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1.  MARINE HEATWAVES AND THEIR   
SEABIRD-RELEVANT CHARACTERISTICS 

Marine heatwaves (MHWs) are defined by periods 
of anomalously high ocean temperatures, caused by a 
mix of drivers that often includes seasonality and per-
sistence of atmospheric high-pressure systems, weak-

ened surface winds, reduced vertical mixing of the 
water column, horizontal advection of warm water, 
and reduced ocean heat flux to the atmosphere (Hob-
day et al. 2018, Sen Gupta et al. 2020). MHWs have 
been increasing in frequency and intensity over the 
past few decades (Oliver et al. 2018), sometimes with 
severe consequences for seabirds and their marine 
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ABSTRACT:  Marine heatwaves (MHWs) are characterized by periods of extreme warming of local 
to basin-scale marine habitat. Effects of MHWs on some seabirds (e.g. mass die-offs) are well doc-
umented, but mechanisms by which seabirds respond to MHWs remain poorly understood. Follow-
ing from a symposium at the 3rd World Seabird Conference, this Theme Section presents recent 
research to address this knowledge gap. Studies included here spanned one or more MHW event, 
at spatial scales from individual seabird colonies to large marine ecosystems in subtropical, tem-
perate, and polar oceans, and over timespans from months to decades. The findings summarized 
herein indicate that MHWs can affect seabirds directly by creating physiological heat stress that 
affects behavior or survival, or indirectly by disrupting seabird food webs, largely by altering meta-
bolic rates in ectothermic prey species, leading to effects on their associated predators and prey. 
Four main mechanisms by which MHWs affect seabirds are (1) habitat modification, (2) physiolog-
ical forcing, (3) behavioral responses, and (4) ecological processes or species interactions. Most 
seabird species have experienced limited effects from MHWs to date, owing to ecological and be -
havioral adaptations that buffer MHW effects. However, the intensity and frequency of MHWs is 
increasing due to global warming, and more seabird species may have difficulty coping with future 
heatwave events. Also, MHW impacts can persist for years after a MHW ends, so consequences of 
recent or future MHWs could continue to unfold over time for many long-lived seabird species.  
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habitats (Piatt et al. 2020). Generally, MHWs appear 
to be the result of local-scale processes acting on the 
mixed layer, which can be modulated by the remote 
influence of major climate modes (Di Lorenzo & Man-
tua 2016, Holbrook et al. 2019). Other modes of warm-
ing include quasi-annual variability (e.g. El Niño 
Southern Oscillation, ENSO), multi-decadal oscilla-
tions (e.g. Pacific Decadal Oscillation, PDO), and glo -
bal warming. Slow, upward-trending global warming 
fuels an increasing intensity in the cyclical/periodic 
modes that may be additive in producing particularly 
strong MHW events (Sen Gupta et al. 2020).  

Sen Gupta et al. (2020) recently identified 62 of the 
‘most extreme’ MHWs of the past 4 decades based 
on maximum areal intensity, severity, and duration. 
The median duration of these extreme MHW events 
was ~70 d (10th–90th decile was between 40 and 
160 d). The median areal extent of severe MHWs 
was ~1.6 million km2 (range 0.3–12 million km2). 
Maximum durations could be much longer (>700 d, 
Hobday et al. 2018). Furthermore, very strong ENSO 
events (e.g. in 1997/1998, 2015/2016) can enhance 
the intensity, duration, and spatial extent of some 
MHWs through  atmospheric teleconnections (Di Lo -
renzo & Mantua 2016). For example, the Pacific 
MHW in 2014–2016 (the ‘Blob’) was the longest 
known MHW event, triggered in 2014 by a persistent 
high-pressure system over the United States (US) 
Pacific Northwest (Bond et al. 2015). As MHW 
waters of the Blob moved eastward, they merged 
with the 2015/2016 ENSO signature and intensified 
warm sea surface temperature (SST) anomalies along 
the US Pacific west coast and Gulf of Alaska into the 
spring of 2016 (Sen Gupta et al. 2020). 

MHW characteristics that are pertinent to eval-
uating effects on seabirds include: (1) Location and 
spatial extent — MHWs may be produced by a mix 
of drivers that can promote local to regional warm-
ing almost anywhere on the globe, but particularly 
in temperate and subtropical waters that host the 
majority of global seabird populations (Paleczny et 
al. 2015). Many MHWs have moderate to large areal 
dimensions, which are large enough to affect entire 
seabird colony nesting and foraging areas, migration 
routes, or overwintering areas. (2) Duration — the 
more extreme MHWs typically persist for 1–6 mo, 
and only a few have persisted for a year or more. 
These longer duration MHWs may affect seabirds at 
multiple stages of their life cycle (breeding, spring 
or fall migration, molt, overwintering pe riods), 
thereby potentially influencing key population 
parameters, such as adult and juvenile survival, 
which often drive population change. (3) Seasonal-

ity — MHW intensity has a distinct seasonality and 
tends to peak during summer, when many seabird 
populations are constrained to attend their breeding 
colonies. (4) Intensity — MHW intensity (cumulative 
heat retention) develops more quickly and reaches 
greater extremes than typically observed during 
ENSO and PDO events (Holbrook et al. 2019), cre-
ating greater potential for impacts to seabirds and 
their prey despite their shorter duration. 

2.  STUDIES OF MHW EFFECTS ON SEABIRDS 

Until recently, relatively few papers have exa -
mined responses of seabirds to heatwaves or at -
tempted to elucidate mechanisms that result in 
minor effects or significant impacts on seabird bio-
logy (Woehler & Hobday 2024 in this Theme Sec-
tion). To help fill these gaps in our understanding, a 
symposium on ‘Mechanisms by which heatwaves im -
pact seabirds’ was organized for the 3rd World Sea-
bird Conference (WSC3) in Tasmania, Australia, in 
October 2021. Seven WSC3 contributions and 6 sub-
sequent papers submitted to this Theme Section are 
presented here and contain recent advances in our 
understanding of how heatwaves affect seabirds. In 
Section 3, we place these latest findings in context 
(see Table 1) with 7 other recent papers that were 
presented at WSC3 but published independently. 
Together, these 20 publications helped us to identify 
specific mechanisms that transform ocean heatwaves 
into effects on seabirds, the types of mechanisms 
that are most common, and the associated effects or 
consequences (impacts) for each type of mechanism. 

Effects of MHWs on seabirds are documented in the 
contributions to this Theme Section (including re-
views by Oswald & Arnold 2024 and Woehler & Hob-
day 2024; all articles cited in this paragraph are in this 
Theme Section). They include shifts in distribution at 
sea (Cushing et al. 2024, Kuletz et al. 2024), re duced 
food quality and foraging success (C. Robinson et al. 
2024, Wagner et al. 2024), re duced body condition 
(Schoen et al. 2024), heat stress (Mason et al. 2024, 
Olin et al. 2024), reproductive failures at colonies 
(Olin et al. 2024, Schoen et al. 2024), mass die-offs at 
sea (Jones et al. 2024), lower chick and/or adult sur-
vival (De la Cruz-Pino et al. 2024, Mason et al. 2024), 
and declines in abundance (Cannell et al. 2024, 
Schoen et al. 2024). However, the mecha nisms by 
which MHWs facilitate these outcomes are not always 
clear, such as why MHWs affect certain species (Can-
nell et al. 2024) yet leave others unaffected (e.g. ben-
thic-feeding marine birds, B. Robinson et al. 2024). 
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3.  MECHANISMS OF MHW EFFECTS 

We identified 4 types of mechanisms by which heat-
waves can generate effects on seabirds via changes in 
marine habitats and/or animal physiology, behavior, 
or ecology (Table 1). Mechanisms may operate di -
rectly or indirectly. Indirect effects are far more com-
mon and complex than direct effects, as suggested for 
climate change effects on marine vertebrates in gen-
eral (Sydeman et al. 2015). Despite many examples of 
MHW effects on some seabird species, MHWs have 
actually had limited effects on most marine bird spe-
cies (e.g. B. Robinson et al. 2024, Woehler & Hobday 
2024). Where effects do occur, there may be lingering 
consequences for seabirds for a considerable time 
after the MHW has ended (Cannell et al. 2024, Jones et 
al. 2024, Schoen et al. 2024). The main types of mecha -
nisms that translate heatwave forcing into effects on 
seabirds operate through four factors: habitat modifi-
cation, physiological forcing, behavioral responses, 
and ecological processes or interactions (Table 1).  

Two-thirds of all direct or indirect mechanisms are 
physiologically driven, often in association with other 
mecha nisms (Table 1). For endothermic seabirds, di -
rect mechanisms revolve around physiological ef forts 
to maintain a constant temperature, with some behav-
ioral help to cool the body, and some consequential 
biological processes (e.g. breeding failure, predation) 
if they cannot (Table 1). Metabolic scaling — the rela-
tionship between temperature, metabolism, and orga -
nism size — is the primary constraint that scales up the 
food web to influence biological, ecological, and evo-
lutionary processes (Bruno et al. 2015), and it creates 
an indirect pathway for most mechanisms by which 
MHWs impact marine food webs and seabirds. For 
ectothermic members of marine food webs, external 
temperature controls rates of chemical and en zyme re-
actions, metabolism, and higher functions such as as-
similation efficiency, growth, and fecundity (Brett 
1971). Most marine ectotherms are fine-tuned to work 
optimally over a relatively narrow and species-specific 
range of temperatures (Bruno et al. 2015, Pauly & Lam 
2023). In response to temperature, physiological fac-
tors help determine where and when prey are likely to 
be concentrated, as well as the quality, quantity, and 
diversity of prey that are likely to be available to sea-
bird predators (Grémillet et al. 2008). In turn, seabirds 
respond with behavioral mechanisms in the search for 
adequate prey, which might mean foraging farther or 
deeper, abandoning old foraging areas for new, mi-
grating to more productive wintering grounds, switch-
ing prey types when preferred prey are unavailable, 
and abandoning egg-laying or chicks when prey are 

scarce (Cairns 1988, Piatt et al. 2007, Elliot et al. 2008). 
These behavioral mechanisms may then lead to eco-
logical mechanisms of change, such as reduction of 
clutch size, predation of unattended eggs or chicks, re-
productive failure, reduced adult survival, match-mis-
match to food supplies, and competition with other 
upper trophic level predators for limited prey (Piatt et 
al. 2020, d’Entremont et al. 2023, De la Cruz-Pino et al. 
2024, Marsteller et al. 2024, Schoen et al. 2024). 

Direct effects of extreme heat can overwhelm ther-
moregulatory systems of seabirds and any behavioral 
means of cooling, which may cause heat stress or 
death. Seabirds on terrestrial breeding colonies can 
be stressed directly by extreme air temperatures asso-
ciated with MHWs, but we are unaware of similar 
effects reported yet for MHWs and birds at sea, as in 
most cases water temperature is below the upper 
 critical temperature of birds (e.g. Choy et al. 2021). 
Additionally, heat stress at colonies during marine or 
terrestrial heatwaves may occur more often than has 
previously been reported (Mason et al. 2024, Olin et 
al. 2024, Oswald & Arnold 2024). The physiological 
response by seabirds to heat stress can be mitigated 
by adaptive behaviors (with some fitness costs); 
however, effects of these behavior modifications can 
be magnified by ecological interactions such as pre-
dation and competition (Table 1).  

Indirect effects are almost entirely mediated by the 
effect of heating on marine habitat and food webs, fol-
lowed by behavioral or biological consequences for 
seabirds. Therefore, indirect effects can be quite com-
plex, in part because individual mechanisms may be 
additive and/or amplified biologically over time. For 
example, the most common effect of a heatwave (by 
definition) is to heat surface layers of water (Holbrook 
et al. 2019). When warm water habitat is mixed, strat-
ified, deepened, or advected, and/or these conditions 
persist over periods of months to years, then habitat 
modification becomes an important physical mech-
anism that promotes more complex biological re -
sponses in the ecosystem. For example, ectothermic 
forage fish have narrow optimal temperature ranges, 
they will usually retreat (horizontally or vertically) 
from warmer-than-usual water if they are distressed, 
and so become unavailable to colony-based breeding 
seabirds. Even during a relatively brief heatwave, this 
mechanism can result in a temporary abandonment of 
nest sites and chicks (for ca. 5–20 d; Montevecchi et 
al. 2021). Similar effects on seabirds may also occur 
due to a temporal ‘match-mismatch’ between sea-
birds and their prey (d’Entremont et al. 2023, Woehler 
& Hobday 2024), when intense MHWs extending 
over seasons and years may affect phenology, species 
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composition, and magnitude of phytoplankton and 
zooplankton blooms and associated forage fish pred-
ators (Batten et al. 2022). 

During longer-than-average MHWs (i.e. >70 d), 
multiple indirect mechanisms have the potential to 
synergistically disrupt food webs and amplify effects 
on seabirds over parts or all of their annual life history 
cycle, leading to seabird breeding failures, overwinter 
mortality, and/or population declines (Glencross et al. 
2021, Cannell et al. 2024, Jones et al. 2024, Schoen et 
al. 2024). Played out over weeks and months, warm 
waters will also increase metabolic rates and therefore 
food demands of all ectotherms, as metabolic scaling 
with temperature is highly conserved across taxa and 
environments (Bruno et al. 2015). This ordinary phys-
iological response can result in extraordinary biolog-
ical consequences (Table 1) for every ectothermic or-
ganism from plankton to large groundfish (Arimitsu et 
al. 2021, Gomes et al. 2024, Reum et al. 2024). Over 
months and seasons, just 2 phenomena — ectothermic 
metabolism and thermal optima — will begin to trans-
form communities, as taxa with tolerance for higher 
temperatures begin to replace cold-water adapted 
taxa, ecosystem structure is disrupted by changes in 
biomass demand and energy flux up food chains 
(Gomes et al. 2024, Reum et al. 2024), and new or al-
tered communities may be redistributed within or 
among ecosystems by advection of warm currents 
(Daly et al. 2017, Kuletz et al. 2024, Woehler & Hobday 
2024). Shifts in primary and secondary food production 
can produce advected communities dominated by 
smaller and/or lower-quality individuals (Suryan et al. 
2021, Batten et al. 2022). 

The change to smaller-sized species within lower 
trophic level communities combined with higher 
metabolic rates and food requirements driven by in-
creased temperatures can lead to reduced growth 
rates and poor body condition in forage taxa (Daly & 
Brodeur 2015, von Biela et al. 2019, Arimitsu et al. 
2021, C. Robinson et al. 2024). Depending on the sea-
sonality of these combined mechanisms, effects can 
vary drastically. Over the summer seabird breeding 
seasons, colony-based foraging success may be dis-
rupted, leading to de creased fledging success or adult 
survival (Piatt et al. 2020, Cannell et al. 2024, Kuletz et 
al. 2024). Over the winter non-breeding periods, they 
may disrupt migration behavior, molt, survival, and 
future reproduction in seabirds (Glencross et al. 2021, 
Jones et al. 2024). Over all the seasons (1+ year), this 
chronic ef fect can inhibit growth, lipid storage, sur-
vival, and recruitment of multiple forage species lead-
ing to synchronous collapse of the forage fish commu-
nity (i.e. a ‘portfolio effect’, Arimitsu et al. 2021).  

Depletion of prey abundance can be further accel-
erated by a large increase in food intake required by 
large ectothermic groundfish stocks after significant 
ocean warming (Holsman & Aydin 2015). Because 
groundfish usually consume 1–2 orders of magnitude 
more forage fish than seabirds in most northern shelf 
ecosystems (Gaichas et al. 2009), the ordinary physio-
logical response of groundfish to increased water 
temperature can add ‘competition from groundfish’ 
to the list of mechanisms that lead to significant bio-
logical impacts on seabirds. The co-occurrence of 
bottom-up and top-down forces may create an ‘ecto-
thermic vise’ on forage fish (or ‘metabolic mis-match’; 
Reum et al. 2024), a mechanism identified as a likely 
contributor to the extreme mass die-offs of seabirds, 
cod, and whales in the North Pacific after the Pacific 
MHW of 2014–2016 (Barbeaux et al. 2020, Piatt et al. 
2020, Cheeseman et al. 2024). 

Whereas the above direct and indirect effects have 
been observed for 20 or more species, MHWs have so 
far had limited effects on most other seabirds in the 
areas covered by investigations listed in Table 1. Not 
all MHWs diminish bottom-up productivity or fish 
growth, recruitment, or survival (Amaya et al. 2020, 
Gomes et al. 2024, Woehler & Hobday 2024). In part, 
this is because effects depend on the thermal plasti-
city and temperature optima of species/communities 
involved, and whether these communities occur at the 
center or edge of their thermal optimum ranges (Ben-
nett et al. 2021).  

Seabirds mitigate direct and indirect negative MHW 
impacts by employing useful adaptations and flexible 
life history traits. For the direct mechanism (heat 
stress), all seabirds have some capacity for cooling 
themselves or their chicks, e.g. evaporative cooling, 
shading, swimming, drinking water, wing spread, and 
gular fluttering (Olin et al. 2024, Oswald & Arnold 
2024). All indirect mechanisms affect or in volve some 
aspect of food acquisition, including prey distribution, 
abundance, phenology, diversity, size, and energy 
content. Any seabird species that has more flexibility 
for dealing with interruptions in prey availability or 
quality seem to have an advantage over those that 
have little flexibility.  

For example, during the Pacific MHW of 2014–
2016, common murres Uria aalge in the Gulf of Alaska 
experienced a population crash in their pelagic forage 
fish prey, whereas congeneric thick-billed murres U. 
lomvia were virtually untouched (Piatt et al. 2020), be-
cause they have a more diverse diet that includes ben-
thic fish and pelagic invertebrates (Will et al. 2020). 
During this same heatwave, rhinoceros auklets Cero -
rhinca monocerata in the California Current System 
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and black-legged kittiwakes Rissa tridactyla in the 
Gulf of Alaska were likely able to compensate for 
small size and low quality of prey in chick meal loads 
by increasing load size (multiple prey) for delivery to 
chicks, thereby reducing negative effects on breeding 
success (Schoen et al. 2024, Wagner et al. 2024). Spe-
cies with lower foraging costs (e.g. less wing loading) 
may be able to travel longer distances to find prey 
patches (Osborne et al. 2020). Those with more flex-
ible clutch size and fledgling periods can buffer 
during warm years and still manage to produce chicks 
or maintain the same lifetime production of offspring 
as more conservative egg layers (De la Cruz-Pino et al. 
2024, Schoen et al. 2024). Species that forage on more 
diverse prey (i.e. generalist predator strategies), or on 
less affected food webs, e.g. benthic–coastal versus 
pelagic–shelf prey communities, may almost entirely 
escape the impact of even the most severe heatwaves, 
if their foraging habitats are less affected (Cushing et 
al. 2024, B. Robinson et al. 2024). 

4.  MHWS CAN HAVE LINGERING EFFECTS  
ON SOME SEABIRDS 

The most extreme (acute) effects of MHWs were 
generally observed during and after peak temperature 
anomalies (Table 1). As temperatures returned to pre-
heatwave levels, most of the extreme conse quences 
ceased, but some effects continued for months and 
seemed to carry over even into the following year(s). 
For example, the largest die-off of common murres 
ever recorded occurred in the Gulf of Alaska during a 
few winter months (Nov 2015–Feb 2016) after peak 
temperature anomalies in summer 2015, when murres 
had failed to produce any chicks at 3 colonies — a 
highly unusual event (Piatt et al. 2020). Die-offs had 
stopped by summer of 2016, but 12 murre colonies in 
the Gulf of Alaska and Bering Sea still failed to pro-
duce chicks that year. During 2017, 8 colonies con-
tinued to fail. At 2 peripheral colonies, murres failed 
again in 2018. By 2019, although productivity recov-
ered to about half that observed in the past, colony at-
tendance had declined by 50% (Schoen et al. 2024). 
The Gulf of Alaska marine ecosystem re vealed similar 
patterns. Some forage fish, other seabirds, marine 
mammals, groundfish, and salmon showed marked 
declines in body condition, reproductive success, or 
population size between the time assessments were 
made prior to 2014 and those made in 2015–2017, lev-
eling off or increasing only slightly by 2018 (Suryan et 
al. 2021). Community analyses revealed that over half 
of 187 biological time series showed significant multi-

year responses to the heatwave, with little recovery by 
2018, suggesting that the Gulf of Alaska post-heat-
wave marine ecosystem was distinct from the pre-
heatwave state (Suryan et al. 2021). 

Lingering effects of MHWs were observed in 10 of 
the 20 papers cited in Table 1, including MHWs in the 
northeast Pacific in 1997/1998, 2014–2016, and 2019 
(e.g. Jones et al. 2024, Schoen et al. 2024); off Western 
Australia in 2011/2012 (e.g. Cannell et al. 2024); and 
in the Northern Bering/Chukchi Seas in 2019/2020 
(e.g. Jones et al. 2024, Kuletz et al. 2024). In addition 
to the lagged population recoveries noted in the pre-
vious paragraph, black-legged kittiwakes in Cook 
Inlet (Gulf of Alaska) also had breeding failures and 
lower than normal colony counts during and after the 
Pacific MHW of 2014–2016 (Schoen et al. 2024). GPS 
tracking of kittiwakes foraging from Middleton Island 
in the Gulf of Alaska before (2012/2013), during 
(2015/2016) and after (2017/2018) the MHW re vealed 
dramatic changes in foraging behavior  that in cluded 
increased distances and different lo cations during and 
after the heatwave, suggesting the system had not re-
covered for 2 yr following the MHW (Osborne et al. 
2020). Some forage fish species in the Gulf of Alaska 
that diminished in age at maturity, size, energy value, 
or abundance during 2015/2016, also lagged for at 
least 1–2 yr in their recovery to pre-MHW conditions 
(Arimitsu et al. 2021). In the Salish Sea (Washington, 
USA), rhinoceros auklet bill-load energy values were 
low in 2016 and 2017, and burrow occupancy rates de-
clined by 20% in 2017, suggesting carry-over effects 
from the Pacific MHW of 2014–2016 may have ex-
tended a year for those auklets and their prey (C. Rob-
inson et al. 2024, Wagner et al. 2024). In Western 
 Australia, little penguins Eudyptula minor reduced 
breeding success owing to a loss of preferred forage 
fish in diets during the 2011 MHW, and breeding fai-
lures, diet shift, and starvation mortalities carried over 
into the 2012 breeding season as well (Cannell et al. 
2024). A prolonged post-heatwave depression in for-
age species biomass or nutritional quality (e.g. von 
Biela et al. 2019, Arimitsu et al. 2021) would also play 
some role in lingering effects on seabird predators, as 
prey stocks must also undergo re covery after the pri-
mary heatwave event. 

Evidence for carry-over effects also comes from the 
analysis by Jones et al. (2024) of beached bird recov-
eries on beaches following heatwaves off the California 
coast in 1997/1998, 2015/2016, and 2019/2020. After 
normalizing seabird carcass encounter rate data and 
plotting mortalities downstream from MHWs, a clear 
pattern emerged: Anomalously high seabird mortality 
rates peaked during the height of MHW temperature 
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anomalies, but after these events, seabird mortality 
rate anomalies dropped below average for about the 
same length of time the preceding heat anomalies had 
persisted (e.g. 1–2 yr). This period of re duced mortal-
ity after die-offs contrasts with evidence (previous 
paragraph) for lingering reductions in food availability. 
However, it might reflect an adjustment period as sub-
stantially reduced seabird populations grow back to a 
new, reduced  carrying capacity (Jones et al. 2024). 

In conclusion, for the studies considered here, ex-
ceptionally warm ocean temperatures had direct and 
indirect effects on some seabirds, particularly species 
that specialized on diminished pelagic prey resources. 
However, seabirds capable of mitigating heat stress or 
shifting prey resources experienced more limited ef-
fects. Identifying mechanisms for carry-over effects or 
recovery from MHWs would be fertile ground for 
more research. As global warming increases the fre -
quency, magnitude, and duration of MHWs, under-
standing thresholds of thermal tolerance will inform 
management decisions and conservation of seabirds 
in the future.  
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