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1.  INTRODUCTION 

Endotherms use a variety of behavioural and phy -
siological responses to maintain homeostasis when 
experiencing conditions outside their range of com-
fort (Boyles et al. 2011). Under climate change, there 
has been a shift in climate averages as well as increas-
ing frequency and severity of extreme climatic and 
weather events (IPCC 2022). Consequently, there is 
growing evidence documenting the direct effects of 
challenging abiotic conditions on the survival, fit-
ness, and reproductive performance of many species 
(Oswald & Arnold 2012, Andreasson et al. 2020). 
Thus, an increasing number of species will face in -
creased thermoregulation demand and fitness trade-
offs from behavioural responses as climate change in -

tensifies (Boyles et al. 2011, Cohen et al. 2020, Cun-
ningham et al. 2021). 

Seabirds in ground-nesting colonies have signifi-
cant thermoregulation challenges. During the breed-
ing season, adults and chicks stay on exposed nests, 
usually with no shade, for extended periods of time, 
withstanding extreme abiotic conditions (Oswald & 
Arnold 2012). Seabirds are adapted to wet and cold 
oceanic conditions, rendering them vulnerable to 
warming environments under climate change. For 
sea bird species inhabiting warmer temperate cli-
mates, biological thresholds may be surpassed earlier 
as temperatures increase (Stone et al. 2021). In recent 
years, mass mortality events of adult seabirds have 
been documented as a direct result of heat (Holt & 
Boersma 2022, Quintana et al. 2022). Seabird chicks 
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have a higher vulnerability to thermal stress as they 
are still developing their thermoregulation abilities 
(Stone et al. 2021), and many species can be con-
strained to a nest for months. Furthermore, the natal 
down feathers of many seabird chicks are highly ef -
fective at insulating against heat loss i.e. adapted for 
cold and windy climates, providing greater de mand 
on thermoregulation mechanisms (Stone et al. 2021). 
Behaviours to reduce exposure to heat (e.g. seeking 
shade) often are not possible, and thermoregulatory 
behaviours such as panting and gular fluttering are 
energetically costly. 

The shy albatross Thalassarche cauta is a temperate 
seabird located in southeast Australia, a region warm-
ing at about 4 times the global average (IPCC 2021). 
Recently uplisted to endangered under Australian 
legislation, climate change is listed as an imminent 
threat for this species (Thomson et al. 2015, Alderman 
& Hobday 2017). Albatross Island is the second lar-
gest of 3 shy albatross populations, containing ~40% 
of the global population (Alderman et al. 2011, 
Department of Natural Resources and Environment 
Tasmania unpubl. data), and as the most northerly 
distributed population (Southern Hemisphere), it has 
the greatest exposure to high temperatures. Untang-
ling the climate dependencies of this species is a 
knowledge gap for assessing the conservation status 
of shy albatross, especially the influence of local 
weather on breeding attempts. In this study, we test 
the influence of weather on temporal patterns of shy 
albatross chick mortality at Albatross Island. 

2.  MATERIALS AND METHODS 

2.1.  Chick mortality data and survival analysis 

In 2013, we trialled and installed a remote monitor-
ing camera to observe shy albatross breeding at -
tempts in the southernmost section of a sub-colony on 
Albatross Island (40° 22’ 38” S, 144° 39’ 20” E), Austra-
lia (Lynch et al. 2015). Beginning with the subsequent 
austral summer breeding season of 2014–2015 and 
continuing through the 2020–2021 season, we pro-
cessed daily high-resolution photographs to de -
termine the status of 86–224 nests annually (see 
Table 1). We excluded nests from our survival data if 
no chick was seen. In these cases, either no breeding 
attempt was made or the attempt failed during incu-
bation. It is unlikely that chick deaths were missed, as 
the adults regularly shift on the nest, giving a clear 
view of the nest bowl. The date of a chick’s death was 
clear from the images (see Supplement 1; all supple-

ments are found at www.int-res.com/articles/suppl/
m737p137_supp.pdf). In very few cases, a chick dis-
appeared well before the age of fledging and the 
chick’s corpse was not captured by the camera. In 
these cases, we assumed that the carcass was scav-
enged after a natural mortality event and before the 
daily image was taken on the next day, as there are no 
predators on the island that would commonly take 
live chicks. We included these events in our data. We 
modelled the survival of shy albatross chicks from 
hatching until leaving their nest site, unless otherwise 
censored by camera operation failing before the time 
of fledging. 

We used survival analysis for our data, as the 
‘event’ (i.e. chick death) was right-censored (Clark et 
al. 2003). To format our data for survival analysis 
(Clark et al. 2003), we dated time-to-event from 
1 November (the earliest day a live chick was ob -
served over all seasons) in each season. We used a 
fixed date across all seasons, as there is little variation 
in the timing of the breeding cycle for shy albatross 
(Hedd & Gales 2005, Department of Natural Re -
sources and Environment Tasmania unpubl. data). 
The event for each nest was dated as the date of chick 
death or censored at the end of the camera deploy-
ment for that season. In 2015–2016 and 2016–2017, 
data ended 30 January and 22 February, re spectively; 
therefore, data were censored many months before 
chicks fledged, providing significantly reduced data 
coverage for these 2 seasons. In 2018–2019 and 
2019–2020, the camera outlasted the fledging period, 
so we censored all remaining live nests (including 
those that had fledged) on 1 June, 1 week after the 
maximum date that we observed a chick leaving their 
nest site across all years (23 May). 

We used Kaplan-Meir survival models using pack-
age ‘survival’ (v.3.5.5; Therneau & Grambsch 2000, 
Therneau 2021) in R to model the survival probability 
of shy albatross chicks over time for each season. The 
Kaplan-Meier method is a non-parametric technique 
for estimating survival probability as a function of 
time. It assumes that the event of interest occurs at a 
clearly defined time, all events occur independently, 
and the survival probability of all observations (in -
cluding censored observations) is equal (Kaplan & 
Meier 1958). To summarise: the survival probability 
tells you the probability of surviving beyond a certain 
time, the cumulative hazard function tells you the 
accumulated risk of experiencing the event up to a 
certain time, and the hazard function gives you the 
instantaneous risk of experiencing the event at a spe-
cific time, given survival up to that point (Bradburn et 
al. 2003a,b). 
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We used the package ‘muhaz’ (v.1.2.6.4; Hess 2021) 
in R to produce a smoothed estimate of the hazard 
function. The hazard function is estimated from 
smoothing splines from the cumulative hazard func-
tion. Using this function, we can visualise the instan-
taneous risk of the event occurring for each time 
point; in our case, risk of chick mortality for each day 
of the study. We used the hazard function instead of 
daily counts of deaths because the hazard function is 
useful for visualising the failure process and it clearly 
shows when mortality rates deviate from stationary. 
This is useful to compare years and look for ‘spikes’ 
in mortality that could be associated with extreme 
weather. In addition, we explored time-variable co-
variates (i.e. weather events) and different time inter-
vals for each year (censored data), both of which are 
better incorporated with the hazard function. Finally, 
the hazard rate incorporates information about the 
number of individuals ‘at risk’, or chicks remaining 
alive at each point in time. 

2.2.  Weather data 

The closest meteorological station to the study site 
is Cape Grim, operated by the Australian Bureau of 
Meteorology, ~18 nautical miles (34 km) southwest of 
Albatross Island. We obtained half-hourly meteoro-
logical data recorded at Cape Grim including wet 
bulb temperature (WBT), an index for heat stress, for 
the temporal range of our mortality data. 

To capture fine-scale local weather patterns and 
events, we installed a small weather station on Alba-
tross Island (ATMOS 41 weather station and EM60G 
Data logger, METER Group). A total of 12 meteoro-
logical parameters were captured at either 15 min or 
hourly resolution. However, due to its remote loca-
tion, low visitation, and technical difficulties, this sta-
tion provided intermittent coverage from August 
2018 onwards. To estimate the relationship between 
the continuous Cape Grim data and the local weather 
station, we explored the relationship between the 2 
stations (Supplement 2). 

2.3.  Heat stress and mortality rate 

To test the hypothesis that extreme heat stress con-
ditions increase the death rate of shy albatross chicks, 
we compared the hazard rate of days with heat stress 
conditions (WBT) in the highest 5% to all other days. 
We chose 5% to reflect extreme WBT conditions as 
per our biological hypothesis. However, we did not 

choose a smaller value to ensure adequate samples, 
with both providing reliable estimations of the mean 
hazard rate in each category. The hazard rate data 
were not normally distributed; therefore, we com-
pared the distribution between the 2 groups using a 
Mann-Whitney U-test. We tested for the alternative 
hypothesis that hazard rates in the extreme heat 
stress index group were higher. We applied the con-
tinuity correction as recommended for small sample 
sizes. All analysis and creation of graphics were 
undertaken using R (v.4.3.1; R Core Team 2023). 

3.  RESULTS 

3.1.  Temporal patterns in chick mortality 

We recorded 430 chick deaths out of 1036 chicks 
monitored in our data set (Table 1, Figs. 1 & 2). In a 
1 mo period (9 January–9 February 2018), 68 chicks in 
our study died (55% remaining chicks). This corre-
sponded with an extended period in which the WBT 
(heat stress index) was in the 99th percentile of the 
 meteorological data recorded during our study (Fig. 3). 

We compared the hazard rates across WBT condi-
tions recorded during our study by comparing lower 
heat-stress days with the highest 5% of heat-stress 
days (>19°C WBT; Fig. 4). Days with the most ex -
treme heat-stress values had a statistically higher 
mean hazard rate (i.e. risk of shy albatross chick mor-
tality) compared to lower heat-stress days (U = 3604, 
p = 0.005). However, as observed in Fig. 4, the most 
ex  treme days of mortality risk did not have a daily 
maximum WBT measurement over 19°C WBT (top 
5%). Therefore, this relationship did not persist under 
all conditions and is likely influenced by cumulative 
heat stress across multiple days. 
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Season      Total no. of chicks       Chick mortality % (n) 
 
2014–2015           90                           6.7 (6) 
2015–2016           86                         23.3 (20)a 
2016–2017           86                         16.3 (14)a 
2017–2018          135                        65.9 (89) 
2018–2019          194                        40.2 (78) 
2019–2020          221                        48.9 (108) 
2020–2021          224                        51.3 (115) 
aData coverage did not last the full season

Table 1. Data summary and pattern description for shy alba-
tross Thalassarche cauta chicks observed and corresponding 
mortality rate across 7 breeding seasons, captured by the 
CSIRO Ruggedised Automated Gigapixel System (CRAGS) 
at ‘South colony’ on Albatross Island, Australia (40° 22’ 38” S,  

144° 39’ 20” E)
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We explored Cape Grim weather ob -
servations in the 15 yr prior to our 
study period to underline the excep-
tionality of the extremely high tem-
peratures observed in 2018 (Fig. 5). It 
is worth noting that Albatross Island 
conditions could experience greater 
heat stress conditions than those re -
ported in our study according to the 
discrepancies we observed between 
Cape Grim data we used in analysis 
and the local weather station data col-
lected (Supplement 2). 
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Fig. 1. Kaplan-Meier survival probability for 
shy albatross Thalassarche cauta chicks 
 captured by the CSIRO Ruggerdised Auto-
mated Gigapixal Camera System (CRAGS) 
across 7 breeding seasons on Albatross 
 Island, Australia (40° 22’ 38” S, 144° 39’ 20” E)
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Fig. 2. Smoothed hazard function (cubic spline) from the Kaplan-Meier survival rate for shy albatross Thalassarche cauta chick 
mortality across 7 seasons (2014–2015, n = 90; 2015–2016, n = 86; 2016–2017, n = 86; 2017–2018, n = 135; 2018–2019, n = 
194; 2019–2020, n = 221; 2020–2021, n = 224) on Albatross Island, Australia (40° 22’ 38” S, 144° 39’ 20” E). Dashed grey line:  

the 95th percentile hazard rates in our data for chick mortality
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4.  DISCUSSION 

We present a significant relationship between shy 
albatross chick survival and extreme values of the 
heat stress index. We documented a large mortality 
event of 68 deaths within 30 d (55% of remaining 
chicks) which coincided with extreme weather condi-
tions (Fig. 3) that had only occurred briefly in the 2 
decades prior (Fig. 5). We present new evidence on 
the direct and fatal impacts of climate change on shy 
albatross chicks. 

Heat stress has been shown to impact the breeding 
success and survival of other animal populations, 
including birds (van de Ven et al. 2020a, Gardner 
et  al. 2022) and mammals (Welbergen et al. 2008, 
Woodroffe et al. 2017, van de Ven et al. 2020b, Mo 
et al. 2021). With air temperatures predicted to 
continue to rise under climate change, this is a con-
cern for cold-adapted species like albatrosses, par-
ticularly those at low latitudes that are already 
close to their thermal limits (Oswald & Arnold 2012). 
The Albatross Island colony of shy albatross in tem-
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perate Australia studied here is at a relatively low 
latitude compared to most albatross species that 
breed in the subantarctic Southern Ocean, with the 
ex ception of the 4 Pacific Phoebastria species (Suryan 
et al. 2008). Extreme heat has directly caused mass 
mortality events for other colonial nesting seabirds, 
including cormorants (Quin tana et al. 2022) and 
penguins (Holt & Boersma 2022), located at lati-
tudes (43° and 44° S, respectively) similar to shy 
albatross from this colony (40° S). Alongside increas-
ing average temperatures, increasing frequency and 
intensity of extreme events are also predicted im -
pacts of climate change, causing physical stress 
that can kill or significantly impair biological func-
tioning (Welbergen et al. 2008, Babcock et al. 2019, 
Smale et al. 2019, Neilson et al. 2020, Murali et al. 
2023). In the case of the shy albatross, our results 
indicate that extreme events (Fig. 3) provide a 
greater impact on breeding success than average 
temperatures (Fig. 4), as has been shown with other 
wildlife populations (Marcelino et al. 2020). These 
distinct impacts of extreme events have implications 
for conservation efforts and planning (Maxwell et 
al. 2019). Thus, there is greater complexity occur-
ring on high mortality-hazard days, which is not 
comprehensively explained by the daily maximum 
WBT alone (outliers in Fig. 4). 

The frame of the camera captured a small section of 
the Albatross Island colony (~3% of breeding pairs), 
and we observed that spatial variation in chick mor-
tality across the island does occur (Mason 2023). 
Exploring spatial variation in breeding success of this 
species, both on Albatross Island and for the southern 
populations (Mewstone and Pedra Branca), is a valu-
able research question to understand factors driving 
survival and fecundity and to identify terrain charac-
teristics that could provide refugia from heatwave 
events. 

4.1.  Refuting other causes of mortality 

Using remote methods, we could not examine car-
casses to refute other causes of mortality; however, 
there are several reasons why we think heat stress is 
the most likely cause in our study. Mortality events 
occurring at the same time each year would suggest a 
developmental or age-related vulnerability. However, 
our ‘high-stress days’ occurred at different times each 
year (Fig. 2), suggesting an external driver. In a con-
current study of the foraging behaviour of shy alba-
tross at this colony (Mason et al. 2023), we did not 
detect interannual spatial variation in foraging be -
haviour that would suggest adults were having diffi-
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culty finding sufficient food and possibly compromis-
ing chick health and condition. 

Avian pox can affect the fitness and resilience of 
chicks throughout the season on Albatross Island 
(Woods 2004) but has not been shown to directly 
cause mortality. For shy albatross, there is no under-
standing of the interactions between local weather, 
temperature, and the incidence of avian pox or other 
emerging diseases. Understanding the potential com-
pounding and complex interaction of disease and 
heat stress under climate change is a future research 
and management priority. 

4.2.  Scale of monitoring and detection abilities 

Mortality from heat stress occurs when physio -
logical and behavioural adaptations are exhausted. 
However, prior to the lethal impacts of heat stress, 
sublethal effects can occur that involve behavioural, 
en ergetic, and physiological costs (Oswald & Arnold 
2012, Cook et al. 2020), and in some cases, cascading 
population-level effects (Jenouvrier et al. 2018, East-
wood et al. 2022). The shy albatross population 
moni toring program comprises 2 annual visits to the 
colony, at the start and the end of the breeding sea-
son (Department of Natural Resources and Environ-
ment Tasmania unpubl. data). The coarseness of this 
data means that although overall breeding success 
and population dynamics can be calculated, finer-
scale data, including temporal trends in breeding 
attempt failures, cannot be captured. Our ability to 
monitor chick survival and to investigate the poten-
tial impact of weather conditions was possible using 
high image quality and daily images of nest status 
from remote cameras. One limitation in using ima-
gery is that we can only capture overt mortality 
events; however, it is important to also consider 
sublethal impacts when quantifying climate change 
effects. Other types of technological methods, such 
as thermal imaging, can provide insights into the 
preceding physiological and energetic costs of heat 
stress (McCafferty et al. 2021). Furthermore, future 
work exploring shy albatross thermal physiology 
should include wind measurements from a local 
weather station to provide a heat stress index that 
more accurately represents local variation at mean-
ingful scales for shy albatross. Remote weather sta-
tions may not accurately represent local wind condi-
tions at the colony, as evidenced by local and remote 
wind observations having the lowest R2 value of 
the weather variables that we compared (Fig. S2 in 
Supplement 2). 

4.3.  Future applications 

Our research shows that shy albatross chicks are a 
taxa and age class vulnerable to heat stress. Fur-
thermore, as they inhabit a global warming hotspot 
(Hobday & Pecl 2014), they could be approaching 
ther mal and physiological thresholds sooner than 
other comparable taxa around the world. Managing 
shy albatross populations will be necessary in the 
future, as even with radical action on climate mitiga-
tion, it is likely that future weather conditions will 
provide stresses above this species’ threshold. 

The relationship between heat stress and chick mor-
tality provides evidence to support the necessity of 
pre-emptive management actions for this threatened 
species. The growing capacity for reliable and early 
predictions of extreme events (Jacox et al. 2022) will be 
critical in developing triggers for timely management 
action to reduce risk and mitigate impacts. A future ap-
plication of this work could be the development of an 
‘early warning system’ to predict unfavourable condi-
tions for shy albatross, with enough lead time to deploy 
a climate adaptation intervention for heat stress such 
as erecting shade structures or water sprinklers. For 
flying foxes, an other heat-sensitive species in Australia, 
a spatially explicit forecaster for heat-related mortality 
events has proven to be a successful trigger for local 
management intervention (Ratnayake et al. 2019). For 
this model to be properly developed for shy albatross, a 
local weather station would be of priority to capture the 
real-time conditions that are occurring on Albatross Is-
land. Further work determining the reliability of differ-
ent time lags would be important, as balancing the 
forecast accuracy with ample lead time would be an im-
portant trade-off to explore. Our results allow for accu-
rate forecasts of the population’s resilience under fu-
ture conditions alongside a tangible meteorological 
value for conditions that are likely biologically stressful 
for shy albatross chicks. 

 
 

Data archive. Cape Grim historical weather observations are 
available on request from BOM Data Services www.bom.
gov.au/climate/data-services/station-data.shtml. Chick mor -
tality data, Albatross Island weather station data, code to rec-
reate analyses and figures in R, and video grab showing chick 
death with CRAGS technology are available at https://github.
com/clairemas0n/hot-chicks. 
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