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1.  INTRODUCTION 

Understanding how the outcomes of species inter-
actions vary across spatial scales and gradients of 

human impact is integral to informing management 
strategies to facilitate the resilience and recovery of 
coral reefs (Rogers et al. 2018, Ruttenberg et al. 2019, 
Chow et al. 2021). Parrotfishes (Labridae: Scarini) are 
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ABSTRACT: Parrotfishes (Labridae: Scarini) are widely recognized for their important functional 
role in reducing coral–algae competition by grazing algae, yet some species are also coral pred-
ators (corallivores) and thereby have direct negative impacts on corals they prey upon. To better 
understand the ecological drivers of parrotfish corallivory intensity, we compared patterns of rel-
ative predation scar size and abundance across spatial scales from individual coral colonies (<1 to 
several meters in size), to reefs within islands (1 to 10s of km), to 4 regions across the Greater Car-
ibbean (100s to 1000s of km) including Panamá, Florida, St. Croix, and Bonaire. Across reef sites, 
there was a positive correlation of both parrotfish density and biomass with the relative coral area 
preyed upon, but not predation scar abundance. While there was no apparent site-level effect of 
coral cover on corallivory intensity, we found that the abundance of colonies preyed upon was pos-
itively correlated with both coral diversity and the proportional cover of frequently targeted coral 
taxa within localized 30 m2 reef areas. At the scale of individual coral colonies, we found that while 
numerous coral taxa were preyed upon, corallivory was concentrated on a few species across 
regions, such as Orbicella spp., Porites spp., and Stephanocoenia intersepta. Our findings suggest 
that while increased parrotfish densities may result in an increased coral area preyed upon across 
reefs, corallivory intensity within reefs may decrease in response to declines in the cover of 
frequently targeted coral taxa and overall coral diversity.  
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widely recognized to play key roles in facilitating 
coral recruitment, growth, and survival by grazing on 
the algae and cyanobacteria that compete with corals 
(Kuffner et al. 2006, Hughes et al. 2007, Cissell et al. 
2019). Intensive fishing of parrotfishes can reduce 
their abundance and compromise their ability to 
maintain reef algae in a grazed state (Hawkins & Rob-
erts 2004, Bozec et al. 2016). Therefore, protecting 
parrotfishes from overfishing is believed to be an 
important management practice to promote coral reef 
resilience and recovery at the local scale (Hughes et 
al. 2007, Bozec et al. 2016, Holbrook et al. 2016, Ste-
neck et al. 2019). While parrotfishes predominantly 
graze algae and cyanobacteria-covered substrates, 
which can indirectly benefit corals (Kuffner et al. 
2006, Chasqui-Velasco et al. 2007, Adam et al. 2015, 
Nicholson & Clements 2020), some species are also 
facultative coral predators (corallivores) and thereby 
have potential negative impacts on the corals they 
prey upon (Reyes-Nivia et al. 2004, Bonaldo et al. 
2011, Burkepile et al. 2019). Therefore, the net impact 
of consumption by parrotfishes on changing coral 
communities remains under debate (Rotjan & Lewis 
2008, Mumby 2009, Rice et al. 2019). Parrotfish coral-
livory has presumably been a stressor on corals for 
millennia; however, when combined with modern 
human impacts, there is concern that the chronic bio-
tic stress of parrotfish corallivory could be increas-
ingly detrimental to coral resilience (Bellwood et al. 
2003, Rotjan & Lewis 2008, Zaneveld et al. 2016, Rice 
et al. 2019, Rotjan et al. 2022). Evaluating ecological 
processes that influence parrotfish corallivory inten-
sity across spatial scales and broad gradients in par-
rotfish density, coral cover, and coral diversity will 
enable us to better understand how corallivory may 
change in response to stressors such as overfishing 
and reef degradation. 

Parrotfishes predominantly graze a diverse assem-
blage of turf algae and associated detritus known as 
the epilithic algal matrix, as well as cyanobacteria, 
crustose coralline algae (CCA), and fleshy macro-
algae (Adam et al. 2015, Cissell et al. 2019, Nicholson 
& Clements 2020, Homma et al. 2022). Since algae 
and cyanobacteria compete with corals (Kuffner et al. 
2006, Arnold et al. 2010), parrotfish grazing is widely 
believed to play an important role in indirectly pro-
moting coral recruitment, growth, and survival 
(Hughes et al. 2007, Holbrook et al. 2016, Steneck et 
al. 2019; but see Trapon et al. 2013). Parrotfishes are 
also major reef bioeroders that differ in their impacts 
on reef substrate based on feeding mode, prefer-
ences, and body size (Alwany et al. 2009, Ong & Hol-
land 2010, Adam et al. 2018, Lange et al. 2020). 

Browsers crop macroalgae and help control its over-
growth, while scraping and excavating species leave 
more frequent reef grazing scars (Adam et al. 2018), 
which may facilitate the settlement of CCA and corals 
(Arnold et al. 2010, Charendoff et al. 2023). Through 
these complementary feeding modes, parrotfishes are 
believed to play important roles in promoting coral 
reef resilience (Rasher et al. 2013, Bonaldo et al. 2014, 
Adam et al. 2018). 

Some parrotfishes are also facultative coral pred-
ators, although corallivory rates are low for most spe-
cies (Bonaldo & Bellwood 2009, Bonaldo et al. 2014, 
Burkepile et al. 2019), with the notable exceptions of 
Bolbometopon muricatum and Chlorurus strongylo-
cephalus in the Indo-Pacific (Hoey & Bellwood 2008, 
Lokrantz et al. 2008, Alwany et al. 2009). However, 
since parrotfishes are highly abundant on many reefs, 
even infrequent corallivory could cumulatively have 
a negative impact on corals, particularly when co-
occurring with other stressors (Zaneveld et al. 2016, 
Ezzat et al. 2020, Rotjan et al. 2022). While small scars 
often heal, intensive corallivory can cause partial col-
ony mortality and, in extreme cases, total colony mor-
tality (Bruckner & Bruckner 1998, Miller & Hay 1998, 
Sánchez et al. 2004, Welsh et al. 2015, Rempel et al. 
2020). Corallivory may also have indirect conse -
quences such as reducing coral growth and fecundity 
and potentially acting as a disease vector (Rotjan & 
Lewis 2009, Cameron & Edmunds 2014, Ezzat et al. 
2020). However, it may also have indirect benefits for 
corals such as dispersing coral symbionts (Symbio-
diniaceae) via fish feces and introducing beneficial 
bacteria to the coral microbiome (Ezzat et al. 2020, 
Grupstra et al. 2021). Therefore, the consequences of 
parrotfish corallivory for coral tissue loss likely vary 
in response to the magnitude of local stressors and 
across ecological gradients in coral reef condition. 

Furthermore, the ecological drivers of parrotfish 
corallivory intensity likely differ across spatial scales, 
as consumers often operate at different scales than 
their prey (Wiens 1989). For example, parrotfishes for-
age over 10s to 100s of meters (Adam et al. 2015, Chow 
et al. 2021), while coral cover and community compo-
sition can vary at the scale of a few meters. Further-
more, fishing pressure, which can influence parrotfish 
density and body size (Vallès & Oxenford 2014, Nash 
et al. 2016), often varies on the scales of reefs to regions 
(10s to 100s of km). Additionally, local reef conditions 
can influence the spatial extent of parrotfish–benthos 
interactions, as parrotfish foraging distances may 
increase on more degraded reefs (Nash et al. 2016). 
To disentangle how parrotfish–coral interactions may 
change in response to reef degradation and increased 
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fishing pressure, we first need to understand how the 
drivers of parrotfish corallivory vary from the scale of 
individual coral colonies to regions. 

Over the past decade, there has been increasing 
interest in the putative ecological drivers of parrotfish 
corallivory intensity across gradients in reef commu-
nity composition (Burkepile 2011, Roff et al. 2011, 
Huertas et al. 2021). There are 3 main factors thought 
to influence corallivory intensity; however, findings 
have been inconsistent across studies. First, most par-
rotfishes appear to selectively target certain coral 
species. For example, in the Indo-Pacific, Porites spp. 
corals are intensively preyed upon (Bonaldo & Bell-
wood 2011), whereas in the Caribbean, Orbicella spp. 
and Siderastrea siderea corals are commonly targeted 
in addition to Porites spp. (Reyes-Nivia et al. 2004, 
Rotjan & Lewis 2006, Burkepile 2011, Roff et al. 2011). 
Second, coral cover is thought to influence coralli-
vory rates. A study in Florida found that scar density 
increased as coral cover decreased on reefs spanning 
from <1 to nearly 8% coral cover (Burkepile 2011), 
whereas a study from the Bahamas found no relation-
ship between parrotfish scar density and coral cover 
on reefs spanning from 2.5 to 22.5% (Roff et al. 2011). 
Another study from the Great Barrier Reef found that 
corallivory intensity declined after coral cover 
decreased from 22 to ~7% after a decade of disturb-
ance events (Huertas et al. 2021). Third, there is con-
flicting evidence as to whether parrotfish density 
affects corallivory intensity. For example, a study 
from Belize found a positive relationship between 
predation scar density on Orbicella faveolata and the 
abundance of one parrotfish species (Rotjan & Lewis 
2006), whereas other studies from the Bahamas, Flor-
ida, Columbia, and the Great Barrier Reef found no 
such relationship (Reyes-Nivia et al. 2004, Burkepile 
2011, Roff et al. 2011, Huertas et al. 2021). Whether 
the balance between relative parrotfish abundance 
and coral abundance is tipped because of an increase 
in parrotfishes or a decrease in coral, there are con-
cerns that if the intensity of parrotfish corallivory 
does not decrease as coral cover declines, it could 
create a positive feedback loop that further exacer-
bates coral loss (Burkepile 2011). 

The apparent disagreement between prior studies 
as to the relationship between corallivory intensity 
and the ratio of parrotfish to coral abundance may be 
in part due to the response variable chosen by investi-
gators — most previous studies have not accounted 
for scar size, only density. Previous studies have also 
focused on reef-scale or inter-reef patterns (Rotjan & 
Lewis 2006, Burkepile 2011, Roff et al. 2011), while 
characteristics of individual coral colonies or local-

ized reef cover and diversity may be important but 
previously understudied factors that influence coral-
livory intensity. Parrotfish predation scars can vary in 
size, and the majority are small scars from individual 
bites that often fully heal (Sánchez et al. 2004, Bon-
aldo et al. 2011, Welsh et al. 2015, Rempel et al. 2020). 
However, parrotfishes sometimes repeatedly bite 
large, contiguous areas of coral colonies, which can 
cause far larger predation scars (Welsh et al. 2015, 
Rempel et al. 2020). While infrequent, these large 
scars can cause disproportionate amounts of coral tis-
sue loss (Bonaldo et al. 2011, Welsh et al. 2015, Rem-
pel et al. 2020). This suggests that scar size may be a 
more important metric than scar abundance when 
considering the long-term impacts of corallivory. 
Additionally, most previous studies have not differen-
tiated between recent and older predation scars. 
Given that coral species differ in their healing capac-
ities (Henry & Hart 2005), this may lead to an overes-
timation of relative corallivory intensity for slower-
healing coral species. 

Our objectives were to compare patterns in the rel-
ative size and abundance of recent parrotfish preda-
tion scars across broad gradients in parrotfish density, 
coral cover, and coral community composition. As 
an  understanding of how the drivers of consumer–
resource interactions vary across spatial scales is crit-
ical to informing management under changing en -
vironmental conditions (Wiens 1989, Levin 1992), 
we  compared patterns across scales ranging from 
individual coral colonies to reefs spanning 4 Carib-
bean regions. Our research questions asked (1) how 
patterns of corallivory intensity vary across regions 
and reef sites in response to parrotfish density, coral 
cover, and coral community composition; (2) how 
the  relative predation intensity on target coral taxa 
varies in response to local coral diversity and taxa-
specific coral cover within small areas of reefs; and (3) 
how the relative intensity of corallivory on individ-
ual colonies varies in response to coral size, taxa, and 
region. 

2.  MATERIALS AND METHODS 

2.1.  Study sites 

We collected data across 10 sites in Bocas del Toro, 
Panamá, in 2013; 4 in the Florida Keys, USA, in 2013; 
8 in St. Croix, US Virgin Islands, in 2018; and 4 
in Bonaire, Dutch Caribbean, in 2019 (Fig. 1). We 
 conducted surveys of all regions between June 
and August. These sites and regions spanned broad 
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gradients in parrotfish density and biomass (see Fig. 2,  
Fig. S1 in the Supplement at www.int-res.com/
articles/suppl/m740p145_supp.pdf) and also var-
ied in parrotfish fishing intensity. Parrotfish popu -
lations in Bocas del Toro, Panamá, are dominated 
by  small-bodied species (Kuempel & Altieri 2017). 
Although their harvest has been prohibited in Pan-
amá since 1994 (Harms-Tuohy 2021), paleoecological 
evidence suggests local populations have undergone 
major declines, possibly in response to over 2 cen-
turies of overfishing and land-use change (Cramer 
et  al. 2017). Sites in Florida were within a no-take 
reserve (NOAA 1997) and illegal parrotfish fishing is 
rare (Harms-Tuohy 2021). In St. Croix, parrotfishes 
are a major commercial fishery with the highest land-
ings in the US Caribbean (NOAA NMFS 2012, 
Harms-Tuohy 2021). Five of the 8 survey sites in St. 
Croix were in fished areas, while the other 3 were in a 
no-take marine reserve established in 2001 (DPNR 
2005). In Bonaire, parrotfishes are not a traditional 
fishery and their harvest has been prohibited since 
2010 (Island Council of the Bonaire Island Territory 
2010, Harms-Tuohy 2021). Coral cover across these 
sites also spanned broad gradients, ranging from <1% 
at some sites in Florida to >30% at some sites in 
Bonaire and Panamá. Gradients in parrotfish density, 
coral cover, and coral community composition across 
these regions make them ideal for comparing ecologi-
cal factors that may influence the relative intensity of 
parrotfish corallivory. 

2.2.  Coral demography and predation scar surveys 

While direct observations of parrotfish corallivory 
are infrequent, several parrotfish genera (including 
Scarus and Sparisoma) have completely fused beak-
like teeth (Bellwood & Choat 1990, Evans et al. 2023) 
that leave characteristic, often paired scars from their 
upper and lower jaws as they denude portions of the 
coral tissue (Fig. 1b–d). These distinctive scars are 
commonly used to quantify parrotfish corallivory 
intensity (Rotjan & Lewis 2006, Burkepile 2011, Huer-
tas et al. 2021). While a few Tetradontiformes species 
in the region are occasional corallivores that also 
denude coral skeletons (e.g. Cantherhines macroce-
rus and Melichthys niger), it typically makes up <1% 
of their ingesta (Randall 1967), and parrotfishes are 
the predominant skeleton-denuding corallivorous 
fishes in the Caribbean (Cole et al. 2008). To facilitate 
consistent parrotfish scar identification across re -
gions, a principal investigator in charge of data col-
lection in each region met in the Florida Keys prior to 
the study to collectively train in parrotfish predation 
scar identification and develop common scar survey 
methods. Notably, in some regions, these methods 
were slightly adapted to fit local ecosystem con-
ditions (e.g. surveying corals in size bins in all regions 
but the Florida Keys, as most other regions had much 
higher coral densities; see details below). 

Across all regions, we surveyed the size and abun-
dance of scleractinian coral species ≥3 cm in diame-
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Fig. 1. (a) Study regions and the number of survey sites (for individual site coordinates, see Table S1). (b) An older parrotfish 
predation scar on a branching Porites spp. coral. (c) Recent scars on an Orbicella annularis colony left by the upper and lower  

jaws of a parrotfish. (d) A large, recent scar on an O. annularis colony caused by repetitive, focused predation
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ter in 30 × 1 m transects parallel to the reef formation 
across a range of depths between 2.1 and 15.8 m (n = 
2–11 transects site–1; Table S1). We chose to sample 
this depth gradient because parrotfishes are mobile 
foragers known to feed across this range of depths 
(Bruggemann et al. 1994, Rempel et al. 2022) and they 
have territories that can span 100s to >1000 m2 
(Mumby & Wabnitz 2002, Manning & McCoy 2023). 
Whenever possible, we identified corals to the spe-
cies level. However, we grouped branching Porites 
spp. due to the lack of consensus on genetic and mor-
phological distinctions between these taxa across the 
Caribbean (Prada et al. 2014, Dimond et al. 2017). 
Additionally, due to similar appearances among some 
Agaricia spp., particularly for smaller colonies, we 
identified some to the genus level. 

For coral colonies with predation scars, we recorded 
colony diameter and perpendicular width to the nea-
rest cm, scar abundance, and the percentage of recent 
scars. We defined an individual scar as one contigu-
ous lesion. We classified scars as recent if there were 
no signs of tissue healing at the scar perimeter or 
growth of algae or cyanobacteria within the scar 
(Fig. 1b), which typically appears within the first few 
days after a scar is inflicted (Rempel et al. 2020). For 
colonies with ≤3 scars, we recorded scar length and 
width (cm), then estimated scar surface area as the 
area of an oval. While most colonies had few scars, 
some had >100 and it was not practical to measure 
each scar. Therefore, for colonies with >3 scars, we 
measured the visually estimated minimum, median, 
and maximum scars to estimate approximate scar size 
distributions. We used these size estimates and scar 
abundance to interpolate scar size distributions based 
on a normal distribution centered on the median and 
bounded by the minimum and maximum scar size, as 
scar sizes distribute approximately normally overall 
in a region (Rempel et al. 2020). Similar methods have 
been used in prior studies to estimate size distribu-
tions of parrotfish bite scars (Rempel et al. 2020), as 
well as fish populations (Brandt et al. 2009, Smith et 
al. 2011). Given that coral species differ in healing 
rates (Henry & Hart 2005), including older scars in 
surveys may lead to inaccurate comparisons of the 
relative predation intensity between species. To esti-
mate the coral area preyed upon per colony based on 
recent scars, we used bootstrapping with 10 000 iter-
ations to randomly sample size estimates based on the 
percentage of recent scars and total scar abundance 
per colony (Rempel et al. 2020). 

For coral colonies without predation scars, we re -
corded coral taxa and colony size. In Florida, coral 
abundance was low, so we directly measured each 

colony in situ to the nearest cm. In other regions, the 
higher abundance of colonies made directly measur-
ing each colony impractical. In Panamá, we recorded 
colony diameter in bins of 3 to <5, 5 to <10, 10 to <20, 
20 to <40, 40 to <80, and ≥80 cm. In St. Croix and 
Bonaire, some sites had a high abundance of small 
coral colonies. In these regions, we recorded colonies 
with a diameter <20 cm using the same size bins as in 
Panamá, but measured colonies ≥20 cm to the nearest 
cm. This allowed us to survey many small colonies 
within the time constraints of SCUBA surveys, while 
still obtaining precise measurements for larger col-
onies that varied more in size and shape. For colonies 
partially within the transect, we recorded the percent 
of the colony within the transect to the nearest 5% to 
correct coral cover estimates, and only recorded scars 
within the transect. For colonies with partial mortal-
ity, we estimated the percent living coral tissue. For 
all coral species for which we had direct measure-
ments, we calculated colony surface area (SA) based 
on the area of an oval: 

     (1) 

For all analyses, we restricted estimates of coral 
cover to taxa for which we observed ≥3 colonies with 
recent predation scars (n = 323 total colonies), here-
after referred to as target coral taxa (Table S2). These 
taxa were as follows: Agaricia agaricites, A. humilis, 
A. tenuifolia, Agaricia spp., Madracis auretenra, M. 
decactis, Orbicella annularis, O. faveolata, branching 
Porites spp., P. astreoides, Siderastrea siderea, and 
Stephanocoenia intersepta. To estimate the surface 
area of corals within size bins, we calculated the mean 
surface area of each coral taxa and size class from col-
onies for which we had direct measurements. We cal-
culated the percent of coral cover based on the total 
area of these coral taxa relative to the transect area. 

2.3.  Parrotfish density surveys 

To quantify corallivorous parrotfish density, we sur-
veyed their abundance within 80–100 m2 transects at 
each site, a survey area comparable to that of a similar 
prior study in the region (Burkepile 2011). Behavioral 
research suggests that Scarus taeniopterus, Sc. vetula, 
and Sparisoma viride are the major Caribbean coralli-
vores (Cardoso et al. 2009, Burkepile et al. 2019), 
while other parrotfish species typically take <1% of 
their average bites on live coral (Text S1,Table S3). 
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Ad ditionally, parrotfish bioerosion and corallivory 
rates vary by ontogeny, where the onset of bioerosion 
capabilities is typically at ~15 cm and juveniles and 
small adults do not typically consume live coral 
(Bruggemann et al. 1994, 1996, Ong & Holland 2010, 
Bonaldo & Rotjan 2017). Therefore, we restricted our 
estimates of corallivore density to individuals of these 
3 species that were ≥15 cm fork length (Fig. S2). In 
Panamá and Florida, we surveyed individuals within 
25 × 4 m transects (100 m2). In St. Croix and Bonaire, 
we conducted 20–25 min roving surveys while tow-
ing a Garmin GPS 72 on a taut line to measure dis-
tance traveled and recorded parrotfishes observed in 
a 5 m wide belt for each minute of the survey (Adam et 
al. 2015, Rempel et al. 2022). Using the ‘distm’ func-
tion from the ‘geosphere’ R package, we calculated 
the haversine distance traveled per minute (Hijmans 
et al. 2019). To integrate these surveys with 100 m2 
surveys from Panamá and Florida, we filtered the data 
to only include segments from consecutive minutes 
that spanned a 16 to 20 m length (i.e. 80 to 100 m2). 
Additionally, for any back-to-back segments, we fil-
tered the data to select every other segment, ensuring 
that there were at least 16 to 20 m between each. 
We acknowledge that differences in survey methods 
between regions may be a potential source of varia-
tion; however, these steps to integrate these surveys 
can facilitate reasonable comparisons across regions. 
We conducted 2 to 32 surveys per site stratified across 
depths ranging from 1.5 to 17.7 m (Table S1). While we 
focus on patterns of parrotfish density, we describe 
methods used to estimate corallivore biomass and 
related analyses in the Supplement (Text S2). 

2.4.  Statistical analysis 

2.4.1.  Variation in corallivory intensity 
among regions 

We conducted statistical analyses using R v.4.3.0 
(R  Core Team 2023). We analyzed variation in site-
level mean corallivorous parrotfish density (no. per 
100 m2), parrotfish biomass (g per 100 m2), target 
coral cover (%), and coral area preyed upon (%) 
among regions using Kruskal-Wallis tests, as these 
data violated normality or homogeneity of variance 
assumptions. We conducted post hoc Dunn’s tests 
using the ‘rstatix’ package (Kassambara 2023) with a 
Benjamini-Hochberg correction for multiple compar-
isons (Benjamini & Hochberg 1995). We conducted 
ANOVA to evaluate regional differences in the nat-
ural log-transformed scar density (no. m–2 target 

coral), followed by a post hoc Tukey test. We tested 
ANOVA model assumptions via visual inspection of 
the residuals, as well as a Shapiro-Wilk test of normal-
ity, Levene test of homogeneity of variance, and inter-
quartile range outlier test using the ‘rstatix’ package 
(Kassambara 2023). 

2.4.2.  Variation in corallivory intensity  
within and among reefs 

To assess how relative scar density (no. m–2 target 
coral) and coral area preyed upon (%) varied in re -
sponse to corallivorous parrotfish density (no. per 
100 m2), target coral cover (%), and the interaction of 
these variables, we used generalized and general lin-
ear mixed models (GLMMs), respectively, with a ran-
dom intercept by region. We used a t-distribution for 
the model of scar density, as residual plots indicated it 
was a better fit than Gaussian, and used a Gaussian 
distribution for the model of coral area preyed upon. 
For both models, we included a natural log transfor-
mation of the response variable as they follow a con-
ditional log-normal distribution and a square-root 
transformation of parrotfish density to address quan-
tile deviations from normality. 

Our observations suggest that O. annularis, branch-
ing Porites spp., P. astreoides, and S. siderea are the 
most frequently preyed upon Caribbean coral taxa. 
We used a negative binomial GLMM to evaluate how 
the abundance of coral colonies with predation scars 
of these taxa varied within 30 m2 areas of reefs in 
response to local coral diversity, the natural log-trans-
formed ratio of the cover of a given taxa to total target 
coral cover, transect depth (m), and region with a 
random intercept of transect nested within site. We 
calculated coral diversity (H’) using the Shannon 
Diversity Index (Shannon 1948). We used a negative 
bi nomial GLMM because residual plots and diagnos-
tic tests indicated it was a better fit than Poisson. 

2.4.3.  Variation in corallivory intensity  
among coral colonies 

We used a negative binomial GLMM to assess how 
the abundance of recent predation scars on target 
coral colonies varied in response to coral taxa, colony 
surface area (cm2), transect depth (m), and region 
with a random intercept of transect nested within site. 
We used a negative binomial GLMM because resid-
ual plots and a likelihood ratio test indicated that it 
was a significantly better fit than Poisson (χ2

1 = 
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3549.1, p <0.001). For target coral colonies with pre-
dation scars, we used GLMMs with t-distributions to 
compare how the natural log of mean scar area and 
natural log of percent of coral area preyed upon var-
ied in response to coral taxa, the natural log of colony 
surface area (cm2), transect depth (m), and region 
with a random intercept of transect nested within site. 
For these 2 models, we used t-distributions because 
residual plots and diagnostic tests indicated it was a 
better fit than Gaussian. 

2.4.4.  Assessing GLMM fit 

We analyzed all general and GLMMs using the 
‘glmmTMB’ package, which estimates p-values using 
a Wald Z-statistic (Brooks et al. 2017). We assessed 
the fit of all mixed models using the ‘DHARMa’ pack-
age (Hartig 2022), using estimated residuals from 
1000 simulations to visually inspect the model fit and 
test for overdispersion, outliers, and normality via 
Kolmogorov-Smirnov tests. Additionally, for GLMMs 
of count data, we tested for zero-inflation. 

3.  RESULTS 

3.1.  Variation in corallivory intensity 
among regions 

There was significant variation in corallivorous par-
rotfish density (Kruskal-Wallis test, H3 = 17.66, p < 
0.001), parrotfish biomass (H3 = 14.92, p = 0.002), and 
target coral cover (H3 = 13.65, p = 0.003) across the 
4 observed Caribbean regions (Table 1, Fig. 2 & 
Fig. S1). We observed significantly higher parrotfish 
densities in Florida and Bonaire than in Panamá 
(Dunn’s tests, padj = 0.042 and <0.001, respectively), 
and a higher biomass of parrotfishes in Bonaire than 
in Panamá (padj = 0.001). Additionally, there was 
higher coral cover in Bonaire than in Florida and 

St. Croix (padj = 0.014 and 0.035, respectively) and in 
Panamá than in Florida (p = 0.014). There were signif-
icant regional differences in relative predation scar 
density (ANOVA, F3,22 = 21.88, p < 0.001) and percent 
of coral preyed upon (Kruskal-Wallis test, H3 = 15.72, 
p = 0.001). There were significantly higher scar den-
sities in Florida than in Panamá, St. Croix, and 
Bonaire (Tukey test, p < 0.001 for all), as well as a 
higher percent of coral area preyed upon in Florida 
than in Panamá (Dunn’s test, padj < 0.001; see Figs. S3 
& S4 for patterns of corallivory intensity by region 
and coral genera). 

3.2.  Variation in corallivory intensity  
within and among reefs 

At the reef scale, we found no evidence of an effect 
of target coral cover on relative scar density or per-
cent of coral preyed upon after accounting for ran-
dom regional variation (Fig. 3, Table S4). We found a 
significant effect of square-root transformed coralli-
vorous parrotfish density on the percent of coral 
preyed upon (GLMM, β = 1.34, Z = 2.509, p = 0.012) 
but not relative scar density (Fig. 3). Similarly, when 
we compared models using corallivorous parrotfish 
biomass instead of density, we also found a significant 
effect on percent of coral area preyed upon (β = 
0.064, Z = 2.207, p = 0.027) but not relative scar den-
sity (Fig. S5, Table S4). For all models, we found no 
evidence of an interactive effect of parrotfish density 
(or biomass) and coral cover on corallivory intensity. 
Slight variation in survey methods across regions may 
have led to increases in sampling error, but the fact 
that the main findings are robust and consistent for 
both parrotfish abundance and biomass suggests that 
this is unlikely to have influenced the overall find-
ings. 

Within 30 m2 areas of reefs, we found a signifi-
cant  positive effect of coral diversity on the abun-
dance of Orbicella annularis, branching Porites spp., 
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Region              Parrotfish density             Coral cover             Scar density            Mean scar area            Colony area preyed upon 
 
Panamá                      0.8±0.4                         18.0±3.7                    0.9±0.2                  0.333±0.044                           0.003±0.001 
Florida                       3.9±1.0                          2.8±1.9                 121.7±38.9                0.630±0.091                           0.553±0.147 
St. Croix                    2.4±0.5                          7.2±1.3                    1.4±0.7                  1.170±0.446                           0.010±0.002 
Bonaire                      7.6±0.5                         23.3±4.1                    2.0±0.8                  1.993±0.791                           0.014±0.004

Table 1. Regional means ± SE of the density (no. per 100 m2) of major corallivorous parrotfish (Scarus taeniopterus, Sc. vetula, 
and Sparisoma viride) individuals of ≥15 cm fork length, coral cover of taxa targeted by parrotfishes (%), parrotfish predation 
scar density (no. m–2 coral), mean scar area for coral colonies with predation scars (cm2), and mean proportion of the coral 

colony area with preyed upon (%). Darker shades indicate larger values
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P.  astreoides, and Siderastrea siderea colonies with 
predation scars (GLMM, Z = 2.950, p = 0.003). For 
every 1-unit increase in coral diversity (H’), there were 
4.3 times more coral colonies with predation scars on 

average after accounting for other model parameters 
(Fig. S6). For all 4 coral taxa, there was a significant 
positive effect of the relative cover of a given coral 
taxa on the abundance of colonies of that taxa with 
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predation scars (p < 0.001 for all; Table S5). On aver-
age, for every 1% increase in the ratio of the cover of 
the respective coral taxa to total target coral cover, 
the abundance of coral colonies with predation scars 
increased by 4.5 times for O. annularis, 1.8 times for P. 
astreoides, 2.1 times for branching Porites spp., and 
2.6 times for S. siderea. Compared to branching 
Porites spp. colonies, there were significantly fewer P. 
astreoides colonies with predation scars (est. 0.31 
times fewer; Z = 1.180, p = 0.032) and S. siderea (est. 
0.24 times fewer; Z = 1.433, p = 0.004) but not O. 
annularis. Among regions, there were significantly 
more coral colonies with predation scars in Florida 
than in Panamá (est. 9.2 times more; Z = 5.493, p < 
0.001) and fewer in St. Croix than in Panamá (est. 0.34 
times fewer; Z = –2.771, p = 0.006) after accounting 
for other model parameters. There was no significant 
effect of reef depth (ranging from 2.1 to 15.8 m) on the 
abundance of colonies with predation scars. 

3.3.  Variation in corallivory intensity  
among coral colonies 

We evaluated how region, coral colony surface 
area, coral taxa, and reef depth influenced corallivory 
intensity as measured by the (1) scar abundance per 
colony, (2) mean size of scars for colonies with preda-
tion scars, and (3) percent of coral colony area preyed 
upon for colonies with predation scars. We observed 
significant differences in scar abundance per coral 
colony in response to region, colony surface area, and 
taxa, but not reef depth (Table S6). Compared to Pan-
amá, there was a significantly higher scar abundance 
per colony in Florida (GLMM, est. 86.92 times more; Z 
= 5.42, p < 0.001) and a lower abundance in St. Croix 
(est. 0.04 times fewer; Z = –4.95, p < 0.001) but 
no significant difference in Bonaire. While we found 
a  significant positive relationship between scar 
abundance and coral colony surface area (Z = 6.61, 
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p  < 0.001), the effect size was small, with an esti-
mated 1.001 times more scars per colony for every 
1.0  cm2 increase in colony area. Additionally, com-
pared to Agaricia agaricites, there was a significantly 
higher abundance of scars on Madracis decactis (est. 
16.3 times more; Z = 3.37, p = 0.001), O. annularis 
(est. 68.5 times more; Z = 5.36, p < 0.001), branching 
Porites spp. (est. 92.1 times more; Z = 5.71, p < 0.001), 
and P. astreoides (est. 65.0 times more; Z = 5.42, p < 
0.001). 

We observed significant differences in mean scar 
size in response to region, colony surface area, and 
taxa, but not reef depth (Table S7). After accounting 
for coral taxa and colony size, we observed that com-
pared to Panamá, there were significantly larger mean 
scar sizes in Florida (est. 2.9 times larger; Z = 4.82, 
p < 0.001), St. Croix (est. 2.3 times larger; Z = 3.18, p = 
0.016), and Bonaire (est. 2.9 times larger; Z = 3.95, 
p < 0.001). There was a significant effect of colony size 
on mean scar size (Z = 2.17, p = 0.030), where for 
every 1.0% increase in colony surface area the aver-
age scar area increased by 0.082%. Among taxa, there 
were significantly larger mean scar sizes on A. tenuifo-
lia (est. 3.7 times larger; Z = 3.06, p = 0.002), branch-
ing Porites spp. (est. 2.2 times larger; Z = 2.90, p = 
0.004), and Stephanocoenia intersepta (est. 3.6 times 
larger; Z = 2.259, p = 0.024) compared to A. agaricites 
after accounting for other model parameters (Fig. 4). 

We observed significant differences in the percent 
of coral colony preyed upon in response to region, 
colony surface area, and taxa, but not reef depth 
(Fig. 4, Table S8). There was a smaller percent of col-
ony area preyed upon in Panamá than in Florida, 

St.  Croix, and Bonaire (Z = 6.49, 4.29, and 5.71, 
respectively, p < 0.001 for all). Compared to Panamá, 
we estimate that there were 5.4, 3.7, and 6.0 times 
more coral areas preyed upon in Florida, St. Croix, 
and Bonaire, respectively. We found a negative rela-
tionship be tween colony surface area and the per-
cent of colony area preyed upon (GLMM, Z = –15.09, 
p < 0.001), where for every 1.0% increase in colony 
size, the percent colony area preyed upon decreased 
by an average of 0.74%. Compared to A. agaricites, 
there was a higher colony area preyed upon for A. tenui-
folia (est. 5.0 times more; Z = 3.36, p = 0.001), Agaricia 
spp. (est. 7.7 times more; Z = 3.06, p = 0.002), O. an -
nularis (est. 2.2 times more; Z = 2.05, p = 0.040), 
branching Porites spp. (est. 3.1 times more; Z = 3.45, 
p = 0.001), and P. astreoides (est. 2.2 times more; Z = 
2.29, p = 0.022). 

4.  DISCUSSION 

While parrotfishes may indirectly facilitate coral 
resilience by grazing on the algae and cyanobacteria 
that compete with corals (Edwards et al. 2011, Ste-
neck et al. 2019, Cissell et al. 2019), they also have 
negative impacts on coral colonies that they prey 
upon (Alwany et al. 2009, Welsh et al. 2015, Rempel et 
al. 2020, Huertas et al. 2021). Quantifying how coral-
livory intensity may differ on reefs with lower coral 
cover and diversity as well as varying parrotfish den-
sities is critical to understanding and managing the 
net impacts of parrotfishes under changing reef con-
ditions (Rotjan & Lewis 2008, Mumby 2009). We eval-
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uated how corallivory intensity varied across spatial 
scales from coral colonies, to reefs, to 4 regions of the 
Greater Caribbean. These reefs spanned broad gra-
dients in corallivorous parrotfish density and biomass 
(0–8.6 ind. per 100 m2 and 0–2517 g per 100 m2, 
respectively), as well as coral cover (<1 to >34%), 
allowing us to better assess how these factors may 
influence parrotfish predation scar density and coral 
area preyed upon. This study helps resolve previously 
inconclusive or contradictory findings on the pur-
ported ecological drivers of parrotfish corallivory 
intensity. Overall, our findings suggest that broad-
scale patterns in corallivory intensity at the reef to 
regional scales are more strongly influenced by par-
rotfish density and biomass, while patterns within 
reefs and at the scale of individual coral colonies are 
more strongly driven by coral cover, coral species 
composition, and colony-level traits. 

4.1.  Effects of parrotfish density 

While researchers have expressed concerns that 
management actions that increase the abundance of 
parrotfishes to promote herbivory could lead to an 
increase in corallivory intensity (Rotjan & Lewis 
2008), relationships between parrotfish density and 
coral predation remain poorly understood (Mumby 
2009). Several prior studies found no relationship 
between corallivorous parrotfish density and the rel-
ative abundance of predation scars (Reyes-Nivia et al. 
2004, Burkepile 2011, Roff et al. 2011), while one 
study found a positive relationship between Orbicella 
faveolata scar density and Sparisoma aurofrenatum 
parrotfish density (Rotjan & Lewis 2006). Given that 
these studies were conducted in areas with relatively 
abundant parrotfishes, researchers suggested that the 
effects of corallivory may be more apparent when 
comparing sites where fishing pressure has created 
stronger gradients in parrotfish density (Roff et al. 
2011). Our study spanned that gradient, including 
regions such as Panamá, where larger corallivorous 
parrotfish species are uncommon (Kuempel & Altieri 
2017), possibly due to historical overfishing (Cramer 
et al. 2017); St. Croix, where parrotfishes are a major 
commercial fishery and their densities are lower; and 
the Florida Keys and Bonaire, where parrotfishes are 
protected and their densities are higher (Harms-
Tuohy 2021). Additionally, while scar size may be a 
more important predictor of coral tissue loss from par-
rotfish predation than scar abundance (Rempel et al. 
2020), this is one of the first studies in the region to 
assess how parrotfish densities may influence scar 

area in addition to density. We found that as parrot-
fish density and biomass increased, the relative coral 
area preyed upon increased but the relative abun-
dance of scars did not. These contrasting findings 
suggest that there may be larger scars in areas with 
more abundant and/or larger parrotfishes. 

Larger-bodied parrotfishes create larger grazing 
scars, as scar area scales exponentially with fish 
length (Bruggemann et al. 1994, Adam et al. 2018, 
Lange et al. 2020). Furthermore, parrotfish species 
vary in their foraging targets and bite mechanics, and 
excavating parrotfishes like Sp. viride may denude 
larger coral areas than scraping species (Hoey & Bell-
wood 2008, Alwany et al. 2009, Adam et al. 2018, 
Burkepile et al. 2019). Reefs with higher parrotfish 
density and biomass may have also had more abun-
dant large-bodied individuals and/or excavating spe-
cies (Figs. S1 & S2), which typically leave larger graz-
ing scars (Bellwood et al. 2012). This could help 
explain why parrotfish density influenced the relative 
coral area preyed upon but not scar density. 

Intensive fishing of larger-bodied parrotfishes can 
reduce their mean size and alter their species compo-
sition (Hawkins & Roberts 2004, Bellwood et al. 2012, 
Kuempel & Altieri 2017, Shantz et al. 2020). In Bonaire 
and Florida, where parrotfish harvest is prohibited, 
there were higher average parrotfish densities and 
biomasses than in St. Croix and Panamá (Fig. S1). 
Similarly, Bonaire and Florida also had higher aver-
age densities of the excavating parrotfish Sp. viride 
(Fig. S2), which is the most frequent Caribbean coral-
livore (Table S3). Importantly, larger-bodied parrot-
fishes may also have disproportionately higher con-
tributions to processes such as bioerosion and 
clearing reef substrate of algae (Adam et al. 2018, 
Lange et al. 2020). Research suggests that the loss of 
larger-bodied Caribbean parrotfishes can increase 
algal biomass by 10-fold (Shantz et al. 2020). There-
fore, intensive fishing pressure may indirectly reduce 
the intensity of corallivory but could also compromise 
other key functional roles of parrotfishes. 

4.2.  Effects of coral cover and 
community composition 

If parrotfish corallivory intensity remains constant 
as coral cover declines, the stress from chronic preda-
tion could exacerbate coral tissue loss in areas with de-
clining coral cover (Rotjan & Lewis 2008, Burkepile 
2011); however, previous findings have been inconclu-
sive. Furthermore, it is unclear how corallivory in -
tensity on targeted coral species may vary in response 
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to coral diversity (Mumby 2009). One study on low 
coral cover reefs in Florida found that relative scar 
density increased as coral cover declined (Burkepile 
2011), another study from the Bahamas found no such 
effect (Roff et al. 2011), while a third study from the 
Great Barrier Reef found that scar density on massive 
Porites spp. declined following disturbances that 
caused a large decline in coral cover (Huertas et al. 
2021). Across reef sites, we found that coral cover 
ranging from <1 to >30% had no observable effect on 
corallivory intensity. However, within localized 30 m2 
areas of reefs, the abundance of coral colonies preyed 
upon from frequently targeted coral species (Orbicella 
annularis, branching Porites spp., P. astreoides, and 
Siderastrea siderea) decreased as their relative cover 
and overall coral diversity decreased. Previous studies 
noted that corallivory intensity on Porites spp. ap-
peared to intensify on reefs where preferred corals like 
Orbicella spp. were rare (Burkepile 2011). Ad ditionally, 
research suggests that parrotfishes selectively graze 
certain coral taxa (Rotjan & Lewis 2006, Bonaldo & 
Bellwood 2011, Burkepile 2011, Roff et al. 2011) but 
these patterns vary by reef habitat type and season and 
may be influenced by colony traits such as coral skele-
tal density, reproductive state, and the presence of 
macroboring organisms (Bruggemann et al. 1996, 
Reyes-Nivia et al. 2004, Rotjan & Lewis 2006, 2009, 
Hoey & Bellwood 2008, Alwany et al. 2009, Rice et al. 
2020). These findings suggest that parrotfishes may 
alter their predation preferences in response to coral 
community composition within reefs. However, these 
patterns may only be apparent for intensively grazed 
species, may be influenced by colony-specific traits, 
and/or influenced by the local ‘coral neighborhood’, 
and therefore may be attenuated at the reef scale. 

While we observed that Agaricia, Madracis, Orbi-
cella, Porites, Siderastrea, and Stephanocoenia spp. 
corals were targeted across regions, over 80% of col-
onies with predation scars were from 4 species alone 
(O. annularis, branching Porites spp., P. astreoides, 
and S. siderea). Similarly, previous studies have found 
that most coral taxa are not intensively preyed upon, 
with the exceptions of Porites spp., Orbicella spp., and 
S. siderea in some Caribbean regions (Rotjan & Lewis 
2006, Burkepile 2011, Roff et al. 2011), and massive 
Porites spp. corals in the Indo-Pacific (Bonaldo & Bell-
wood 2011, Huertas et al. 2021). 

4.3.  Effects of coral colony-level variables 

At the scale of individual coral colonies, researchers 
have questioned whether parrotfishes may focus their 

predation on a few targeted colonies as neighboring 
coral cover declines, increasing partial to total colony 
mortality on these individuals, or whether predation 
will be dispersed across a larger number of colonies, 
increasing scar abundance per colony but not neces-
sarily scar area (Mumby 2009). We found that there 
was a far higher abundance of scars per coral colony 
in Florida than in all other regions, although Florida 
had a similar coral colony area grazed and mean scar 
area compared to Bonaire. Previous studies have also 
found that Florida has notably high scar densities 
(Burkepile 2011), possibly driven by the combination 
of moderately high parrotfish densities but extremely 
low coral cover. Yet some reefs in a marine reserve in 
St. Croix that had comparable parrotfish densities 
and only slightly higher coral cover did not have sim-
ilarly high levels of predation. Interestingly, one site 
in Florida that had somewhat higher coral cover (8.3% 
compared to 0.7 to 1.3%) had 3.7 to 7.6 times lower rel-
ative scar density and 1.8 to 4.0 times lower coral area 
preyed upon. There may be thresholds of extremely 
low coral cover at which these relationships become 
more apparent or there may be other unique factors of 
Floridian reefs influencing these patterns. 

Research suggests that corallivory can be a signifi-
cant source of tissue loss for small coral recruits and 
outplanted colonies (Miller & Hay 1998, Shantz et al. 
2020, Koval et al. 2020), which has important implica-
tions for restoration efforts (Knoester et al. 2023). A 
study from the Great Barrier Reef found that smaller 
coral colonies had a lower absolute scar abundance 
but a higher density of scars relative to coral area 
(Huertas et al. 2021). Similarly, we found a slight 
increase in scar abundance per colony and mean scar 
size for larger colonies but a lower percent colony 
area preyed upon. Since scar area may be a more 
important predictor of long-term coral tissue loss 
from corallivory than scar abundance (Rempel et al. 
2020), there may be greater impacts of parrotfish cor-
allivory on smaller coral colonies. However, studies 
suggest that the loss of large-bodied parrotfishes can 
indirectly reduce overall coral growth and survivor-
ship due to increases in algae and cyanobacteria 
(Kuffner et al. 2006, Hughes et al. 2007, Shantz et al. 
2020). This suggests that the indirect benefits of par-
rotfish grazing on algae and cyanobacteria may out-
weigh the negative impacts of their corallivory for 
smaller coral colonies (Hughes et al. 2007, Knoester 
et al. 2019). 

After accounting for coral colony size, we found 
more abundant scars on Madracis decactis, O. annu-
laris, branching Porites spp., and P. astreoides col-
onies and a higher percent of coral area preyed upon 
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for Agaricia tenuifolia, O. annularis, branching Po -
rites spp., and P. astreoides. Furthermore, we found 
that there were larger mean scar sizes on A. tenuifolia, 
branching Porites spp., and Stephanocoenia inter-
septa, though the average scar size — even for these 
species — was <1 cm2. A study on O. annularis heal-
ing from parrotfish predation found that scars of 
≤1.25 cm2 often fully heal and that scar size may be a 
more important predictor of long-term coral tissue 
loss from corallivory than scar abundance (Rempel et 
al. 2020). Furthermore, research from both the Carib-
bean and Indo-Pacific suggests that most scars from 
individual parrotfish bites are likely to fully heal (Sán-
chez et al. 2004, Welsh et al. 2015, Charendoff et al. 
2023). However, large scars from repetitive, focused 
parrotfish predation may cause the vast majority of 
coral tissue loss (Welsh et al. 2015, Rempel et al. 
2020). While infrequent, we observed particularly 
large predation scars (>8 cm2) on a few coral taxa (O. 
annularis, O. faveolata, and P. astreoides), suggesting 
that there may be greater long-term consequences of 
corallivory for these species. Corallivory may also 
have indirect impacts such as reduced coral growth 
and fecundity (Rotjan & Lewis 2009, Bonaldo et al. 
2012). Furthermore, when corallivory occurs in com-
bination with stressors such as nutrient enrichment or 
coral bleaching events there may be greater coral tis-
sue loss from interactive effects (Ezzat et al. 2020, Rot-
jan et al. 2022). Notably, corallivory can also have 
indirect benefits, such as dispersing viable coral sym-
bionts in corallivore feces (Grupstra et al. 2021), 
which could be a mechanism for dispersing resilient 
Symbiodinaceae following coral bleaching events. 

4.4.  Conclusions 

This study provides several important advances to 
our understanding of the ecological drivers of parrot-
fish corallivory across spatial scales. At the reef scale, 
the relative coral area preyed upon increased with 
increased corallivorous parrotfish density and bio-
mass while scar density did not, highlighting how rel-
ative abundance versus area-based metrics can be 
decoupled, necessitating the use of area-based met-
rics of corallivory intensity. While coral cover was not 
a strong driver of corallivory intensity at the reef 
scale, the abundance of colonies with predation scars 
from frequently targeted taxa increased as coral 
diversity and the relative cover of targeted coral col-
onies increased within localized 30 m2 areas on reefs. 
At the scale of individual colonies, the average size of 
scars across taxa was relatively small, suggesting that 

most scars may result in minimal long-term coral tis-
sue loss under normal reef conditions, although sev-
eral taxa were more intensely preyed upon. Broadly, 
these findings suggest that while corallivory intensity 
may increase with increased parrotfish populations at 
the reef scale, at smaller spatial scales within reefs, 
corallivory intensity decreases in response to de -
creased coral cover and diversity. These findings 
underscore how the processes driving finer-scale con-
sumer–prey dynamics such as coral ‘neighborhood’ 
effects may be attenuated at broader spatial scales 
such as the reefscape, emphasizing the need to con-
sider ecological interactions across spatial scales. 
 
 
Data archive. Data from this study are available through the 
NOAA National Centers for Environmental Information (Ac-
cession No. 0293333, https://www.ncei.noaa.gov/archive/
accession/0293333). Data analysis code is available through 
a public GitHub repository (https://github.com/hannah
rempel/ecological_drivers_corallivory). 
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