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1.  INTRODUCTION 

The northeast coast of the USA has many important 
commercial bivalve fisheries (e.g. Atlantic sea scallop 
Placopecten magellanicus, Atlantic surfclam Spisula 

solidissima, ocean quahog Arctica islandica, eastern 
oyster Crassostrea virginica, and bay scallop Argo-
pecten irradians) valued at US$ ~812 million (NOAA 
Fisheries Office of Science and Technology 2024). 
Both natural and farmed populations are de pendent 
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ABSTRACT: For calcifying organisms such as bivalves, short-term exposure to increased ocean 
acidification (OA; elevated pCO2) may reduce growth rate, increase mortality, and disrupt shell 
formation. A growing body of research suggests that clearance rates and what particles bivalves 
select may change under high pCO2 exposure; however, these experiments are acute, ranging from 
days to weeks. The effects of food supply on bivalves under long-term OA exposure remain incom-
pletely understood. In this study, juvenile northern bay scallops Argopecten irradians (Lamarck) 
that had been reared since 4 h post-fertilization under one of 2 OA conditions (~500–600 or ~750–
850 μatm pCO2; ~1.37–1.5 or ~1.0–1.2 Ωaragonite), were subjected to 2 food levels for 42 d (low food: 
~400, high food: ~1400 chlorophyll cells ml–1). Standard metabolic rate (SMR) and clearance rate 
(CR) were measured on Day 0, and SMR, CR, growth, and survivorship were measured at 14 and 42 
days of exposure to 2 food levels for each of the OA treatments. Juveniles under food scarcity had 
reduced survivorship and growth independent of OA treatment. We found no effect of OA treat-
ment or an OA × food interaction for these metrics. There was only a food-level effect for SMR and 
no OA treatment effect; however, there was an interaction between food and OA for CR. Under 
elevated pCO2 concentrations, scallops cleared Chaetoceros neogracile (strain Chaet-B) over Tet-
raselmis chui (strain PLY429) and natural seston. Altogether, these data suggest that tolerance to 
OA mediated by food may depend on food quality or other characteristics that influence particle 
selection under short-term experimental challenges.  
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on planktonic food availability and seawater chemis-
try, among other factors (Philippart et al. 2014, Rheu-
ban et al. 2018). The Mid-Atlantic Bight has under-
gone an average 14% decline in seasonal chlorophyll 
over recent decades (Schofield et al. 2008), and future 
projections anticipate a reduced duration (i.e. from 
7.5 to 5 wk) and delayed onset of seasonal phyto-
plankton blooms (i.e. 33 d later; Friedland et al. 2023). 
Changes in the timing and magnitude of phytoplank-
ton blooms in this region (González Tabo ada & Ana-
dón 2014) are projected to continue (Friedland et al. 
2018) and may affect bivalves that reproduce sea-
sonally and depend upon seasonal food supply for 
offspring development and recruitment (Philippart et 
al. 2014). For example, winter mortality events (Coo-
ley et al. 2015) and reduced scope for growth in 
bivalves are linked to seasonal food deficiency indi-
cated by low chlorophyll concentrations (MacDonald 
& Thompson 1985a, Zang et al. 2022). 

Contemporaneously, the northeast US continental 
shelf has observed an increase in elevated partial 
pressures of CO2 (pCO2) or ocean acidification (OA). 
For example, pCO2 has increased by 2.5% from 2007 
to 2015 (Wanninkhof et al. 2015), reaching highs com-
parable to global ocean OA projections for 2100 
(~800 ppm pCO2; Wright-Fairbanks et al. 2020). In 
addition to direct consequences for bivalves (Gazeau 
et al. 2013, Thomsen et al. 2015), OA may reduce the 
nutritional quality (e.g. total and long-chain polyun-
saturated fatty acids; Rossoll et al. 2012, Bermúdez et 
al. 2015) and biomass of phytoplankton algae (e.g. 
iron-limited growth; McQuaid et al. 2018), decreasing 
the bioavailability of essential nutrients for bivalve 
consumers (Gao et al. 2012, Dörner et al. 2020, Jin et 
al. 2020). Thus, understanding the effects of OA on 
bivalve populations requires examining both food 
availability and OA. 

The effects of elevated pCO2 on marine life have 
attracted global attention, especially investigations of 
marine calcifiers (Gazeu et al. 2007, Fitzer et al. 2018, 
Vargas et al. 2022). OA can increase the energetic 
expense for shell formation (Waldbusser et al. 2015) 
and acid–base regulation (Pörtner et al. 2004) and de -
crease filtration rates (Meseck et al. 2020), thereby 
affecting performance, metabolism, and survivorship 
in bivalves (Doney et al. 2009, Melzner et al. 2020). 
Seston food availability — both quantity and quality
— for suspension-feeding marine mollusks is highly 
variable on seasonal-to-daily timescales and funda-
mental in controlling energetic balance (Bayne et al. 
1988, McCue et al. 2017). In previous studies, low 
food supply has elicited a greater re sponse than OA, 
limiting growth and development (e.g. fish, coral, and 

bivalves; Holcomb et al. 2010, Towle et al. 2015, Hurst 
et al. 2017) and intensifying OA-induced responses 
(Hettinger et al. 2013, Brown et al. 2018, 2020). Fur-
thermore, high food supply can reduce OA sensitivity 
(e.g. in oysters, scallops, and mussels; Hettinger et al. 
2013, Thomsen et al. 2013, Ramajo et al. 2016a, Brown 
et al. 2018), partially ameliorating the energetic costs 
(Melzner et al. 2011, Kroeker et al. 2013, Ramajo et al. 
2016b). Taken together, reduced food (Friedland et 
al. 2023) concurrent with rising OA (Wanninkhof et 
al. 2015, Wright-Fairbanks et al. 2020) along north-
east US coasts may worsen OA effects on bivalves. 
Experiments that employ coupled pCO2 enrichment 
and a food quality or quantity challenge are essential 
to understand impending environmental effects. 

Understanding physiological responses and con-
sequences of environmental change, including food 
supply, can provide insight into energetic require-
ments for suspension-feeding bivalves across environ-
mental conditions. In bivalves, metabolic depression
— reduced catabolic energy expenditure — can com-
pensate for prolonged food scarcity (García-Esquivel 
et al. 2002, Haider et al. 2020) and extend survival 
under adverse conditions (Philipp & Abele 2010). Al-
though the respiration rate of juvenile bivalves can re-
main largely unaffected by OA (Fernández-Reiriz et 
al. 2012, Sanders et al. 2013, Pousse et al. 2023), slowed 
metabolism under food scarcity may lead to increased 
susceptibility to environmental perturbations. Juvenile 
bivalves can also exhibit size-dependent resistance to 
shell dissolution under moderate OA (i.e. 1–3 mm 
Mercenaria mercenaria under ~1100 μatm pCO2; 
Waldbusser et al. 2010), but if accompanied by a de-
crease in food supply (as predicted in the northeast 
coastal US; Friedland et al. 2023), a negative physio-
logical response may be exacerbated by energy defi-
ciencies (Melzner et al. 2011). By contrast, food supply 
provides the energetic means to overcome environ-
mental challenges (Norkko et al. 2005, Fitzgerald-De-
hoog et al. 2012, Aguirre-Velarde et al. 2018) and con-
tributes to OA refugia (Kapsenberg & Cyronak 2019). 
A meta-analysis by Leung et al. (2022) found that 
under OA conditions, high food availability elicits 
compensatory feeding performance and growth, off-
setting the negative effects of elevated pCO2 —
examples shown in the mussel Mytilus edulis (Thom-
sen et al. 2013), juvenile Chilean sea scallop Argo-
pecten purpuratus (Ramajo et al. 2016b), and juvenile 
great scallop Pecten maximus (Sanders et al. 2013). 
Given the natural variability with which estuarine spe-
cies are ex posed to OA (Baumann et al. 2015) and food 
abundance (i.e. temporal variation in chlorophyll a; 
Cereja et al. 2021), measuring physiological catabolic 
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re sponses and clearance rates (CRs; removal of par-
ticles from the water) can provide important insights 
into the interactive effects of OA and food supply. 

The northern bay scallop Argopecten irradians (La-
marck, 1819), is sensitive to elevated pCO2 (i.e. de-
creased survivorship in juveniles; Talmage & Gobler 
2011, Stevens & Gobler 2018); however, supplementary 
food renders the effects negligible in related species 
(A. purpuratus; Ramajo et al. 2016a), suggesting that 
food ration may affect tolerance of environmental 
challenge in the northern bay scallop. Furthermore, 
the timing of spawning in summer–early fall (Taylor & 
Capuzzo 1983) suggests that recruitment of pre-winter 
juvenile A. irradians may rely upon food abundance 
during autumn phytoplankton blooms (Bricelj et al. 
1987, Epp et al. 1988) when OA is less severe (relative 
to mid-summer high; Wallace et al. 2014). A similar de-
pendence upon seasonal food availability for growth 
and survival of the Atlantic sea scallop Placopecten 
magellanicus (MacDonald & Thompson 1985a,b, Coo-
ley et al. 2015) highlights the energetic requirements 
for recruitment success in sea scallops. Given the ev-
idence that food sufficiency may reduce sensitivity to 
elevated pCO2 in other species of scallops, we tested 
the potential for low food supply to modulate the 
physiological effects of OA on bay scallops. 

The northern bay scallop is an excellent species for 
experimental study because its short generation time 
(~20 d larval period, and <1 yr to reproduction) allows 
assessment of environment effects across lifetime ex-
posures. Comparisons between this work and re search 
on OA and food scarcity in the Atlantic sea scallop 
(Cameron et al. 2019, Pousse et al. 2023) will help de-
termine whether bay scallops can serve as short-lived 
proxy for the Atlantic sea scallop. Bay scallops reared 
from embryos to the juvenile stage under continuous 
low and elevated pCO2 (~500 and 800 μatm) were 
given a 4 wk food ration challenge to investigate how 
cohorts reared in low and elevated pCO2 may differ 
physiologically. Standard metabolic rates (SMRs) and 
algal CRs were measured to investigate phenotypic 
differences in metabolism and re source acquisition, in 
addition to survivorship and growth. 

2.  MATERIALS AND METHODS 

2.1.  Experimental design 

The experimental pCO2 treatment levels selected 
for this experiment were based on the guidelines out-
lined in ‘The guide to best practices for ocean acidifi-
cation research and data reporting’ (Riebesell et al. 

2010), later updated following recommendations by 
McElhany & Busch (2013). These authors recommend 
that experimental OA treatments target observed 
values in the natural environment of the organism, in -
cluding low, elevated, and future high OA scenarios. 
We initially used 3 treatments in our study: low pCO2 
(~560 μatm), elevated pCO2 (~840 μatm), and high 
pCO2 (~1680 μatm). Larval scallops did not survive to 
the juvenile phase under the high pCO2 treatment. 
Therefore, only juvenile scallops from the low and el-
evated pCO2 treatments were included in this study. 

2.2.  Animals 

Adult bay scallops were collected in May 2021 from 
Ward Aquafarms (Megansett Harbor, Massachusetts, 
USA; 41°39’ 18.7” N, 70°38’ 17.9” W) and held at the 
Northeast Fisheries Science Center Milford Labo-
ratory (Milford, Connecticut, USA; 41°12’ 44.6” N, 
73°03’ 10.6” W) under flow-through seawater until 
they spawned in July 2021. In brief, gametes from 13 
females and 16 males (scallops are hermaphrodites) 
were combined in 5 batches for fertilization to avoid 
self-fertilization and maximize genetic diversity 
among offspring. Larvae (from 4 h post-fertilization) 
were grown under 2 pCO2 treatment conditions in a 
static system (15 l buckets with 5 replicates treat-
ment–1) as described in Meseck et al. (2021) until set-
tlement and metamorphosis to the juvenile stage at 
18 d post-fertilization (dpf). The 2 OA treatments used 
in this study approximated the seasonal variability 
that the organisms were exposed to during grow-out 
on Ward Aquafarm leases (means ± SD: pCO2: 740 ± 
266 μatm; aragonite and calcite saturation states Ωar: 
1.19 ± 0.31 and Ωcal: 1.87 ± 0.47; n = 4 sampling time 
points analyzed between April and December). In this 
static system, larvae were batch-fed a live mixed-algal 
diet consisting of Tisochrysis lutea and Dia cro nema lu-
theri, and, at Day 8 until the end of the larval stage, 
Chaeto ceros muelleri ad libitum, using standard 
packed cell volume and adjusted for algal concentra-
tions (measured with flow cytometry) to the equivalent 
of 4 × 104 cells ml–1 of T. lutea. Juvenile scallops (age 
18 dpf) were then moved to downwellers in a flow-
through OA seawater system de scribed in Section 2.3. 

2.3.  OA system and seawater conditions 

At 18 dpf, juvenile scallops were moved to a flow-
through OA system and grown under the same OA 
treatment levels as the larvae. Two identical flow-
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through systems were used for the pCO2 × food ration 
challenge. Ambient seawater filtered through a 30 μm 
drum filter (Hydrotech) was delivered to 2 header 
tanks. Seawater flowed through PVC columns 
(11 cm × 215 cm; n = 4 pCO2 per level) to obtain the 
same OA treatment levels as the larvae experienced 
(low pCO2: ~530–600 μatm; elevated pCO2: ~720–
850 μatm ) by bubbling a mixture of CO2-stripped air 
and research-grade CO2 mixed at different ratios 
using mass flow controllers (Aalborg Instruments and 
Controls). PVC column pCO2 assignments were ro -
tated weekly to avoid column bias. pCO2-enriched 
seawater from each column continuously flowed at 
1.5 ± 0.1 l min–1 into cylindrical downweller tanks 
(20 × 30 cm; total volume: 9.4 l) with 200 μm mesh to 
keep the animals off the bottom. Initially, cylindrical 
downweller tanks were stocked at 1500 juveniles per 
replicate tank. As the animals grew, densities were 
reduced in each replicate every 2–3 wk to a standard-
ized biovolume and bottom mesh sizes were increased 
(500 μm at 37 dpf and 1 mm at 51 dpf). Each tank was 
continuously fed a live mixed-algal diet (detailed in 
Section 2.4) and bubbled with the appropriate CO2-
enriched air to maintain pCO2 levels. 

Seawater conditions and OA treatment conditions 
throughout the experiment are summarized in 
Table 1. Discrete chemistry was measured daily for 
dissolved oxygen (mg l–1), salinity, and temperature 
(°C) in each replicate treatment tank (YSI Model 556). 
Seawater samples were collected weekly in dark poly-
propylene bottles (500 ml) from each replicate tank to 
measure pH, dissolved organic carbon (DIC; μmol 
kg–1), and total alkalinity (TA, μmol kg–1) by open-
cell titration (method SOP 3b; Dickson et al. 2007). A 
UV-VIS spectrophotometer (Cary100, Agilent) was 
used to determine pH colorimetrically at 20°C with m-
cresol purple indicator dye (Sigma-Aldrich) (Dickson 
& Goyet 1994), with Andrew Dickson TRIS 37 (n = 5) 
and 40 (n = 5) with a standard error of ±0.0014 (sea-
water scale). DIC was measured on an Apollo SciTech 
DIC analyzer (Apollo SciTech) with a precision of 
0.5% of assigned values in an interlaboratory compar-
ison (Bockmon & Dickson 2015). TA was measured 
using certified HCl titrant (~0.1 mol kg−1, ~0.6 mol 
kg−1 NaCl; Dickson Lab, Batches 191 and 157) on a 
Metrohm alkalinity titrator (Mettler Toledo T5) with 
0.17% standard error relative to certified reference 
materials (Dickson Lab CO2 CRM Batch 191 and 157). 
Seawater DIC and pH were used in CO2SYS (Pierrot 
et al. 2006) for the calculation of partial pressure 
pCO2 (μatm), carbon ion constituents (bicarbonate 
[HCO3

–] and carbonate [CO3
–2]; μmol kg–1), and Ωar 

and Ωcal using the following constants: K1, K2 from 
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Lueker et al. (2000), potassium sulfate from Dickson 
(1990), and boron from Lee et al. (2010). 

2.4.  pCO2 × food ration challenge 

At age 52 dpf, juvenile bay scallops from each pCO2 
treatment were not different in size (detailed in Sec-
tion 3.1) and had a mean ± SE shell height (maximum 
distance from the hinge to the margin of the shell) of 
2.39 ± 0.13 mm under low pCO2 (n = 4) and 2.32 ± 
0.06 mm under elevated pCO2 (n = 4). Scallops in 
each replicate for each OA treatment were redistrib-
uted to 2 tanks based on total biovolume, resulting in 
8 total replicate tanks. Four replicates were exposed 
to high food availability, with supplemented algae, 
and 4 to low food availability, without supplemented 
algae (n = 4 pCO2 × food ration tanks treatment–1; 

Fig. 1). Cylindrical downweller tanks were stocked at 
625 scallops tank–1 (2.5 × 103 scallops m–2), below the 
recommended stocking rates for bay scallops under 
10 mm shell height for aquaculture grow-out (Leavitt 
& Karney 2005). All treatments received 30 μm drum-
filtered seawater that removed 30–60% of back -
ground natural algae, but the high food ration was 
supplemented with continuous delivery of 1:1 (vol-
umetrically) mixed-algal diet of live cultured Chae-
toceros neogracile (strain Chaet-B) and Tetraselmis 
chui (strain PLY429) cells (22:1 based upon cell den-
sity, 1.5:1 based on cell biovolume). These 2 species 
were chosen because of differences in size and nu-
tritional quality (C. neogracile is small with high levels 
of docosahexaenoic acid (DHA); T. chui is larger, with 
no DHA but with high eico sapentaenoic acid levels 
and metabolizable phyto sterols; Brown et al. 1997, 

Giner et al. 2016). Supplemental cultured algae were 
delivered at 2 ml min–1 with a variable peristaltic 
pump (Goldander BT-100F-1, DG10-12) and averaged 
3.4 × 108 high-chlorophyll cells d–1 (determined by 
flow cytometry) to each high-food replicate tank. Cell 
counts were determined periodically for both high-
food and low-food replicate tanks (n = 19 total days) 
using flow cyto metry (BD Accuri™ C6 Plus Flow Cy-
tometer) with custom gating thresholds to quantify all 
phytoplankton and seston. Two phytoplankton gates 
were used to isolate high-chlorophyll (>2 μm, cultured 
algal particles) and low-chlorophyll particles (<2 μm, 
seston). The low-food treatment for both OA treat-
ments re ceived equal seston relative to the high-food 
treatment (mean ± SE, n = 8: low food: 7.59 × 104 ± 
4.1 × 103 seston ml–1; high food: 8.72 × 104 ± 5.4 × 
103 seston ml–1), but were significantly reduced in 
high-chlorophyll algal particles (Scheirer-Ray-Hare, 
food ration: H1,12 = 11.29, p < 0.001) at approximately 
one-third of the ration received by the supplemented 
treatment for both OA treatments (mean ± SE, n = 8: 
low food: 423 ± 23 high-chlorophyll cells ml–1; high 
food: 1418 ± 89 high-chlorophyll cells ml–1). Achiev-
ing food treatments within a flow-through system sep-
arates the effects of intended nutritional levels from 
confounding chemical artifacts associated with waste 
product accumulation, thus providing confidence in 
our measures of OA effects upon scallop physiology 
relative to long-term food limitation. An appreciable 
difference in experimental food ration was used, as 
bay scallops are typically unaffected by subtle differ-
ences in food quantity or quality when the food avail-
ability is above 5 μg l–1 chlorophyll, the maximal 
 ration assimilatable (Shriver et al. 2002). Juvenile bay 
scallops were held under the target pCO2 × food con-

ditions for 42 d (Fig. 1); the experiment 
ceased at 42 d as mortality reached 
>50% under low food supply. 

2.5.  Physiological assessments 

Physiological measurements were 
conducted on Day 0 (50 dpf) and after 
14 d (66 dpf) and 42 d (92 dpf) of expo-
sure to the pCO2 × food ration treat-
ments (Fig. 1). All scallops in each 
 re plicate were counted to estimate sur-
vivorship, and a subset from each repli-
cate was measured (haphazardly and 
non-destructively) for shell height 
(n = 40–50 replicates tank–1) to calcu-
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Fig. 1. Schematic of the experimental design and sampling timeline; gray box: 
specific timeline of this study. Line thickness represents pCO2 conditions and 
line type represents the dietary treatment. Sampling time points of juvenile bay 
scallops are marked as ‘X’ with the experiment day and age in hours and days  

post-fertilization (hpf and dpf)
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late growth rate (μm shell height d–1). Shell heights 
were measured to the nearest 0.01 mm with an image 
analysis system (ImageJ v.1.53m). Bay scallops were 
sampled from both high-food pCO2 treatments on 
Day 42 (n = 4–11 replicates tank–1, 88 total mea-
sured) to determine dry shell weights (60°C for 48 h), 
dry tissue weights (DTW; 60°C for 48 h), and ash-free 
dry weights (as loss at ignition at 450°C for 4 h). 
Values were used to calculate height-corrected dry 
shell weight ([mg dry shell weight / mm shell height] 
× 100), DTW ([mg DTW / mm shell height] × 100), 
and condition index (CI = [mg ash-free dry weight / 
mm shell height] × 100). Tissues of scallops from the 
low-food pCO2 treatments and previous time points 
could not be dissected because of shell fragility and 
small size. 

Bay scallops from all replicates of each treatment 
were chosen haphazardly to measure oxygen con-
sumption (Day 0: n = 2–3 tank–1; Day 14: n = 3–
5 tank–1; Day 42: n = 2 tank–1) and CR (Day 0: n = 
3 tank–1; Day 14: n = 4–5 tank–1; Day 42: n = 2–
3 tank–1). First, scallops were depurated for 24 h in 
0.35 μm-filtered seawater conditioned to correspond-
ing pCO2 treatments. Depuration was necessary to 
 reduce the effects of ingestion and digestion on mea-
sured SMR and CR (Bayne 2017). Following depura-
tion, oxygen consumption was measured with an 8-
channel (Loligo® Systems; Wiltrox 4) or 24-channel 
SensorDish® reader (Loligo® Systems; resolution: 
±2% air saturation) depending upon the size of the 
scallops; oxygen concentrations never reached <80% 
saturation to avoid oxygen-related stress. Raw oxygen 
consumption rates (mg O2 min–1) were estimated 
using the ‘LoLinR’ package in R with the authors’ rec-
ommended parameters for weighting and minimum 
window size to fit local regressions (Olito et al. 2017). 
SMRs were corrected for vessel volume (V, l) and 
blank rates from chambers filled only with 0.35 μm-fil-
tered pCO2-conditioned seawater and converted to 
moles of O2 min–1. This corrected SMR value (SMRcor, 
μmol l–1 O2 h–1) was normalized (SMRnorm or VO2, 
μmol l–1 O2 mm–1 h–1) using an allometric scaling ex-
ponent (b) to account for the allometric relationship of 
metabolism with size (Bayne 2017; see ‘Allometric 
scaling’ in Text A1 in the Appendix) as shell height of 
the individual (SHindiv, mm) standardized to the mean 
shell height of all scallops measured (SHmean: 4.2 mm) 
according to the following equation: 

                 SMRnorm = VO2 × (SHmean / SHindiv)b            (1) 

The scaling factor was estimated from logarithm-
transformed SMRcor and SHindiv data fit to a simple 
ordinary least squares linear regression as:  

ln(SMRcor) = ln(a) + bln(SHindiv) (2) 

A scaling exponent of 2.0 was calculated from the 
data in this study, and details are included in Text A1 
in the Appendix. 

CRs were conducted in 25 ml vessels following 
 respiration measurements and after scallops were re-
 exposed to 0.35 μm-filtered seawater conditioned to 
pCO2 treatments corresponding to pCO2 seawater 
that was at 100% oxygen saturation for ~20 min. CR 
measurements began by dosing each vessel, including 
blanks and those with a scallop, with live algal cells 
(Chaetoceros and Tetraselmis) to a target concentra-
tion of ~4.0 × 104 cells ml–1. Average live algal cell 
concentrations were 4.2 × 104 ± 430 cells ml–1 at a 
ratio of 14:1 Chaetoceros to Tetraselmis. Samples of 
300 μl were taken immediately after adding algae and 
every 10–20 min over a 1 h period. Cells were counted 
using fluorescence flow cytometry to quantify high-
chlorophyll algal cells within 2 distinct peaks for 
Chaetoceros and Tetraselmis (2–10 μm) and low-chlo-
rophyll seston (FL1 fluorescence and <2 μm). CRs 
were estimated over the elapsed time during which 
the highest and lowest recorded cell counts were mea-
sured, using the following equations (Coughlan 1969, 
Riisgård 1988, McFarland et al. 2013): 

                                                        (3) 

                   CRnorm = CR × (SHmean / SHindiv)b              (4) 

Parameters include V, the elapsed time interval (t), 
cell loss over the elapsed interval t (C0 and Ct, cells 
ml–1), and average cell loss (due to sinking) in blank 
vessels over the elapsed interval (ΔA, cells ml–1). 
Rates lower than ΔA were omitted from the analysis. 
CR was normalized (CRnorm,  cells ml–1 mm–1 h–1) by 
using an allometric scaling exponent (b) to describe 
the change in clearance with shell height. A theoreti-
cal scaling exponent of 1.78 was chosen based on 
reported shell height-standardization of CRs in 
bivalves (Cranford et al. 2011, Bayne et al. 2017). A 
detailed explanation is provided in Text A1 in the 
Appendix, including the rationale for choosing a 
theoretical over the measured CR scaling exponent in 
this study. 

2.6.  Data analysis 

Survival, mean shell height, and mean physiologi-
cal rate data (per replicate tank) were analyzed using 
1-way and 2-way ANOVAs to test the fixed-effects of 
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pCO2 level (Day 0), food availability, and their inter-
action (Days 14 and 42). In all cases, the normality of 
model residuals was examined with Shapiro-Wilk’s 
test (Razali & Wah 2011), and homo geneity of va -
riance was tested using Levene’s test (Brown & 
 Forsythe 1974). Non-parametric models for 1-way 
(Kruskal-Wallis test) and 2-way ANOVAs (Scheirer-
Ray-Hare test) were used when as sumptions of nor-
mality or variance homogeneity were violated. A sig-
nificant interaction term was as sessed using Tukey’s 
HSD tests (‘lsmeans’ in R; Lenth 2016). Tables of 
results of statistical tests are provided in Tables S1 & 
S2 in the Supplement at www.int-res.com/articles/
suppl/m740p061_supp.pdf. Data analysis was com-
pleted in R (R Core Team 2023, Posit team 2024) and 
all code is available (https://www.ncei.noaa.gov/
data/oceans/ncei/ocads/metadata/0289954.html).  

3.  RESULTS 

3.1.  Day 0 

Prior to the food ration challenge, mean shell height 
was not different (1-way ANOVA; F1,6 = 0.23, p = 
0.65; Table S1) for juveniles reared under low (mean ± 
SE: 2.39 ± 0.13 mm; n = 4) and elevated pCO2 (2.32 ± 
0.06 mm; n = 4; see Fig. 3). Mean SMRs were also not 
different (1-way ANOVA; F1,6 = 0.07, p = 0.90; Table 
S1) under low (0.16 ± 0.03 μmol l–1 O2 mm–1 h–1; n = 
4) and elevated pCO2 (0.14 ± 0.02 μmol l–1 O2 mm–1 
h–1; n = 4; see Fig. 3). Total CRs of high-chlorophyll 
cells were significantly affected by pCO2 (1-way 
ANOVA high-chlorophyll; F1,6 = 10.58, p = 0.02) with 
higher CRs under elevated pCO2 (11.0 ± 1.66 cells 
ml–1 mm–1 h–1; n = 4) than low pCO2 (5.29 ± 
0.60 cells ml–1 mm–1 h–1; n = 4). CRs of Chaetoceros 
neogracile cells were significantly affected by pCO2 
(1-way ANOVA C. neogracile; F1,6 = 7.49, p = 0.03), 
with higher CRs under elevated pCO2 (11.5 ± 
1.64 cells ml–1 mm–1 h–1; n = 4) than low pCO2 (6.57 
± 0.76 cells ml–1 mm–1 h–1; n = 4; Fig. 2). There was 
no effect of pCO2 level on CRs of Tetraselmis chui and 
seston (Table S2). 

3.2.  Day 14 

By Day 14, survival was significantly affected by 
food ration (Scheirer-Ray-Hare: H1,12 = 4.38, p = 0.04; 
Table S1), with 10% greater mean survival (±SE) 
under high food (98.6 ± 0.6%) than low food ration 
(88.8 ± 5.5%; Fig. 3). There was no significant main 

effect of pCO2 level and no significant pCO2 level × 
food ration interaction on survival (Table S1). 

Shell height was significantly affected by food (2-
way ANOVA: F1,12 = 108.94, p < 0.001; Table S1) with 
scallops being ~1.33 mm larger under high food 
(3.64 ± 0.11 mm; n = 8) than low food ration (2.31 ± 
0.05 mm; n = 8; Fig. 2). Shell growth rate was also 
affected by food (Scheirer-Ray-Hare: H1,12 = 11.29, 
p < 0.001), with high mean growth rates under high 
food (98.9 ± 5.8 μm d–1; n = 8) and absent shell 
growth under low food (–3.7 ± 3.1 μm d–1; n = 8; neg-
ative value an artefact of high mortality). There was 
no significant main effect of pCO2 level or pCO2 level 
× food ration interaction on shell height and growth 
rate (Table S1). 

Lastly, total CRs of high-chlorophyll cells were sig-
nificantly affected by food supply (2-way ANOVA: 
F1,12 =5.95, p = 0.03; Table S2), with rates reduced 
under low food (32.1 ± 3.61 cells ml–1 mm–1 h–1; n = 
8) relative to high food (93.8 ± 1.2 cells ml–1 mm–1 
h–1; n = 8). There was no effect of pCO2, food ration, 
or pCO2 level × food ration interaction on CRs of 
T. chui, C. neogracile, or seston, or on SMR (Table S2). 

3.3.  Day 42 

Survival was significantly affected by food ration (2-
way ANOVA: F1,12 = 230.8, p < 0.001; Table S1), with 
32.1% mean survival (±3.6; n = 8) over the 42 d period 
under low food relative to 94% mean survival (±1.2; 
n = 8) in bay scallops under high food (Fig. 3). There 
was no effect of pCO2 or pCO2 level × food ration in-
teraction on survival (Table S1). Shell height was sig-
nificantly affected by food ration (2-way ANOVA: 
F1,12 = 358.67, p < 0.001) with scallops being ~5.7 mm 
larger under high food (8.84 ± 0.24 mm; n = 8) relative 
to low food (3.16 ± 0.14 mm; n = 8). Similarly, shell 
growth rate was also affected by food (2-way ANOVA: 
F1,12 = 439.8, p < 0.001), with higher mean growth rates 
under high food (158.2 ± 5.7 μm d–1; n = 8) than low 
food (19.7 ± 2.5 μm d–1; n = 8). There was no effect of 
pCO2 or pCO2 level × food ration interaction on shell 
height and growth rate (Table S1). DSWs, measured 
only in scallops under high food, were significantly af-
fected by pCO2 (Kruskal-Wallis; H = 5.33, p = 0.02; 
Table S1), with greater mean shell mass under high-
food–low-pCO2 (0.68 ± 0.11; n = 4) than high-food–
elevated-pCO2 (0.39 ± 0.02; n = 4; Fig. 4). There was 
no effect of pCO2 on CI (Table S1). 

Physiological rates differed in response to food 
availability after 42 d of the pCO2 × food ration chal-
lenge. SMRs were significantly affected by food 
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ration (Scheirer-Ray-Hare: H1,12 = 3.98, p = 0.05), 
with greater mean SMRs under high food (0.078 ± 
0.013 μmol O2 l–1 mm–1 h–1; n = 8) than low food 
(0.053 ± 0.040 μmol O2 l–1 mm–1 h–1; n = 8; Fig. 2). 
There was no significant main effect of pCO2 level or 
pCO2 level × food ration interaction on SMR 
(Table S1). Total clearance rates of high-chlorophyll 
cells and CRs parsed by T. chui and C. neogracile cells 
were significantly affected by food ration (2-way 
ANOVA: p < 0.001; review Table S2). Scallops under 
high food ration had ~3-fold greater mean CRs (e.g. 

84.2 ± 8.52 C. neogracile cells m–1 mm–1 h–1 [n = 8] 
and 200.0 ± 20.3 T. chui cells ml–1 mm–1 h–1 [n = 8]) 
than those under low food (e.g. 27.2 ± 4.22 C. neogra-
cile cells ml–1 mm–1 h–1 [n = 6] and 80.1 ± 19.6 T. chui 
cells ml–1 mm–1 h–1 [n = 5]; Table S4). There was also 
a significant pCO2 level × food ration interaction on 
the CR of C. neogracile cells (2-way ANOVA: F1,10 = 
8.62, p = 0.01; Table S2). Pairwise differences 
(Tukey’s HSD, p < 0.05) document greater mean 
clearance of C. neogracile cells under high-food–
elevated-pCO2 (79.4 ± 23.3 C. neogracile ml–1 mm–1 
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Fig. 2. Shell height, standard metabolic rates, and clearance rates of bay scallops on (A–C) Day 0, (D–F) Day 14, and (G–I) Day 
42 of the pCO2 × food ration challenge. Physiological rates were standardized allometrically. Scaled density plots display the 
frequency of physiological data grouped by treatment and scaled to 1. Boxplots display the 25th and 75th percentiles (boxes), 
1.5 × interquartile range (whiskers), mean (vertical line), and points outside this range (gray points). Shading of density and 
boxplots represent pCO2 treatment (light grey: low pCO2; dark grey: elevated pCO2) and line type in density plots represents 
food ration (solid: high food; dashed: low food). Asterisks represent significant main-treatment effects (p < 0.05) and lowercase  

letters as pairwise significant differences (p < 0.05)
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h–1; n = 4) than high-food–low-pCO2 (64.7 ± 5.1 C. 
neogracile cells ml–1 mm–1 h–1; n = 4; Fig. 2). There 
were no significant main effects pCO2 level and food 
ration, or pCO2 level × food ration interaction on 
clearance of seston particles by Day 42 (Table S2). 

4.  DISCUSSION 

We investigated the effects of food availability on 
juvenile bay scallops Argopecten irradians reared 
from embryonic to juvenile stage under low (~530–
600 μatm) and elevated pCO2 (~720–850 μatm). Ex -
posure to low food, independent of pCO2 treatment, 
severely reduced growth, survival, and removal of 
high-chlorophyll cells after 14 d. We observed similar 
shell height and survival for scallops fed supple-
mented algae under both OA conditions; however, we 
found greater Chaetoceros neogracile particle CRs 
and reduced dry shell weights under elevated pCO2 
for scallops fed supplemented microalgae (42 dpf). 
Our results suggest that assessments of bivalve per-
formance in laboratory experiments need to include 
nutritional quantity and quality (e.g. live mixed-algal 

diets) and highlight a gap in our understanding of 
interactive effects of OA and food limitation on bi -
valves and the algal particles they consume. 

A question remains as to why there was a prevailing 
absence of pCO2-induced responses observed in our 
experiments. First, we speculate that OA-induced ef -
fects were largely absent because the elevated pCO2 
condition was within a tolerable intensity (i.e. Ωar > 1) 
for bay scallops. For example, reduced biomass accu-
mulation and growth rate of the Peruvian scallop 
A. purpuratus under an OA condition similar to this 
study (891 μatm pCO2; Lagos et al. 2016) suggests 
that juvenile A. irradians are less sensitive to ~800–
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Fig. 4. Shell height-corrected (A) dry shell weights, (B) dry 
tissue weights, and (C) condition index of bay scallops on 
Day 42 under the high-food treatment (90 days post-fertiliza-
tion); all data as (mg tissue weight mm shell height–1) × 100. 
Scaled density plots display the frequency of data grouped 
by treatment and scaled to 1. Boxplots display the 25th and 
75th percentiles (boxes), 1.5 × interquartile range (whiskers), 
mean (vertical line), and outliers (grey points). Shading of 
density and box plots represent pCO2 treatment (light grey: 
low pCO2; dark grey: elevated pCO2). A significant main 

treatment effect is shown as an asterisk (p < 0.05)
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Fig. 3. Percent survival (mean ± SE; n = 4) of bay scallops 
over the duration of the pCO2 × food ration challenge 
under (A) low and (B) elevated pCO2 treatment. dpf: days  

post-fertilization
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900 μatm pCO2 (Ωar ~1.0–1.2). A higher severity of 
OA challenge (>1000 μatm pCO2 and <1 Ωar) causes 
significant reductions in the survival of larvae (Tal-
mage & Gobler 2010) and juvenile A. irradians (~2–
18 mm shell height; Talmage & Gobler 2011, Stevens 
& Gobler 2018). Indeed, in our experiments, larvae 
ex posed to more severe OA (~1680 μatm) did not sur-
vive to the juvenile stage. Lastly, the observed physio -
logical similarities between low- and elevated-pCO2-
reared scallops (e.g. survival, shell height, SMR, and 
tissue biomass; Figs. 3 & 4) support the possibility of 
selection and/or acclimation to the levels of OA in 
our ex periment. Seawater pCO2 during parental 
gonad development (mean ± SD pCO2: 740 ± 
266 μatm) and chronic lifetime exposure from embryo 
to juvenile stage could have resulted in juveniles with 
genetic or non-genetic traits (Foo & Byrne 2016), im-
parting resilience in the performance metrics we 
tested. Environmental changes during early ‘win-
dows’ of development can also drive phenotypic tra-
jectory (Fawcett & Frankenhuis 2015). In our study, 
scallop embryos and larvae were exposed to the 2 OA 
treatments 4 h post-fertilization, and could either 
have acclimated to the pCO2 levels or suffered selec-
tive mortality, re moving individuals sensitive to the 
elevated pCO2 treatment and creating a genetic bot-
tleneck at the juvenile stage. These speculations 
could explain the findings of White et al. (2014) that 
document high mortality of A. irradians during em-
bryonic exposure to high OA (~2600 μatm pCO2 and 
0.6 Ωar) yet no growth difference in larvae that sur-
vived. To date, one cross-generational study in A. irra-
dians found a low capacity for acclimation, although 
OA conditions were far more severe than this study 
(pCO2 ~2500 μatm, Ωar < 1; Griffith & Gobler 2017). 
Follow-up experiments are underway to investigate 
the ef fects of chronic exposure to elevated pCO2 ac-
ross multiple generations in bay scallops. 

We further speculate that the low-food treatment 
(unfiltered natural seston from Milford Harbor, Con-
necticut, USA) was below a maintenance ration for bay 
scallops. Bivalves are known to undergo metabolic 
rate depression under food limitation (e.g. Crassostrea 
virginica, Mya arenaria; Haider et al. 2020, McFarland 
et al. 2020), but it remains unclear how changes in 
pCO2 affect metabolic rates (re viewed by Lefevre 
2016). There were no insights gained in this study re-
garding the directionality of pCO2-induced metabolic 
adjustments; however, slowed metabolic rate under 
food scarcity was evident. Low resource availability 
generally de creases the capacity to mitigate the ener-
getic costs of environmental challenges (Norkko et al. 
2005, Fitzgerald-Dehoog et al. 2012), and metabolic 

rate depression is described as a strategy to conserve 
energy (Pörtner et al. 2004) and enable time-limited 
survival under energetically limiting conditions (Ho-
chachka et al. 1996). Metabolism was unaffected and 
mortalities remained low after the initial 2 wk of food 
scarcity (~80% survival), but this preceded a dramatic 
increase in mortality and metabolic decline thereafter 
(~20–25% survival by Day 42), suggesting a temporal 
threshold for metabolically sustained survival on the 
order of weeks. Lastly, an emergence of positive shell 
growth after food-limited scallops reached >50% mor-
tality highlights that bay scallops were below mainte-
nance ration. Altogether, the influence of food scarcity 
on organismal performance is well established (e.g. re-
duced metabolic rate, decreased reproductive status, 
mobilization of re serves, etc.; Bayne 1973, Liu et al. 
2010, Haider et al. 2020), and our findings reinforce its 
importance for a primary consumer. 

Our results also confirm a few general concepts that 
have emerged in scallop ecology: the dependence on 
resource surplus for scallop habitat suitability and 
 successful juvenile scallop overwintering (i.e. autumn 
algal blooms; Bricelj et al. 1987, Epp et al. 1988) and 
the low-chlorophyll threshold to reach maximum 
growth and maintenance ration in A. irradians (relative 
to C. virginica and Mercenaria mercenaria; Shriver et 
al. 2002, Carmichael et al. 2012). 

Coincidentally, our contrasts in total food ration 
(low food: natural seston; high food: natural seston + 
algal culture supplement) resulted in a 14% reduction 
in total particle availability between fed and food-lim-
ited conditions. Although low scallop survival sug-
gests that food contrasts were extreme, the Northeast 
USA has undergone a 14% decline in seasonal chloro-
phyll in past decades (Schofield et al. 2008), and food 
scarcity is projected to intensify (e.g. delayed bloom 
onset; Friedland et al. 2023). Thus, sole exposure to 
natural seston relative to supplemented ration con-
veys putative physiological consequences of a con-
tinued 14% decline in food supply for this region —
an impending challenge for fisheries. 

Even though some common metrics used to assess 
OA effects (survival, growth, and SMR) were inde-
pendent of OA at different food treatments, the CR 
data were more complex. The use of flow cytometry to 
discriminate types of particles revealed that low food 
exposure impeded the removal of high-chlorophyll 
cells (C. neogracile and Tetraselmis chui) when high-
food availability was restored instantaneously during 
CR measurements. Importantly, food-limited scallops 
were efficient in the removal of smaller low-chloro-
phyll or non-algal particles (seston) during CR mea-
surements. Failure to capture C. neogracile and T. chui 
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suggests that lectin-sugar particle recognition of algal 
cells as food (Pales Espinosa et al. 2009, 2010) may be 
affected by the absence of sugar moieties present on 
C. neogracile and T. chui during prolonged food limi-
tation. The plasticity of particle processing mech-
anisms or those traits constitutive in the bay scallop 
remain topics for further study. 

A few differences between low- and elevated-pCO2-
reared juveniles were found under high food supply. 
First, tissue weights were unaffected by elevated 
pCO2 (CI and DTW) but dry shell weight was re -
duced, suggesting that less energy was allocated 
toward calcification under elevated pCO2. Similarly, 
the king scallop Pecten maximus under summer tem-
perature diverts excess energy toward tissue growth 
at the expense of shell calcification when exposed to 
OA (454–2750 μatm pCO2 and Ωcal 6.8–1.5; Cameron 
et al. 2019). Reduced shell weights are common in 
juvenile bivalves exposed to OA (Gazeau et al. 2013); 
however, these results are in contrast to a lack of cal-
cification effects under food surplus for some species 
(Brown et al. 2018). Second, the CR of C. neogracile 
was greater under elevated pCO2 than the low pCO2 
treatment prior to the low food challenge (50 dpf) and 
at the end of the experiment (90 dpf). By contrast, 
other studies have found a decrease in filtration rate 
(juvenile A. purpuratus; Vargas et al. 2015) and gill 
cilia beat rate under OA (adult Mytilus edulis; Meseck 
et al. 2020). This finding emphasizes the importance 
of parsing apart the OA effects on particle discrimina-
tion (the consumer) from algae (the resource). Al -
though pre-ingestive sorting can enable the uptake of 
high-nutritional algae (Ward & Shumway 2004), phys-
icochemical properties of algal cells are altered by 
OA (Rost et al. 2008, Gao et al. 2018) and are funda-
mental to particle discrimination and selection rates 
in bivalves (Rosa et al. 2017, 2018). OA effects on algal 
cells in this study were unlikely because of the short 
duration under flow-through conditions (on the order 
of minutes; less than one cell division). Further re -
search is required to disentangle consumer demands 
under OA from the possible electrochemical interac-
tions of OA on algal surface characteristics that ulti-
mately dictate particle collection. Present-day coastal 
conditions along the coastal USA are already experi-
encing seasonal pCO2 fluctuations in excess of 800–
900 μatm in summer months (Rosenau et al. 2021), 
and results herein show susceptibility to OA in A. irra-
dians whether or not elevated pCO2 levels co-occur 
with low or high food supply. 

In general, improved feeding performance may 
stimulate compensatory mechanisms to satisfy ener-
getic demands and offset reduced growth under 

elevated pCO2 for marine calcifiers (e.g. mussels, 
pheasant snail, Peruvian scallop, staghorn coral; 
Melzner et al. 2011, Hettinger et al. 2013, Thomsen et 
al. 2013, Towle et al. 2015, Leung et al. 2018, 2022), 
such as ameliorating the effects of elevated pCO2 and 
hypoxia in Chilean scallops A. purpuratus (Ramajo 
et al. 2016b). Maintained feeding and CRs under 
elevated pCO2 in juvenile Placopecten magellanicus 
(Pousse et al. 2023), however, did not offset costs of 
shell production (presumed from dry shell weights), 
similar to our findings for juvenile bay scallops here 
(Fig. 4). Conversely, scallops can maintain soft tissues 
at the cost of reduced shell weight during OA expo-
sure (Córdova-Rodríguez et al. 2022), as we found 
no change in tissue biomass yet reduced dry shell 
weights under high-food and elevated pCO2 (Fig. 4). 
This suggests that somatic growth and energy storage 
is prioritized in A. irradians to satisfy energetic re -
quirements under environmental change (Sokolova et 
al. 2012). Our results for bay scallops are consistent 
with published literature findings and offer insight 
into the dependence on food supply during post-lar-
val development in this species, which can be a proxy 
for related scallop models. 

OA is a growing concern for fisheries in the North-
west Atlantic (Cooley et al. 2015, Hare et al. 2016), 
where scallops represent a multi-million dollar re -
source. Historically, bay scallop populations have suf-
fered collapse under eutrophication-driven change 
(e.g. habitat loss and monospecific algal blooms; Ste-
wart et al. 1981, Bricelj & Kuenstner 1989, Shumway 
1990, Summerson & Peterson 1990) and more recently 
by pathogen introduction (Pales Espinosa et al. 2023) 
and co-occurring abiotic factors (Tomasetti et al. 
2023). A 2-fold change in pCO2 from 400 to 800 μatm 
pCO2 over the next century is projected to risk a 50% 
population decline for bay scallops (Grear et al. 2020) 
and Atlantic sea scallops (Rheuban et al. 2018). 

The Atlantic sea scallop P. magellanicus is one of the 
most valuable and vulnerable taxa (Rheuban et al. 
2018, Zang et al. 2022). Predictive models for P. magel-
lanicus populations are limited to generalizations in-
ferred from experimental findings in related species 
(Rheuban et al. 2018) because their long larval period 
(40–60 d), slow growth rates (Shumway & Parsons 
2006), low optimal thermal range (10–15°C; Culliney 
1974, Desrosiers et al. 1996, Coleman et al. 2021), and 
early development asynchronies (Galley et al. 2017) 
together make them difficult to culture (Morse et al. 
2020). Although few, recent experimental findings 
with wild-caught juvenile and adult P. magellanicus 
report that moderate pCO2 enrichment (~800–
900 μatm pCO2, Ωar ~1.0, and Ωcal ~1.5) reduces shell 
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biomass independent of life stage. By contrast, meta-
bolic rates are depressed in adults (Cameron et al. 
2022) yet are unaffected in juveniles under OA 
(Pousse et al. 2023); however, the Cameron et al. 
(2022) study used lower food rations than the study 
with juveniles. Similar to Pousse et al. (2023), we also 
found no effect on metabolism yet reduced shell 
weight in juvenile A. irradians exposed to elevated 
pCO2. A discrepancy between OA effects on meta-
bolic rates in the 2 P. magellanicus studies could be a 
result of inherent contrast between different develop-
mental stages (juvenile vs. adult) and the use of con-
tinuous as opposed to non-continuous algal diets. 
OA-induced metabolic depression when re sources 
were limited (Cameron et al. 2022) supports the plau-
sibility of a mitigating effect from food surplus 
(Ramajo et al. 2016a,b) and the potential importance of 
nutritional quality and quantity to accurately predict 
P. magellanicus fisheries. 

5.  CONCLUSIONS 

Bay scallops are a historical economic resource, but 
persistent environmental perturbations can affect 
fisheries. This study highlights the importance of 
food ration, especially food limitation on survivorship 
and performance under 2 pCO2 conditions tested. 
Thus, the effects of OA on phytoplankton commu-
nities, and therefore food, may lead to added indirect 
effects on bivalves. Collectively, these findings shed 
light on the ability of bay scallops to tolerate moder-
ate OA, and provide important future considerations 
regarding food-mediated tolerance and particle fate 
under short-term experimental challenges. Our re -
sults also highlight the importance of ecosystem-
level nutrient quantity and quality data for modeling 
scallop fisheries, especially as the employed contrasts 
for food ration in this study (14% change in total par-
ticles) approximate reported food scarcity in the 
northeastern USA (Schofield et al. 2008). 
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The relationship between organismal rates (metabolism 
and clearance) and body mass requires allometric stand-
ardization (Schmidt-Nielsen 1984), especially when size 
variance is high in a population of samples. Shell size var-
ied greatly across the duration of this study (minimum 
shell height: 1.7 mm; maximum shell height: 14.3 mm), 
deeming it necessary to employ allometric scaling for 
metabolic and clearance rates. A well-established method 
uses a b factor, or scaling exponent, estimated as the slope 
of logarithm-transformed rate versus allometric size data. 
Though dry tissue mass is commonly used to standardize 
mollusk rates (Bayne 2017), shell height was used as an 
accurate allometric trait alternative to inaccuracies from 
extracting tissues from small or young scallops (~45% of 
data on scallops of <3 mm). Regressions for logarithm-
transformed metabolic and clearance rates were completed 
for all data and parsed by food ration and pCO2 treatments 
(Figs. A1 & A2). Either the calculated scaling exponent 
(from study data) or the theoretical exponent (from litera-
ture consensus of related taxa) was chosen to normalize 
rates based on the following criteria: (1) use the calculated 
scaling exponent if the full data set and treatment-parsed 
data shows consistent linearity and directionality, (2) else 

use theoretical scaling exponent. Following this criteria, 
SMR abided criterion 1, and a scaling exponent of 2.0 was 
used to standardize SMR for this study (Fig. A1); similar 
values are reported for shell size standardization of respira-
tion rates in marine bivalves (e.g. 2.20–2.23 in geoduck 
clam Panopea zelandica and mussel Mytilus galloprovin-
cialis; Arranz et al. 2016, Le et al. 2017). As with SMR, allo-
metric scaling was estimated from logarithm-transformed 
clearance rates (CRcor; corrected for blank) and individual 
shell height data (SHindiv) fit to a simple linear regression as 
the following: [ln(CRccor) = ln(a) + bln(SHindiv)]. A theoret-
ical scaling exponent of 1.78 (Cranford et al. 2011, Bayne 
2017) was used to standardize clearance rates due to in -
consistent directionality of linear regressions suggesting 
strong associations between supplementary-fed and food-
limited scallops (Fig. A2). 

Although scaling is preferred, the authors recognize that 
numerous studies standardize solely for the individual (rate 
per unit size or number of individuals). Physiological rate 
data are reported with allometric standardization in the 
main text [rate per (mean / observed size)b] and individual-
corrected data as rate per mm shell height provided in the 
Supplement (Tables S3–S5, Fig. S1).

Appendix. Text A1: Allometric scaling
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Fig. A1. Fitted ordinary least squares (OLS) regressions for the allometric scaling (shell height) of standard metabolic rate. Scal-
ing exponents were estimated by linear regression of log(MO2) (μmol O2 l–1 h–1) versus log(shell height) (mm) using (A) all data 
and (B) data parsed by pCO2 × food supply treatments, scaling exponent as underlined text. Plots are additionally supplemented  

with OLS regression coefficients and a 95% confidence interval for all data (A; gray shading)
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Fig. A2. Fitted ordinary least squares (OLS) regressions for the allometric scaling (shell height) of clearance rates parsed by 
high-chlorophyll cells (Chaetoceros neogracile and Tetraselmis chui) and low-chlorophyll cells (seston). Scaling exponents are 
represented from the slope of log(clearance) versus log(shell height) using (A,C,E) all data and (B,D,F) data parsed by pCO2 × 
food supply treatments, scaling exponent as underlined text. Plots are additionally supplemented with ordinary least squares  

regression coefficients and a 95% confidence interval for all data (A,D,E; gray shading)
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