 h–1)     (nmol l–1 h–1) 
 
lm                         0.39                    15.00                      7.89 
enet                      0.42                    10.81                      6.46 
rf                           0.68                     6.04                        3.67 
xgbTree              0.65                     6.29                        3.74 
svmLinear          0.30                    16.18                      8.92 
svmRadial          0.59                     7.89                        4.13 
knn                       0.33                    13.17                      6.98

Table 1. Averaged performance metrics (R2, root-mean-square 
error [RMSE] and model average error [MAE]) of the 7 
 machine-learning models applied. lm: linear model; enet: 
elasticnet model; rf: random forest; xgbTree: extreme gradient 
boosting; svmLinear and svmRadial: support vector machines 
with linear and radial kernel, respectively; and knn: k-nearest  

neighbour

Fig. 4. Ranking of variables used in the random forest model, 
showing which variables are, according to our model, the 
best predictor for bulk nitrification rates in the Amazon River 
plume. The overall importance of each variable was deter-
mined by computing the relative influence of each variable  

on the error of all trees
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larly, with nitrification rates increasing together with 
fluorescence when the latter was below 1 mg m–3. 
Above that threshold, 3 points were measured with 
lower nitrification rates (Fig. 5). This ranking of vari-
ables is in accordance with the important features 
identified by the xgbTree model, which also pre-
sented NO2

–, turbidity and PO4
3– as the most impor-

tant variables (Fig. S3). 

4.  DISCUSSION 

4.1.  Nitrification across the Amazon River  
plume habitats 

The Amazon River delivers large quantities of 
nutrient-rich, turbid freshwater to the estuary. As it is 
transported northward along the coast and forms the 
Amazon River plume, the Amazon water undergoes 

alterations, which are visible in the physical and bio-
chemical properties of the water column. With their 
characterization of several habitats from the river 
mouth to 16° N (Fig. 1), Weber et al. (2019) and Pham 
et al. (2024) have highlighted this diversity, which 
might impact the N cycle along the Amazon River 
plume beyond NO3

– availability and phytoplankton 
species composition. 

In the RI habitat, the freshwater of the Amazon 
River was encountered over the first 10 m of the shal-
low water column and was characterized by high 
NO3

– (ranging between 3.4 and 18.4 μM) and NH4
+ 

concentrations (up to 1.2 μM), and an N/P ratio 
above 16. As the water travelled and mixed with oce -
anic waters, the vertical stratification became weaker 
and the upper water column became depleted in all 
nutrients, resulting in N/P ratios below Redfield 
(Fig. 2F). The most distant stations, located around 
15° N, belonged to a habitat characterized as MOW 
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Fig. 5. Concentrations of (A) NO2
– and (B) PO4

3– as well as (C) turbidity and (D) fluorescence are the variables that had the 
highest importance for the random forest model. Each of these variables is plotted against bulk nitrification rates and data is  

coloured by habitat. Note the log scale of the y-axis; see Fig. 1 for habitat abbreviations
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(Pham et al. 2024). Despite the presence of a fine layer 
of less saline water at the very top of the water col-
umn, a fingerprint of riverine influence, N species 
were depleted at the surface (0.07–0.92 μM of DIN) 
and this habitat was otherwise indistinguishable from 
the oceanic seawater habitat (Fig. 2). 

Similar to N species, the highest nitrification rates 
were observed at the river mouth (up to 301.6 nmol l–1 
h–1; Fig. 3A). By contrast, nitrification rates dropped 
to less than 10 nmol l–1 h–1 within 100 km of the river 
mouth, and ranged between 0 and 2.5 nmol l–1 h–1 at 
the most distant stations (Fig. 3A), in accordance with 
rates measured in the northern plume (Starr et al. 
2022). Even if nitrification rates increased with depth 
at deeper stations, they were still 2 orders of magni-
tude lower than those observed in the river mouth 
(Fig. 2G). These results suggest that the Amazon River 
mouth offers perfect conditions for nitrifiers to thrive, 
as hypothesized by previous studies (DeMaster & 
Aller 2001, Aquino et al. 2022). 

In fact, nitrification rates measured in the river 
mouth were as high as those observed in the Chang 
Jiang River mouth and plume and in the Mississippi 
River, systems with similar settings (Carini et al. 2010, 
Hsiao et al. 2014). They were also similar to nitrifica-
tion rates measured in the Rhône River plume, which 
had NH4

+ concentrations about 10 times higher at the 
time of the study (Bianchi et al. 1999). By contrast, the 
productive Peruvian upwelling system exhibited 
nitrification rates about 20 times lower, even though 
surface NH4

+ and NO3
– concentrations were similar 

to those observed in the Amazon River mouth (Fer -
nán dez et al. 2009). At more distant and oceanic sta-
tions, nitrification rates were in the range of rates ob -
served in the oligotrophic Atlantic Ocean (0.4–
7 nmol l–1 h–1; Clark et al. 2008). The fairly wide 
range of nitrification rates along the Amazon River 
plume and across sites with similar environmental 
conditions suggests strong variability of the factors 
potentially forcing nitrification rates. 

4.2.  Environmental variables linked to elevated 
nitrification rates 

A myriad of variables might have an effect on nitri-
fication rates and the biogeochemistry of an estuary. 
For example, Damashek et al. (2016), reported strong 
positive correlations of NH4

+ and suspended particu-
late matter with nitrification rates in San Francisco 
Bay and across a range of ecosystems (e.g. brackish 
inland seas, fjords, temperate and tropical estuaries) 
using linear models. However, controls on nitrifica-

tion rates might be more complex than simple linear 
relationships, and these are rarely encountered 
(Ward 2005, Clark et al. 2008). To overcome this issue, 
we applied 7 machine-learning models to our data 
set, encompassing diverse types of relationships be -
tween explanatory and response variables. 

As expected, the linear models (lm and svmLinear; 
Table 1) did not perform well and had, together with 
the knn model, the lowest R2 and highest RMSE and 
MAE (Table 1). The linear model had a maximum 
RMSE of 32.36 ± 2.88 nmol l–1 h–1, a value above all 
rates measured outside of the RI habitat (Fig. 3A), 
underlining that this type of model is not adequate 
here. The model that fitted our data best was the rf 
model, which had the highest R2 (0.75 ± 0.10; 
Table 1). With the 11 explanatory variables used, this 
model was able to explain nitrification rates with a 
maximum error of 5.37 ± 1.70 nmol l–1 h–1. This error 
represents less than 2% and less than 30% of the max-
imum nitrification rates measured in the river mouth 
and YPC habitats, respectively (Fig. 3A). 

The variable importance function ranks the explan-
atory variables used in the rf model according to their 
importance for the prediction of nitrification rates. 
Altogether, this model highlighted the importance of 
NO2

– and PO4
3– concentrations, as well as turbidity 

and fluorescence as good descriptors for nitrification 
rates in the Amazon River mouth and plume (Fig. 4). 
The turbidity of riverine waters provides a particle-
rich and light-limited environment which likely pro-
vides an advantage to nitrifiers over phytoplankton 
for NH4

+ (Cole & Cloern 1984, Alpine & Cloern 1988, 
Smith et al. 2014), and in many estuaries, nitrification 
rates peak in turbid waters (Owens 1986, Berounsky & 
Nixon 1993, Iriarte et al. 1997, Brion et al. 2000, de 
Wilde & de Bie 2000, Pakulski et al. 2000, Hsiao et al. 
2014). Our extensive analysis indicates that similar 
conclusions can be drawn in the highly turbid Ama-
zon River mouth environment (Fig. 5C). As distance 
from the river mouth increases and turbidity de -
creases to values under 5 NTU, nitrification rates drop 
by up to 5 orders of magnitude and the link between 
turbidity and rates disappears, as previously reported 
for the northern part of the Amazon River plume 
(Starr et al. 2022). 

Turbidity and light are difficult to discriminate, as 
the concentration of particles leading to elevated tur-
bidity usually results in light attenuation (Fig. 3B). An 
incubation experiment with samples of varying turbi-
dity under both dark and in situ light conditions 
revealed that elevated nitrification rates were main-
tained under both dark and in situ light levels when 
turbidity was high and in situ %PAR was below 1%, 
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while under low turbidity and high light levels, nitrifi-
cation rates under in situ light condition dropped to 
minimum values (Fig. 3B). These results underline the 
strong negative effect of light on nitrification rates 
along the Amazon River plume. To determine whether 
this reflects a light inhibition of nitrifiers or direct 
competition with phytoplankton for NH4

+ remains to 
be assessed. Fluorescence is a proxy for phytoplank-
ton presence, and while some fluorescence was mea-
sured at the surface of the most riverine habitat, these 
measurements were potentially biased by the high 
concentration of particles. Alternatively, the continu-
ous supply of NH4

+ from the river mouth could sup-
port both the nitrifier and planktonic communities. 
The highest fluorescence measurements were ob -
served further offshore, in the YPC habitat, and 
linked to a decrease in nitrification rates by 2 orders 
of magnitude (Fig. 5D), which could corroborate the 
hypothesis of competition with phytoplankton at 
higher light levels and lower substrate concentration. 

While the elevated turbidity of the river mouth 
therefore seems to provide a sufficient light attenu-
ation for nitrification to prevail, the high concentra-
tion of particles additionally provides high concen-
trations of substrate, promoting the growth of 
ammonia-oxidizers as observed in other contexts 
(Zheng et al. 2017, Kache et al. 2021). In the river 
mouth where the highest PON concentrations were 
found, particle-associated ammonia-oxidizing ar -
chaea and nitrite-oxidizing bacteria were at least 
threefold more abundant than free-living ones (Sat-
insky et al. 2015, 2017). Further offshore, in the Ama-
zon River plume, free-living cells accounted for more 
than 90% of the metatranscriptome (Satinsky et al. 
2014), and when looking at the PON fraction of par-
ticles, no correlation with nitrification rates was found 
in the non-riverine habitats (YPC, WPM, MOW and 
OSW). These results suggest that turbidity, or the 
concentration of particles, holds an additional role in 
the sole light-protection of nitrifiers in the river 
mouth and explains the shift between particle-associ-
ated nitrifiers in the river mouth to more free-living 
communities in the plume as previously observed 
(Satinsky et al. 2015, 2017). 

NO2
– is an intermediate of nitrification that usually 

accumulates just below the deep chlorophyll maxi-
mum (Brzezinski 1988, Dore & Karl 1996, Santoro et al. 
2013). In oxygenated waters, this accumulation results 
in NO2

– concentrations of 0.01–1 μM (Ward 2008), 
similar in magnitude to the peak concentrations ob-
served across habitats along the Amazon River plume 
(0.01–1.47 μM; Fig. 2D). Nitrifier abundance and 
nitri fication rates often peak at the NO2

– maximum in 

the ocean (Ward 1987, Ward et al. 1989, Dore & Karl 
1996, Santoro et al. 2010, 2013, 2017, Newell et al. 
2011, Buchwald & Casciotti 2013, Smith et al. 2016), 
though rapid nutrient cycling and mixing in coastal 
zones tend to conceal this relationship (Hsiao et al. 
2014, Bronk et al. 2014, Damashek et al. 2016). It is 
therefore interesting, though not surprising, to find a 
similar relationship in our data set (Figs. 4 & 5A). The 
greater NO2

– concentrations are ob served in the RI 
and YPC habitats (Fig. 2D), usually below the plume 
layer (>10 m depth) and the eupho tic zone, suggest-
ing that neither river runoff nor the excretion of NO2

– 
by phytoplankton likely explain the relatively high 
NO2

– concentrations observed here, as pointed out in 
other environments (Buchwald & Casciotti 2013, San-
toro et al. 2013). Instead, the observed NO2

– accumu-
lation in these environments could arise from nitrifica-
tion, influenced by differences in maximum growth 
rate, loss rate and substrate affinity of nitrite-oxidizers 
relative to ammonia-oxidizers (Zakem et al. 2018) but 
also from mesoscale turbulences (Lévy et al. 2014, Liu 
et al. 2023). In the Amazon River plume, the increasing 
mixing between the river plume layer and the more sa-
line water below as the water moves northward could 
partly explain the decrease in NO2

–-peak between 
riverine habitats and more oceanic ones. 

Another nutrient, PO4
3–, presented variability simi-

lar to nitrification rates, with high concentrations co-
occurring with high nitrification rates in the river 
mouth (Fig. 5B). The Amazon River delivers substan-
tial amounts of PO4

3– to the river mouth (~0.7 μM; 
Demaster & Pope 1996), and release of PO4

3– from 
particle desorption and degradation during mixing in 
the estuary supplies similar concentrations to the 
water column (Chase & Sayles 1980, Fox et al. 1986). 
Consequently, most habitats along the Amazon River 
plume do not seem to be P-limited. PO4

3– concentra-
tions range between 0.2 and 1.0 μM (Benitez-Nelson 
2000), with the highest concentrations found in the 
river mouth. While this co-occurrence might solely 
be a coincidence, nitrifiers have also been shown to 
have a similar affinity for PO4

3– as bacterioplankton 
(Tanaka et al. 2003), together with a strong depen-
dency on P turnover rates. Additionally, recent micro-
cosm experiments in a eutrophic lake highlighted the 
potential of inorganic P as a fuel for nitrification 
(Zhou et al. 2023), and marine nitrifiers have been re -
ported to assimilate 2 mmol of P per mole of NH4

+ 
respired (Meador et al. 2020). The higher P concen-
trations and lower P turnover rates encountered in the 
Amazon River mouth (Sohm & Capone 2010, Meador 
et al. 2020) could thus enhance nitrification rates in 
this habitat. 
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Conversely, NO3
–, NH4

+ concentration and tem-
perature did not hold a strong explanatory power 
according to this model. Correlations between NH4

+ 
and nitrification rates must be interpreted with care. 
In fact, competition with phytoplankton aside, a 
strong coupling between NH4

+ production and oxi-
dation may result in the occurrence of high nitrifica-
tion rates at lower NH4

+ concentrations (Carini et al. 
2010, Hsiao et al. 2014, Bronk et al. 2014), potentially 
explaining the lack of a strong relationship in some 
habitats of the Amazon River plume (Fig. S4). The 
absence of a relationship between NO3

– and nitrifica-
tion rates is also not unexpected. Even though it was 
reported in many studies summarized by Wan et al. 
(2018), others have noted the absence of such a rela-
tionship (Damashek et al. 2016). Wan et al. (2018) 
suggested that nitrifiers can outcompete phytoplank-
ton in NO3

–-rich waters thanks to their higher NH4
+ 

affinities relative to eukaryotic phytoplankton, which 
dominate these systems. Unsurprisingly, blooms of 
large centric diatoms were found at a low-salinity and 
NO3

–-replete site in the plume, along with the 
 highest expression of the eukaryotic NO3

– transport 
gene (Zielinski et al. 2016). It is therefore likely that, 
similar to NH4

+, NO3
– is subject to rapid cycling 

or mixing, resulting in a concealing of its relation-
ship with nitrification rates (Middelburg & Nieuwen-
huize 2001). 

5.  CONCLUSIONS 

This study highlights, for the first time, the signifi-
cance of nitrification as a crucial process of N cycling 
in the Amazon River plume. The river mouth pre-
sented nitrification rates comparable to other coastal 
zones and 2 orders of magnitude higher than in the 
open ocean. With high NO2

– and PO4
3– concentra-

tions, the Amazon River seems to offer the perfect 
conditions for nitrifiers to thrive. The high turbidity of 
its waters probably inhibits phytoplankton growth 
and activity, easing potential competition for NH4

+. 
Within a few 100s of km from the river mouth, the 
NO3

– produced is depleted, highlighting the impor-
tance of nitrification for supporting phytoplankton 
growth the moment that light limitation constraints 
are lifted. The Amazon River estuary seems to be a 
particularly important site for N cycling. Since the 
Amazon catchment is undergoing drastic changes, 
this study gives a baseline for a central N-cycle pro-
cess, also broadening our understanding of its control 
factors, which is crucial for predicting the future of 
this ecosystem. 
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