
MARINE ECOLOGY PROGRESS SERIES 
Mar Ecol Prog Ser

Vol. 739: 257–268, 2024 
https://doi.org/10.3354/meps14616 Published July 4

1.  INTRODUCTION 

Marine ecosystems are complex, and large amounts 
of data are essential for a proper assessment of eco-
system state and functioning. Consequently, the 
availability and open access to data products and 
information are critical for guiding and informing 
decision-making processes and stakeholder-driven 
management interactions (Iwamoto et al. 2019). Mar-
ine data may come from observations or marine 

mechanistic ecosystem models (MMEMs), which both 
have their own strengths and weaknesses. 

One can argue that MMEMs are observations in a 
virtual space and, depending on the model structure, 
it is possible to generate data on variables and/or pro-
cesses that are difficult or impossible to observe in 
situ with high temporal and spatial resolution. How -
ever, an MMEM is also a simplified representation of 
processes or a system and is often limited by insuffi-
cient process knowledge. Therefore, MMEMs only 
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offer an incomplete representation or parameteriza-
tion of processes and components of a natural system 
(Oreskes et al. 1994). By contrast, observations are 
generally given with high precision but are limited by 
incomplete sampling in time and space (see Fig. 1). 
Empirical studies are also models, models that are 
based on the interpretation of the information avail-
able to the observer (Underwood et al. 2000, Bar-Yam 
2016, Skogen et al. 2021). Due to the inherent incom-
pleteness of observations in capturing natural phe-
nomena, relying solely on observation will yield a 
restricted comprehension of a system’s behaviour 
(Oreskes et al. 1994). Nevertheless, observations are 
still often judged as the gold standard and accepted 
as the ‘truth’ against which models are evaluated. As 
such, proper interpretation and the true value of 
MMEMs is often overlooked (Skogen et al. 2021). 

Marine ecosystem data from both MMEMs and ob-
servations require that they are evaluated for both error 
and uncertainty. Proper model validation (Dee 1995) is, 
and has always been, a necessity before models can be 
used for real-world applications (e.g. Hufnagl & Peck 
2011, Juza et al. 2016, Salon et al. 2019, Yumruktepe 
et al. 2022), and models are normally confirmed by 
agreement between observation and model outputs; al-
though it is also argued that validation is about differ-
ences rather than similarities (Woods 2002). Confirma-
tion is inherently partial (Oreskes et al. 1994), and it is 
rare to obtain adequate observations for proper verifi-
cation of models (Woods 2002); thus, validation of 
MMEMs should be performed using all data relevant 
to the purpose of the model simulations in question. 
When observations are accepted as truth, a conse -
quence is that MMEMs are mistrusted if their results 
do not match the observational evidence. However, if 
εo and εm represent the observation and model errors 
respectively, and δ = εo − εm, their mismatch, then δ = 0 
(no mismatch), only implies that models and observa-
tions agree, not that the error is 0 (Lynch et al. 2009). 
The validity of observations is less frequently chal-
lenged (e.g. Kennedy 2014), and improper extrapola-
tion of observational data is often done without careful 
consideration of scale-dependent uncertainties. The 
properties observed in natural systems are an inte-
grated effect or outcome of all processes acting on a 
large variety of spatio-temporal scales. Since actual ob-
servations can only capture certain scales that can be 
difficult to identify, they are often interpreted to repre-
sent processes and patterns at a range of scales. Proper 
validation of all data sources, including observations, 
with a careful assessment of the spatio-temporal scales 
they represent, should therefore be a prerequisite in all 
marine ecosystem studies. 

In meteorology, the term ‘representativeness’ has 
been defined as: ‘… the extent to which a set of mea-
surements taken in a space-time domain reflects the 
actual conditions in the same or different space-time 
domain taken on a scale appropriate for a specific 
application’ (Nappo et al. 1982, p. 761). Representa-
tion error, primarily caused by incomplete sampling, 
stands out as a crucial factor in assessing obser -
vation uncertainties (Schutgens et al. 2017). Unlike 
natural systems, observations are always derived 
from discontinuous spatio-temporal sampling. In 
repeated surveys, the control over observed varia-
tions in time versus space is seldom clear (Steiner 
et al. 2016), and representation error varies depend-
ing on whether spatial or temporal sampling dom-
inates (Schutgens et al. 2017). The representation 
error thus depends on sampling technique, spatio-
temporal resolution (Omori & Hamner 1982), and 
the natural variability of the system under study. 
Understanding representation error is crucial for 
accurately characterizing knowledge gained from 
observations. Similarly, MMEMs also have repre-
sentation errors due to model resolution, and the 
incomplete representation of processes and compo-
nents in the simulated system. 

A widely held belief is that model limitations out-
weigh observational uncertainty (εm > εo), thus dimin-
ishing the perceived significance of observational 
 reference limitations. In the present paper, this as -
sumption will be challenged and discussed. Ac cepting 
the fact that observations also need to be assessed in 
terms of their uncertainties and representativeness, a 
discussion on limitations and how MMEMs can be 
used to improve observations is presented, followed 
by a similar discussion on the representation error 
within MMEMs and the use of observations to improve 
MMEMs. Data assimilation is not included in the 
latter, as data assimilation is based on the idea that 
models should be constrained to be consistent with 
observations rather than accepting the idea that they 
both are uncertain. The discussion is followed by some 
thoughts on what kind of observations are needed to 
improve and possibly validate MMEMs, and finally 
some examples are given of how MMEMs and obser-
vations can be used together to address questions that 
neither method is qualified to answer in isolation. 

2.  HOW CAN MODELS BE USED TO IMPROVE 
OBSERVATIONS? 

Availability and quality of observations differ in 
time and space as well as for different ecosystem com-

258



Skogen et al.: Bridging the gap between models and observations

ponents. The sampling model of marine observations 
is challenged by discontinuous temporal scales and 
limited spatial view combined with high natural vari-
ability, and the sampling frequency will determine 
the possibility of identifying variability over time 
(Laane 2012, Pointin & Payne 2014). Complex proce-
dures for operating an instrument allow for uninten-
tional mistakes, and hardware needs frequent mainte-
nance, calibration, and checking. Equipment might 
be lost or cannot be used under rough conditions, and 
long-term observational time series may experience 
changes in equipment, technology, staff, and imple-
mentation (e.g. Boyce et al. 2010, Gordó-Vilaseca et 
al. 2023). Monitoring surveys which cover predefined 
transects over the same time period between years are 
generally constrained by budgets and logistics (e.g. 
Zingone et al. 2015), and knowledge of the temporal 
versus spatial control of the observed variation is 
highly uncertain (Steiner et al. 2016). To assess confi-
dence in observations, OSPAR (the Convention for 
the Protection of the Marine Environment of the 
North-East Atlantic) quantified different sources of 
uncertainty within the observational data available 
via its Common Procedure Eutrophication Assess-
ment Tool (supplementary Fig. 3 in Appendix B in 
van Leeuwen et al. 2023). Evaluation of such monitor-
ing efficiency requires data collection over multiple 
years before it may be performed, and thus is both 
time-consuming and expensive (Holmin et al. 2020). 
Consequently, changes to survey timing, method-
ology, or design are problematic since earlier efforts 
may be lost, and this argument is often used to avoid 
making necessary improvements (Jennings et al. 
2009). 

Marine observations are also challenged by uncer-
tainty in the observation model. Very often, a scien-
tific instrument is measuring a related quantity rather 
than the quantity of interest. In this sense, observa-
tions are just another type of model in which the 
quantity of interest is a result of either empirically or 
semi-analytically derived algorithms from another 
quantity (Fettweis et al. 2019, Rousso et al. 2022). Ani-
mal characteristics, behaviour, and individuality add 
complexity when observing natural populations. 
Plankton, for instance, rarely constitute continuous 
fields but rather patchy patterns with strong gradients 
in both space and time (e.g. Mackas et al. 1985, Maar 
et al. 2003, Martin 2003). Rapid growth and short gen-
eration times further challenge the interpretation of 
such observations, as measurements are presumably 
taken at different stages of development over the 
course of a single sampling program (J. M. Aarflot 
unpubl. data). The full advective history of plankton 

or behavioural history of fish is difficult to assess only 
with point measurements, while observed abundance 
and trends depend on the assumption that catchabil-
ity is known and constant in time (Kimura & Somerton 
2006, Everett et al. 2017). This is further complicated 
by the fact that many species conduct vertical migra-
tions on diel and seasonal cycles or perform long-dis-
tance horizontal migrations, which inevitably struc-
tures availability in a certain region or depth transect 
at a given point in time (Shanks & Brink 2005, Cowen 
& Sponaugle 2009, Varpe & Fiksen 2010, Dippner & 
Krause 2013, Holmin et al. 2020). Finally, most spe-
cies respond to light, and may even display strong 
avoidance behaviour when exposed to artificial light 
mounted on sampling gear or on the research vessels 
themselves (Berge et al. 2020, Geoffroy et al. 2021). 

In situ data may not be representative of the mean 
state of a system, as the bulk of the variability may be 
due to uneven and low coverage rather than inter-
annual variability of the mean. For these reasons, 
in situ data sets should be used with caution in trend 
and inter-annual variability studies (de Mora et al. 
2013). It is also challenging to assess the true state 
of a system, as the efficiency between observational 
platforms may differ, thereby giving a synthesized 
data set with potentially contradictory information 
(Dippner & Krause 2013, Yumruktepe et al. 2022). The 
best way to reduce the observational representation 
error is through repeated (synoptic) observations. 
Since in situ observations are inherently costly, the 
use of MMEMs is presumably the most cost-effective 
approach to analyze representativity and plan for 
future observations. Modelling has long been used as 
an active part of atmosphere observing system assess-
ment and designs (Atlas 1997). Using a circulation 
model, Hatun et al. (2005) revealed the difficulty in 
unambiguously removing the seasonal cycle and 
describing decadal-scale temperature variations in 
the Faroe-Shetland Inflow Waters if hydrographical 
sections were surveyed less than 4 times a year. Coas-
tal monitoring (e.g. as conditioned under the EU 
Water Framework Directive, WFD) tends to comprise 
a network of permanent sampling locations, gen-
erally lacking an evaluation of how well each location 
represents the conditions in the broader surrounding 
area. Here, models can be used to justify the extrapo-
lation of measurements taken at one location to rep-
resent another location or a wider region (Edman et 
al. 2018). The assessment areas used in OSPAR’s 
eutrophication assessment are based on both mod-
elled results and observational knowledge (van 
Leeuwen et al. 2023). Schutgens et al. (2017) esti-
mated the representation errors of observations for a 
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range of time and length scales by collocating high-
resolution models with the observations to generate 
an objective truth. The study concluded that sub-
sequent temporal averaging reduced the representa-
tion error but that the representation error remained 
larger than the typical measurement error, even after 
a substantial averaging (Schutgens et al. 2016a,b). 
Sandvik et al. (2016) compared a high-resolution 
model of the Norwegian Shelf with hydrographic 
observations obtained at a fixed coastal station off 
north-western Norway to compute the representation 
error of a single point measurement and the accept-
able deviation between the modelled and observed 
temperatures. 

Laane (2012) claims that the optimal monitoring 
network does not exist and that before a monitoring 
strategy can be applied, the natural variability of the 
indicator to be observed should be known. However, 
large efforts are today mobilized to design and eval-
uate ocean observing systems, and a summary of 
recent efforts of Observing System Evaluation is 
given in Fujii et al. (2019). In this context, MMEMs 
become important tools and can be utilized for 
characterizing the natural variability in a sys tem and 
to optimize sampling time and frequency through 
Observing System Simulation Experiments. Hjøllo et 
al. (2021) used an MMEM to evaluate historic and 
present sampling schemes for zooplankton in the 
Norwegian Sea and demonstrated how different sam-
pling patterns would lead to 2- to 4-fold differences in 
biomass estimates within a given year. Holmin et al. 
(2020) coupled an MMEM simulating the abundance 
and distribution of Norwegian spring spawning her-
ring and northeast Atlantic mackerel to an observa-
tion model simulating survey data and investigated 
the sensitivity of monitoring surveys to shifts in time 
or spatial coverage to show how both survey timing 
and direction affected the stock estimate. McGilli-
cuddy et al. (2001) showed that incomplete spatial 
sampling is the major contributing factor for a poten-
tial mismatch between observed and true copepod 
abundance, and Lin et al. (2010) used an MMEM to 
show that optimal sampling strategies for phyto-
plankton and zooplankton differ due to the differ-
ences in intrinsic biological processes. The challenge 
is not just where and when to sample but also how to 
do so within budget constraints. Hansen et al. (2021) 
used MMEMs to assess representativeness and sug-
gested an optimal monitoring program with different 
options for frequency and coverage for a selection of 
indicators from the Barents Sea Management Plan. 

What we observe is the sum of processes (possibly 
integrated over time) that are on different temporal 

and spatial scales, and a point in time–space with 
respect to the processes will be different for the next 
observation at the same place. Biological samples 
depend on the integral of the environment over time 
and, therefore, an individual’s current state is not 
only determined by its present conditions. MMEMs 
can be used to separate out different processes for 
cause–effect studies (e.g. Daewel et al. 2011), anthro-
pogenic impact from natural variability (e.g. Skogen 
& Mathisen 2009), and to backtrack observations to 
obtain the full advective history of individuals (e.g. 
Christensen et al. 2007). MMEMs are generally for-
mulated using patterns and processes learned from 
observed natural variations. In this context, MMEMs 
represent a framework for knowledge validation (Aar-
flot et al. 2022), whereby available information can 
be integrated and tested to disclose knowledge gaps 
and possible inconsistencies between independent 
studies and observational data sets. In this sense, 
MMEMs are an important first step for synthesizing 
different observational and experimental studies to 
explore possible ranges and ecological constraints of 
multiple trophic levels (Lindstrøm et al. 2017). 

3.  HOW CAN OBSERVATIONS BE USED TO 
IMPROVE MODELS? 

Depending on the processes to be studied, models 
will almost always include a basic spatial and tempo-
ral resolution that is key to properly reproduce the 
actual scales of variability. The model resolution is 
constrained by the computational resources required 
(see Introduction of Chassignet & Xu 2021), although 
in recent years, the number of high-resolution models 
(e.g. Juza et al. 2016) that allow for a better represen-
tation of mesoscale and sub-mesoscale dynamics has 
increased (Hansen & Samuelsen 2009, Lévy et al. 
2012, McKiver et al. 2015, Holt et al. 2017, Docquier 
et al. 2019). Improvements in the physics related to 
model resolution have been reported both at the 
global scale (Chassignet & Xu 2021) and the regional 
scale (Tonani et al. 2019). A proper representation of 
physics is crucial for marine ecological modelling 
applications due to the tight links between physics 
and biology, and in many cases, it is physics that 
explains the model misrepresentation (Doney et al. 
2004, Skogen & Moll 2005, Najjar et al. 2007, Sinha et 
al. 2010, Popova et al. 2012). Some studies detail 
improvements in biogeochemical models related to 
increased model resolution (e.g. Jin et al. 2018), also 
achieved through model downscaling (Machu et al. 
2015, Skogen et al. 2018). Thus, even with continuous 
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improvements in MMEMs to minimize uncertainties 
in parameterization and formulation of biological 
processes, there still remain uncertainties in model 
results from unresolved phy sics, model bathymetry, 
numerical methods, initial and boundary forcing 
quality, and meteorological and river forcings (see 
also Fox-Kemper et al. 2019). 

MMEMs are simplifications of real-world systems 
and are by nature limited by knowledge gaps and 
insufficient understanding of ecosystems. In addi -
tion, even if biological primitive equations should 
exist (Woods 2002), it is not necessarily possible to 
formulate observed patterns mathematically by avail-
able parameters, either by those observed or those 
modelled. Parameters are mainly constant while eco-
system dynamics on the individual level should be 
time and space varying (Mattern et al. 2012). Insuffi-
cient ecosystem understanding and knowledge gaps 
also raise the question of whether the most important 
processes are included in an MMEM. MMEMs can be 
of different complexity (Fennel et al. 2022), and the 
choice often depends on the purpose of the study and 
the availability of other data (Radchuk et al. 2016). 
Simple MMEMs can be as good as complex ones for a 
specific question if site specificities are accounted for 
(Friedrichs et al. 2007), and complex models do not 
necessarily guarantee better results due to their 
uncertainties in the description of their additional 
ecological processes, the lack of accurate input data, 

and the difficulties in the parameterization to repre-
sent the modelled processes and relationships 
(Anderson 2005, Kriest et al. 2010, Ward et al. 2013, 
Kwiatkowski et al. 2014, Xiao & Friedrichs 2014, Rad-
chuk et al. 2016). Together, model structure, com-
plexity, input data, and parameterization all contrib-
ute to errors and inaccuracies in the modelled 
predictions. 

Building an MMEM is an iterative process in which 
an initial and often simplistic understanding of the 
system is gradually refined through successive re -
peated model validation and improved functional 
relationships (Fig. 1). To do this, MMEMs need tar-
geted observations. This includes using observational 
process understanding to select mathematical equ-
ations that are representative, as well as observational 
information to aid with the selection of model param-
eters and initial and boundary conditions. Together 
with the limitations in the method of integration, 
these are also the main sources of model errors. Even 
simple biophysical models are complex and e.g. the 
description of growth, mortality, and other biological 
processes is made by means of mathematical equ-
ations which contain several parameters that, depen-
dent on how they are chosen, can lead to completely 
different model evolution, including changes to the 
stability of the model. Information about the typical 
ranges of some of these parameters can be obtained 
from experiments and in situ observations, while 
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others that are difficult to measure can be estimated 
using data assimilation techniques (Gharamti et al. 
2017). Parameters obtained from observations made 
in the lab are usually obtained under controlled envi-
ronmental conditions and for a particular species but 
are often extrapolated to variable environmental con-
ditions and groups of species in models for which 
these parameters might not be representative. Uncer-
tainties associated with mathematical formulations 
and parameters are transferred to the model results 
and can be the largest contributor to the total uncer-
tainty of the model outputs (e.g. Schartau et al. 2017, 
Mamnun et al. 2022). 

Due to the uncertainties associated with MMEMs, a 
proper evaluation of model outputs is necessary 
(Rykiel 1996), and observations are normally used to 
validate models. However, observations only allow 
for a partial assessment of models because they are 
normally instantaneous values, limited in space and 
time, of those state variables that it is possible to 
observe (Oreskes et al. 1994) and should themselves 
be validated in terms of representativity and bias (see 
above) before they are used to assess model perform-
ance. In the case of high-resolution models, the dif -
ficulties in the validation increase because these 
structures are not accurately monitored by present 
ob servations (Mourre et al. 2018, Jacobs et al. 2021). 
Moreover, when these high-resolution models are 
evaluated against observations, the traditional point-
wise statistics might result in a worse performance 
compared to coarser resolution models (see, for 
instance, Tonani et al. 2019) due to the ‘double pen-
alty’ effect (e.g. Brassington 2017). Considering some 
of the traditional methods of evaluating model per-
formance (see a compilation in Mourre et al. 2018), 
like the mean square error, mean bias error, or mean 
absolute deviation, Moore & Rowland (1990) showed 
that the observational error could be the main source 
of discrepancy between models and observations, 
and proposed a diagnostic tool for determining 
whether random observational errors are significant. 
In addition, the way in which the comparison between 
model results and observations is carried out is impor-
tant, and Piñeiro et al. (2008) demonstrated that scat-
terplots and subsequent regression analysis of obser-
vations and models were dependent on the choice of 
x and y variables. These facts call for alternative eval-
uation methods (Ebert 2008, Mourre et al. 2018), with 
this being an area of active research. 

Observations of nutrients, and biological data on 
species composition, biomass, and distribution of 
plankton and fish are used in the development of 
MMEMs, but sometimes such information cannot be 

used directly by these models (Everett et al. 2017). 
Models depend on observed conversion factors be -
tween e.g. wet and dry weights and carbon-to-
nitrogen ratios, and vertically resolved models are 
compared with observed depth-integrated biomass 
with unknown catchability. MMEMs are not the main 
concern for most monitoring programs; thus, what 
models need and what is available from observations 
does not necessarily overlap. Moreover, many obser-
vational campaigns only focus on updates of existing 
time series with an unknown representativity and 
bias, while the need for MMEMs often is on im -
proved ecosystem understanding and parameterisa-
tion through more dedicated studies of different pro-
cesses. In situ observations are also dominated by 
estimates of status (like biomass), while rates (such as 
production) are rare. For model validation, there is 
also a need for independent data sets that have not 
been used for parameterisation, while updates of 
observational time series are not necessarily that crit-
ical as historical data can be used by a robust model. 

Observations are most helpful for the development 
of MMEMs when they are measured in different areas 
and depths and at different times and thus capture a 
variety of conditions over space and time. A full list 
with precise details on what kind of observations are 
needed will depend on the complexity of the model 
and the system it represents, even if some attempts 
have been made for specific applications (e.g. Steiner 
et al. 2016, Smith et al. 2019). 

4.  COMBINED USE OF MODELS AND OBSERVA
TIONS TO ENHANCE OVERALL ECOSYSTEM 

UNDERSTANDING 

Both MMEMs and observations are continuously 
being improved in terms of quality, resolution, and 
precision, and combined use has become more com-
mon. One of the most frequent ways to combine the 2 
approaches is for designing and improving sampling 
programs, and there are numerous examples of this. 
In the GLOBEC Germany program (2002–2007, ex -
ploring the trophodynamic structure and function of 
the Baltic and North Sea), spatio-temporal estimates 
of copepod abundance from a lower trophic level 
model were used to justify taking multiple net hauls 
at some stations to better understand the natural var-
iability associated with net sampling methods. Ellis et 
al. (2022) used biophysical modelling combined with 
estimated environmental DNA (eDNA) decay to 
determine the temporal and spatial detection limits of 
eDNA from 2 marine pests in Australia. Based on the 
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study, a recommendation on how sampling should be 
conducted in the area was also made. Curchitser et al. 
(2015) reviewed how a high-resolution circulation 
model coupled to an individual-based model and 
combined with observational data could be used to 
link environmental variables to ecosystem and pop-
ulation responses, and Benkort et al. (2020) used this 
approach to identify seasonal circuits of areas favour-
able for krill production in the Gulf of St. Lawrence 
and assess how these were coherent with the areas 
where krill had been sampled during field campaigns. 
Kubeneck et al. (2021) investigated vivianite forma-
tions in the Baltic Sea and used results from numeri-
cal model simulations (Almroth-Rosell et al. 2016, 
Edman et al. 2018) to locate appropriate sediment 
areas with high burial rates of organic phosphorus 
and to design the field cruises. 

There are several caveats which concern the valid-
ity of environmental assessments purely based on 
observations. One is related to the representativity of 
the monitoring programs and another is related to the 
definition of a reference state with corresponding 
thresholds against which, for instance, water quality 
can be evaluated. Through the combined use of in 
situ data and MMEMs, there is a great potential to 
improve such assessments. To determine the ‘Good 
Environmental Status’ of the western Baltic Sea, 
Schernewski et al. (2015) first applied a model to esti-
mate the present and the pre-eutrophic state. Then, 
using observations from the regular monitoring 
undertaken within the EU Marine Strategy Frame-
work Directive and WFD, the present state was trans-
ferred to the historic situation applying the relative 
change from the simulations. García-García & Ruiz-
Villarreal (2023) used a biogeochemical model and 
satellite chlorophyll data to fill temporal and spatial 
sampling gaps from the Palacus survey covering the 
shelf from Porto (Portugal) to the Southern Bay of 
Biscay. With this combined data set, they demon-
strated the importance of the interplay between the 
upwelling–downwelling pulses–relaxations and the 
river plume dynamics to understand the interannual 
variability in primary production around the sam-
pling time for the in situ observations. In preparation 
for the fourth application of the ‘Common Proce-
dure’, included in the OSPAR QSR2023, an ensemble 
of ecosystem models was used to define the pre-
eutrophic state of European marine waters (Lenhart 
et al. 2022, van Leeuwen et al. 2023). These simulated 
results, based on model results weighted with obser-
vational fit, were then used to derive thresholds for 
eutrophication indicators within assessment areas, 
and eutrophication status was then derived from the 

comparison of the thresholds to in situ observations. 
Here, the use of a model ensemble ensured a (uni-
form) high spatial and temporal coverage for thres-
hold derivation compared to patchy observational 
evidence. 

It is hard to separate out different processes for 
cause–effect studies based on observations alone, 
but MMEMs provide an opportunity to fill in data 
gaps, test hypotheses, perform ‘what-if’ scenarios, 
and investigate relationships between observed and 
modelled data series. By combining field observa-
tions of oyster size and food concentration with out-
puts from a hydrodynamic model, Saraiva et al. (2020) 
were able to explain differences in observed growth 
rates at different sites and consequently reach more 
realistic conclusions about the ecosystem dynamics. 
In an analysis of 87 studies that have combined bio-
physical models and observed population genetic 
data, Jahnke & Jonsson (2022) indicated that using a 
combination of both methods can help to identify 
underlying processes that are difficult to assess other-
wise. There is high uncertainty in the biomass of 
mesopelagic fish, with global estimates ranging more 
than one order of magnitude. Hill-Cruz et al. (2023) 
used an ecosystem model calibrated against observed 
biomass to provide mortality estimates for adult and 
juvenile mesopelagic fish for the Eastern Tropical 
South Pacific Ocean, thus providing an explicit repre-
sentation of predation and starvation that direct mea-
surements cannot account for. 

For a better understanding of stock distribution or 
connectivity between different stocks, a combination 
of biophysical models and population genetic data 
enables investigations of drivers of connectivity, 
implications of barriers to dispersal, and potential 
impacts of climate. Using microsatellite DNA analy-
ses of coastal and offshore cod in the North Sea–
Skagerrak area in combination with a Lagrangian par-
ticle tracking model of cod eggs and larvae, Knutsen 
et al. (2004) evaluated the potential for larval trans-
port from the North Sea into coastal populations, and 
Knutsen et al. (2012) used a similar setup to investi-
gate the connectivity between different stocks of 
roundnose grenadier Coryphaenoides rupestris in the 
North Atlantic. The complementary strengths of a 
genetic parentage data set and biophysical models 
were proven by Bode et al. (2019), who produced an 
accurate picture of larval dispersal patterns at 
regional scales, while Gogina et al. (2020) combined a 
large set of observations for benthic crustacean spe-
cies in the Baltic Sea with environmental data from 2 
biogeochemical models to construct a species distri-
bution model. The model was then used to estimate 
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the relative importance of driving variables for the 
change in species distribution for future scenarios. 

5.  CONCLUDING REMARKS 

As neither models nor observations are ‘truth’, 
models should not automatically be mistrusted if 
their results do not match observational evidence. 
Both sources of data have their own strengths and 
weaknesses and neither is inherently better than the 
other. Models can help us understand the underlying 
mechanisms of a system, how processes might be 
interacting, simulate the effects of changes, and 
make predictions that can be tested by observations. 
Models can provide insights that are not easily ob -
tainable from observations, but models are also 
 limited by their inherent assumptions, insufficient 
ecosystem understanding, and whether the most im -
portant processes are included. Observations provide 
direct and empirical evidence of real-world processes 
and can be used to refine models. Despite the rapidly 
increasing rise in observations, models will always 
have a place in helping us disentangle the underlying 
drivers of observed patterns. Observations can only 
measure the state of the system, while models, of 
some sort, are required to estimate fluxes and con-
nections between state variables. Models are in -
dispensable for characterizing behaviour without 
the need for observations under every conceivable 
condition and empirical testing of models further 
enriches the value of these observations. Models can 
help fill in gaps that we have not been able to observe 
because of technical or monetary constraints or that 
we cannot observe because they are in the future or 
an under-sampled past. As such, models can be a very 
helpful tool for evaluating uncertainty and assessing 
risks in individual, organizational, and social policy 
decisions (Hyder et al. 2015, Bar-Yam 2016). 

Both models and observations are pieces of infor-
mation, and in science all available data sets should 
be used. A better understanding of representation 
error is essential to characterizing the truth when 
integrating models and observations. Therefore, pro -
per validation of all data is a prerequisite in marine 
ecosystem studies, and ideally, all data sets should 
pass the ecological and/or ocean general circulation 
model Turing test (Woods 2002, Haine et al. 2021), 
with Haine et al. (2021, p. E1487) saying that ‘…a sub-
ject-matter expert cannot tell [models and observa-
tions] apart’. Statistical models are useful to identify 
linkages as a base for knowledge in the construction 
of MMEMs, but we often tend to accept simple con-

ceptual and statistical models more readily than we 
accept sophisticated marine ecosystem models, even 
if observations accompanied with statistics only rep-
resent a theory in which the role of certain factors as 
the only causes of specific outcomes is assumed 
rather than tested (Bar-Yam 2016). Future progress 
will require that we trust insights gained from 
MMEMs, as models used for knowledge vali dation 
represent our best tool to balance a system or to find 
inconsistencies between observations and process un -
derstanding. Using models and obser vations together 
can generate synergies and allow for better support of 
science and thereby an increased knowledge and 
understanding of marine ecosystems (Skogen et 
al. 2021). 
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