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1.  INTRODUCTION 

Coral reef fisheries provide livelihoods and crucial 
nutrition sources for millions of people (Cinner 2014, 
Golden et al. 2016) while also being closely tied to 
people’s identities, lifestyles, and cultures (Cinner 
2014, Kittinger et al. 2015, Grafeld et al. 2017). Despite 
their importance, our understanding and manage-
ment of reef fisheries is limited by a lack of data. In 
particular, we lack data on fish biology, fisheries 
catch and effort, and other drivers of fish populations 
(Sadovy 2005, Costello et al. 2012, Zeller et al. 2015). 
A number of factors make it difficult to quantify reef 

fishery dynamics, including the large geographic areas 
the fisheries span and the dispersed nature of the fish-
eries, which often involve many species and the use of 
multiple gear types (Pauly & Zeller 2014, McCoy et al. 
2018). The current reporting systems that do exist are 
often not comprehensive, and catch is either under-
reported or unreported altogether, especially in 
Pacific jurisdictions such as Hawai‘i, USA (Zeller et 
al.  2008, Pauly & Zeller 2014). These challenges 
in  reporting are especially problematic for non-
commercial catch, which can make up a large pro-
portion of a reef fishery; one study found that non-
commercial reef fisheries in Hawai‘i made up an 
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average of 84% of total reef catch during the study 
period of 2004–2013 (McCoy et al. 2018). 

When fisheries data are poor or incomplete, tools like 
species distribution models can be used to supplement 
data gaps and inform management (Young & Carr 2015, 
Oyafuso et al. 2017). Species distribution models eval-
uate the relationships between a species and drivers 
that influence its presence or abundance, and how 
these patterns manifest spatially. This ap proach can be 
used to provide insights on the distribution of rare spe-
cies (Raxworthy et al. 2003, Guisan et al. 2006, Pearson 
et al. 2007) and to contextualize the relative influence 
of specific drivers, such as the role of fishing versus 
biophysical conditions (Donovan et al. 2023, Zuercher 
et al. 2023). Originally used for detecting species–
environment relationships, species distribution models 
are now widely used for conservation planning (Gui-
san & Zimmermann 2000) and are especially powerful 
tools for data-poor fisheries given that they can be 
based on data sources that are either dependent on 
fisheries or independent from fisheries. These models 
are also effective tools for decision-makers and man-
agers, because they can be used to predict biodiversity 
patterns based on available environmental data (Mel-
lin et al. 2010) and to prioritize favorable areas for 
management (Villero et al. 2017, Sofaer et al. 2019). 

In this study, we used a species distribution modeling 
approach to examine drivers of Acanthurus achilles, a 
rare and little-studied species of surgeonfish (Family: 
Acanthuridae) known in Hawai‘i as pāku‘iku‘i. A. 
achilles inhabits Pacific reef ecosystems in Polynesia 
and Micronesia (Randall 2007), where this herbivo-
rous reef fish species feeds on filamentous and leafy 
algae (Randall 2007). While few studies have been 
conducted on the basic biology and life history of A. 
achilles (T. B.  Grabowski et al. unpubl.), ob servations 
described by Randall (2007) note that A. achilles is a 
territorial species that prefers shallow, wave-exposed 
rocky shores or coral reefs where its algal food source 
is abundant (Randall 2007). A. achilles is a culturally 
and ecologically important species in Hawai‘i and 
both juveniles and adults are harvested (Titcomb 1972, 
Walsh et al. 2019). 

Over the past 20 yr, monitoring data from the West 
Hawai‘i Aquarium Project (WHAP) collected along 
the west coast of the island of Hawai‘i have found that 
A. achilles populations and recruitment are in decline 
(Walsh et al. 2019). Juvenile A. achilles were pre-
viously targeted for aquaria before the closure of the 
aquarium fishery in 2017. Despite the closure of aquar-
ium take and other spatial fishing restrictions, A. 
achilles population declines have persisted (Walsh et 
al. 2019). In response, the State of Hawai‘i Division 

of  Aquatic Resources (DAR) temporarily closed A. 
achilles fishing in West Hawai‘i in December 2022 for 
2 yr to allow for studies on population status and 
trends and to identify suitable management strategies 
(West Hawai‘i Pāku‘iku‘i Replenishment 2022). Our 
understanding of A. achilles in Hawai‘i is limited due 
to poor data availability. In part, this may be because 
the areas that are regularly monitored by WHAP are 
limited in spatial scale and habitat diversity and may 
not be representative of the preferred habitat of A. 
achilles (Walsh 2014). Data collection for nearshore 
fisheries in Hawai‘i is also limited, as no comprehen-
sive data are collected on nearshore fishery produc-
tion (McCoy et al. 2018), and fishing licenses are not 
currently required for non-commercial fishing. 

While population declines of A. achilles have been 
recorded, the relationships between anthropogenic 
and environmental drivers and species presence are 
not well understood. Therefore, we examined in situ 
fish surveys combined from multiple sources along-
side anthropogenic and environmental drivers to 
parse out the influence of environmental variability 
and human drivers on the presence of a declining and 
rarely studied species. This study addressed 2 over-
arching research objectives: (1) to identify which envi-
ronmental and anthropogenic drivers are related to A. 
achilles presence, and (2) to determine which nearshore 
areas in Hawai‘i are the most likely to support A. 
achilles populations. We predicted the probability of A. 
achilles presence to vary according to habitat charac-
teristics, including a preference for high-energy, shal-
low, hard-bottom habitat (Randall 2007, Walsh et al. 
2019). Further, we hypothesized that there would be 
negative relationships between anthropogenic drivers, 
including fishing, and A. achilles presence. Previous 
studies on other species from the genus Acanthurus in 
the Caribbean found differences in habitat distribu-
tion between juveniles and adults (Lawson et al. 1999); 
therefore, we also hypothesized that drivers of A. 
achilles presence would vary between adults and juve-
niles. By identifying the most important drivers of A. 
achilles presence and therefore areas of most suitable 
habitat, we aim to inform management decisions to 
improve outcomes for this declining species currently 
under consideration for adaptative management. 

2.  MATERIALS AND METHODS 

We followed previously established methodology 
for using in situ fish surveys combined with environ-
mental and anthropogenic driver data to examine the 
relationships between Acanthurus achilles presence 

162



Layko & Donovan: Drivers of Acanthurus achilles presence

and drivers across the main Hawaiian Islands (Dono-
van et al. 2023). 

The Hawaiian Islands are a chain of volcanic islands 
that span 2500 km in the Pacific Ocean and comprise 

one of the most isolated archipelagos in the world. 
The study area included nearshore waters in the main 
Hawaiian Islands, 8 islands located at the southeast-
ern extent of the larger archipelago (Fig. 1). The coral 
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communities of this archipelago are shaped by large 
swells and strong trade winds (Dollar 1982, Grigg 
1983). Analysis was limited to hard-bottom habitat 
types, namely coral, pavement, and boulder habitats, 
that were up to 30 m in depth, as this is the depth limit 
of routine surveys. 

Data on A. achilles presence and absence were col-
lated from surveys compiled by the Hawai‘i Monitor-
ing and Reporting Collaborative (HIMARC) (Dono-
van et al. 2023). The HIMARC database consists of 
data collected by 7 different partner organizations; 
the data are standardized to create a spatially robust 
data set of nearshore fish counts within 0–30 m depth. 
Fish surveys were conducted predominately using 
belt transect methods (20 × 4, 25 × 4, or 25 × 5 m), with 
one data provider that also conducted 15 m diameter 
stationary point counts (Donovan et al. 2023). This 
analysis included 4775 surveys distributed across the 
8 main Hawaiian Islands. Surveys were conducted 
between 2004 and 2014, which represents a time 
period before a major bleaching episode in Hawai‘i in 
2014–2015 that caused widespread coral mortality 
(Kramer et al. 2016) and is aligned with the timeframe 
of driver data sets (described in Section 2.1) (Table S1 
in the Supplement at www.int-res.com/articles/suppl/
m740p161_supp.pdf). A focus on this timeframe also 
allows for understanding relationships between envi-
ronmental and anthropogenic stressors related to A. 
achilles presence aside from coral bleaching, which is 
important because A. achilles populations were al -
ready declining prior to the major bleaching event in 
2015 (Walsh et al. 2019). 

2.1.  Environmental and anthropogenic drivers  
of fish presence 

We relied on existing driver data sets compiled by 
Lecky (2016), Wedding et al. (2018), and Donovan et 
al. (2023) (Table S1). We included 27 environmental 
and anthropogenic drivers in the model to account for 
gradients in local conditions across 4 groups: (1) land-
based pollution, (2) fishing, (3) physical oceanogra-
phy, and (4) habitat. The set of drivers used here was 
determined by Donovan et al. (2023) after assessing a 
larger set of variables and selecting the subset repre-
sentative of the hypothesized drivers of reef fishes, 
with no driver pairs correlated above Spearman’s ρ of 
0.7. The final set of drivers was scaled to a common 
spatial extent and resolution of 100 m (Donovan et al. 
2023) (Table S1). Land-based pollution includes drivers 
like golf course runoff, agriculture runoff, and habitat 
modification. Fishing drivers include both commercial 

and non-commercial fishing, as well as different gear 
types including line, net, and spear. Physical ocean-
ography includes drivers such as temperature, light, 
and productivity. Habitat drivers include habitat type 
(coral, pavement, boulder habitats), as well as depth 
and rugosity. See Table S1 for a full list of drivers and 
data sources. Before inclusion in the model, all con-
tinuous drivers were standardized to a zero mean and 
unit standard deviation to allow for comparisons 
across drivers with different units. 

A generalized linear mixed effect model (GLMM) 
was used to examine the relationships between A. 
achilles presence and absence and the 27 environmen-
tal and anthropogenic drivers in the main Hawaiian 
Islands. We chose to investigate A. achilles presence 
rather than abundance due to the relative rare ness of 
the species that makes abundance measures difficult 
to capture. Presence–absence data were used to 
model probability of presence using a generalized lin-
ear model with a binomial distribution and a logit link 
with the ‘lme4’ package in R (version 4.2.2) (Bates et 
al. 2015, R Core Team 2022). Ad ditionally, 3 random 
intercepts were included to address spatial and tem-
poral variation: survey year (to address temporal vari-
ation), data set ID (to ad dress variation associated 
with the multiple data sets with different collection 
methods included in the HIMARC database), and 
moku (a cultural and ecological land division unit in 
the main Hawaiian Islands, to address spatial varia-
tion) (Donovan et al. 2023). 

Because we hypothesized that the drivers of pres-
ence would vary by life history stage, we ran 3 
models: (1) a full model with any observation of A. 
achilles defined as present, (2) a model with adult 
individuals greater than 15 cm in length as present, 
and (3) a model with juvenile individuals less than 15 
cm as present. The 15 cm length cutoff was designed 
to select for individuals that have not yet reached sex-
ual maturity and was based on life history data from 
T. B. Grabowski et al. (unpubl.) that estimated length 
of young of the year (YOY). We did not account for 
seasonality of recruitment in our juvenile model 
given evidence from a life history study suggesting 
that A. achilles in Hawai‘i are continuous spawners 
(T. B. Grabowski et al. unpubl.). 

For each of the 3 models, we included all drivers 
as fixed effects and the 3 random intercepts. For all 
3 models, Y is 1 when A. achilles is present at loca-
tion i and 0 otherwise. The model structure is as 
follows:  

                 
(1)

 f c t+ + +ai y
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where β0 is an intercept term, β‒ are fixed effects, and  
X‒ is a matrix containing predictor data. εi is a nor-
mally distributed error term. We also included 3 
random intercepts α for year (y ), ρ for dataset (d), and 
γ for moku (m). Drivers were considered statistically 
significant if their coefficient p-value was less than 
0.05. Model assumptions were validated by visually 
inspecting the residuals and conducting outlier and 
overdispersion tests (Hartig 2022). Pseudo R-squared 
values were obtained to assess model fit (Bartón 
2023). We also assessed the predictive capabilities of 
the model by (1) comparing the deviance to a null 
model (intercept-only with no predictors but retain-
ing the random effects), and (2) calculating classifica-
tion error rate of the model predictions using prob-
ability cut-offs of 0.5, 0.7, and 0.9. 

2.2.  Spatial variation in the probability of drivers’ 
influence on fish presence 

To examine the spatial variability of A. achilles pres-
ence, the modeled relationships were used to predict 
the probability of presence across the entire study 
extent. This approach allowed us to estimate the pre-
dicted probability of A. achilles presence as a continu-
ous raster, with values for all areas regardless of the 
availability of survey data. We predicted the median 
probability of A. achilles presence per pixel and con-
structed 95% prediction intervals considering only 
the fixed effects from the GLMM (Knowles et al. 
2023). Pixels were classified as hard or soft bottom, 
and only those pixels classified as hard bottom were 
included in the analysis (Donovan et al. 2023). The 
output is a 100 m square grid of predicted probabil-
ities of A. achilles presence for the study extent. Den-
sity plots of the predicted probability of presence 
were created to compare patterns at 2 spatial scales: 
between islands and between moku. Probability 
values were highly skewed toward 0, so the probabil-
ities were log-transformed into logged odds, which is 
symmetric around 0, for interpretation. 

3.  RESULTS 

3.1.  Environmental and anthropogenic drivers  
of fish presence 

We found more numerous significant relationships 
between environmental drivers and Acanthurus achilles 
presence and fewer significant relationships between 
anthropogenic drivers and A. achilles presence (Fig. 2), 

which was consistent across all 3 models (all individ-
uals, adults only, and juveniles only). The amount of 
variability explained by the drivers was consistent 
across the 3 models (Table S2), with pseudo-R2 values 
equal to 0.42, 0.46, and 0.44 for the full, adult, and 
juvenile models, respectively. Additional variability 
was explained by the random effects with conditional 
R2 values equal to 0.62, 0.55, and 0.66, respectively. 
Generally, the predictors were informative compared 
to a null model, with lower deviance explained across 
all models (Table S2), and classification error rate was 
greater than 90% across all models and all probability 
cutoffs (Table S2). 

Significant relationships were most frequent 
between the physical oceanography drivers and A. 
achilles presence (Fig. 2). Three of the drivers had sig-
nificant positive relationships with A. achilles pres-
ence across the 3 models: wave anomaly maximum 
(full: β = 0.853, p ≤ 0.001, adult: β = 0.880, p ≤ 0.001, 
juvenile: β = 0.777, p ≤ 0.001), sea surface temperature 
(SST) long-term mean (full: β = 1.015, p ≤ 0.001, adult: 
β = 0.520, p = 0.02, juvenile: β = 1.244, p ≤ 0.001), and 
chlorophyll a (chl a) anomaly frequency (full: β = 
0.651, p ≤ 0.001, adult: β = 0.737, p ≤ 0.001, juvenile: 
β = 0.658, p ≤ 0.001). Of these drivers, SST long-term 
mean had the highest magnitude of effect, followed 
by wave anomaly maximum, and then chl a anomaly 
frequency. While relationships were mostly similar 
across the 3 models with respect to the physical 
oceanography drivers, there were several differences. 
Wave anomaly frequency had a significant positive 
relationship with A. achilles presence only in the full 
model (β = 0.430, p = 0.003). Chl a long-term mean 
had a significant negative relationship with A. achilles 
presence in both the adult and juvenile models (adult: 
β = –0.904, p = 0.006, juvenile: β = –1.153, p = 0.001), 
but not in the full model. Additionally, the juvenile 
model had several differences from the other models, 
including a significant negative relationship between 
SST standard deviation and juvenile A. achilles pres-
ence (β = –0.486, p = 0.005) and a positive significant 
relationship with chl a anomaly maximum and juve-
nile A. achilles presence (β = –0.427, p = 0.036). 

Of the habitat variables considered, we found that 
depth and rugosity were significant across all 3 models 
(Fig. 2). Rugosity had a positive effect in all 3 models 
with A. achilles presence (full: β = 0.532, p ≤ 0.001, 
adult: β = 0.698, p ≤ 0.001, juvenile: β = 0.353, 
p  ≤0.001). Depth had a negative relationship with 
A. achilles presence in all 3 models (full: β = –0.529, 
p ≤ 0.001, adult: β = –0.817, p ≤ 0.001, juvenile: β = 
–0.266, p = 0.021). No significant relationships were 
identified for boulder habitat, while pavement habitat 
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had a significant negative relationship in the full and 
adult models (full: β = –1.272, p ≤ 0.001, adult: β = 
–1.223, p = 0.003), and coral habitat had a signifi-
cant negative relationship only in the full model (β = 
–0.503, p = 0.032) (Fig. 2). 

Anthropogenic drivers contributed less to the over-
all variation explained by the model (Fig. 2) com-
pared to the oceanographic and habitat drivers. Over-
all, land-based pollution drivers largely did not have 
significant relationships with the probability of A. 
achilles presence. There were 2 exceptions: in the full 
model, habitat modification had a significant neg-
ative relationship with the probability of A. achilles 
presence (β = –0.190, p = 0.028) and in the juvenile 
model, total effluent was found to have a significant 
negative relationship (β = –0.317, p = 0.047). 

Responses to fishing drivers were predominantly 
not significant or they were negative (Fig. 2). Commer-
cial line fishing had a significant negative relation-
ship with probability of presence in all 3 models (full: 
β = –0.537, p = 0.001, adult: β = –0.683, p = 0.001, 
juvenile: β = –0.563, p = 0.001). Combined net fish-
ing had a significant negative effect in both the full 

and adult models (full: β = –0.707, p = 0.011, adult: 
β = –0.798, p = 0.029), but not in the juvenile model. 
Additionally, non-commercial shore-based spearfish-
ing had a significant negative relationship with the 
probability of A. achilles presence in the adult model 
(β = –0.382, p = 0.028). The only ex ception to these 
patterns was aquarium fishing, which had a signifi-
cantly positive relationship with A. achilles presence 
in the full model (β = 0.116, p = 0.047). 

3.2.  Spatial variation in drivers’ influence  
on fish presence 

The predicted probability of A. achilles presence 
varied between and within islands (Fig. 3). While 
there was variation between moku on the same island, 
the probability of presence at the moku scale gen-
erally followed similar patterns (Fig. S1). As spatial 
patterns were similar across models, we focused on 
the full model results (results for the adult and juve-
nile models are shown in Figs. S2 & S3). The predicted 
probabilities over the study extent ranged from 0.000 
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to 0.968, with a median of 0.032 and a mean of 0.111. 
By island, Kaho‘olawe had the greatest mean prob-
ability of A. achilles presence, followed by Hawai‘i 
and then Ni‘ihau. O‘ahu had the lowest probability of 
presence and Kaua‘i had the second lowest (Fig. 4). 

Broadly, the spatial predictions showed most areas 
to have a low predicted probability of A. achilles pres-
ence (Fig. 4). Areas of higher probability of presence 
were found in shallower areas and formed bands of 
higher predicted probability that wrapped around the 
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Fig. 3. Predicted probability of Acanthurus achilles presence based on the model with 27 drivers for all individuals (full model) 
for the entire study extent. Areas in blue and yellow indicate lower probability of presence, and areas in red and orange indicate 
higher probabilities of presence. Black lines on land are moku boundaries, delineations used in traditional forms of resource  

management in Hawai‘i, with numbers that correspond to moku names in the legend 
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shorelines. In some areas, where the 30 m depth con-
tour extends farther from shore, there were clusters of 
pixels with higher probability of presence that ap -
peared in patch-like aggregations, particularly around 
Ni‘ihau. Although Ni‘ihau was not predicted to sup-
port areas of the highest probability of presence, the 
nearshore area had several larger patches with prob-
abilities ranging from 20 to 40%. The southern and 
eastern sides of Kaho‘olawe had the most continuous 
areas of high probability of presence, with most pixels 
classified as greater than 60% probability of presence. 
There were also large stretches of high predicted 
probability of presence in and around several bays on 
the southeastern side of Hawai‘i, including Honoma-
lino Bay and Okoe Bay, and on the southwestern side 
of the island spanning from Honu‘apo Bay at the 
northern end to just shy of the southernmost point of 
Hawai‘i Island. On Maui, several areas had high pre-

dicted probability of presence, including along the 
northern shore between Ku‘au and Pauwela Point and 
along the southwestern point of the island. Uncer-
tainty in the predicted probability of presence varied 
throughout the study extent and was largest at mod-
erate probabilities, and while some areas had low pos-
itive probabilities of presence, the prediction often 
overlapped zero (Fig. 5). 

4.  DISCUSSION 

We found that environmental variation was espe-
cially relevant for determining Acanthurus achilles 
presence in Hawai‘i, indicating the importance of 
considering natural variation in the management of 
this species. Of the environmental drivers, the habitat 
drivers — most notably depth and rugosity — had sig-
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Fig. 4. Density of predicted log odds probability of Acanthurus achilles presence based on all pixels within the study extent for 
each island (a–h) roughly ordered from northwest to southeast (Fig. 1). The x-axis is the log odds probability of A. achilles pres-
ence and the y-axis is the density for each of the bins on the x-axis. The black vertical line represents the mean value of the log  

odds probability of presence and is labeled in the upper left corner of each plot
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nificant and consistent trends across juveniles, adults, 
and all individuals combined, indicating the impor-
tant role of these drivers in influencing A. achilles dis-
tribution. We also found that A. achilles are more 
likely to be found in warm and productive waters, 
indicated by the positive relationships with mean SST 
and chl a anomaly frequency. Fewer of the anthropo-

genic drivers we analyzed had significant relation-
ships with A. achilles presence, and those that did 
were often weaker than other drivers and not sig -
nificant across all 3 models. Our spatial predictions 
revealed wide variation in the probability of A. 
achilles presence across the main Hawaiian Islands 
and lesser variation between moku of the same island. 
The results underscore a need to explicitly consider 
environmental drivers in fisheries management ap -
proaches for A. achilles. 

Natural gradients in biophysical drivers play impor-
tant roles in coral reef ecosystems, for example, by 
shaping benthic regimes on reefs (Gove et al. 2015, 
Jouffray et al. 2019) and by constraining herbivorous 
fish populations (Cheal et al. 2012, Williams et al. 
2015, Heenan et al. 2016). Therefore, our results, which 
underscore strong relationships between environ-
mental drivers and A. achilles presence, are consis-
tent with the broad understanding of reef system 
functioning and, more specifically, the role of envi-
ronmental variability. We found that the probability 
of A. achilles presence was higher in more rugose 
areas, which is consistent with the positive relation-
ship between rugosity and fish biomass that is well 
established in the literature (Caley & St John 1996, 
Friedlander & Parrish 1998, Gratwicke & Speight 2005). 
Further, A. achilles presence was positively associ-
ated with shallow areas with high wave energy which 
aligns with previous observations of A. achilles in 
high wave energy nearshore environments (Randall 
2007) and with studies on other grazer surgeonfish 
species in multiple oceans (Bouchon-Navaro & Har-
melin-Vivien 1981, Lewis & Wainwright 1985, Cheal 
et al. 2012), including in Hawai‘i (Friedlander & Par-
rish 1998). Field and lab experiments have also dem-
onstrated that wave energy shapes habitat use in coral 
reef fish, including Acanthuridae species, through 
species morphology and swimming performance (Ful-
ton et al. 2005, Bejarano et al. 2017), as well as the pro-
ductivity and availability of food sources (Oakley-
Cogan et al. 2020). Time series data indicate that 
herbivore populations can be limited by food even 
in  areas with moderate to high levels of fishing 
(Hawkins et al. 2006, Adam et al. 2011, Gilmour et al. 
2013). Further, there is evidence of an interaction 
between habitat complexity and food availability, 
with herbivore biomass being disproportionately 
high when both food availability and habitat com-
plexity were high (Helyer & Samhouri 2017). Given 
this context, alongside our results of a preference for 
complex, high wave energy habitats, food availability 
could be playing a significant role in determining the 
distribution of A. achilles. Although beyond the scope 
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Fig. 5. Predicted probability of presence for 2 areas, one with 
(a,c,e) low predicted probability and one with (b,d,f) high 
predicted probabilities of presence. Panels (c) and (d) show 
the predicted probability of presence of Acanthurus achilles. 
Panels (a) and (b) show the upper bound of the 95% predic-
tion interval, and panels (e) and (f) show the lower bound of 
the 95% prediction interval. Areas are anonymized so that 
the high-resolution spatial predictions can be displayed 
while still protecting the identity of the mapped locations 
and this sensitive fishery. All map panels are displayed at the  

same spatial scale
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of our models, patterns in dispersal and connectivity 
play important roles in species distribution in Hawai‘i 
at multiple spatial scales (Christie et al. 2010, Toonen 
et al. 2011, Wren et al. 2016) . The archipelago is not a 
single well-mixed community and is separated by sev-
eral distinct multi-species barriers to dispersal formed 
in part by distance and ocean currents (Toonen et al. 
2011). Additionally, marine protected areas or other 
types of spatial management can influence popula-
tions through dispersal (Christie et al. 2010). While 
we did not have the ability to evaluate the role of 
these forces in our analysis, we acknowledge the role 
of ocean currents and connectivity in determining 
locations of A. achilles presence. 

We did not find strong evidence of a preferred habitat 
type across the categories we analyzed — pavement, 
coral, and boulder, which were compared against 
areas where habitat type is unknown. Locations were 
assigned to the ‘unknown’ category due to areas of 
low data quality or high uncertainty in the assigned 
habitat type and made up a small portion of the sur-
vey locations (904 of the total 4775). While the adult 
and full models found that the probability of presence 
was lower for pavement habitat, the juvenile model 
did not share the same patterns. There are several 
potential explanations for the limited significant rela-
tionships found between A. achilles and different hab-
itat classes. First, it is possible that the spatial resolu-
tion of the habitat data (100 m pixels) did not capture 
relevant patterns of A. achilles habitat use. Scale is an 
important consideration in the detection of ecological 
relationships, and changes in the spatial resolution of 
habitat data can alter the detection of relationships 
between fish and habitat variables (Kendall et al. 
2011). Further, reef fish species differ in their scales of 
movements and habitat usage (Meyer et al. 2010), an 
important consideration when designing studies that 
are at relevant spatial scales to reef fish (Sale 1998). In 
this study, we scaled the driver layers from their 
native spatial resolution to a consistent 100 m pixel 
scale. This standardization required downscaling of 
some of the driver layers, while other layers had to be 
upscaled, including the habitat raster, for making 
spatial predictions. However, we assigned habitat 
classes to the survey locations using the native res-
olution (60 m) habitat layer, but perhaps that resolu-
tion still does not capture fine-scale habitat differ-
ences and/or natural barriers between habitat types, 
which can play a role in reef fish species’ home range 
and movement patterns (Meyer et al. 2010). Another 
layer of complexity is that ecologically relevant scales 
may differ between habitat types; a study on another 
species of acanthurid found that territory size in 

uncolonized pavement was 4 times larger than that in 
reef crest habitat (Semmens et al. 2005). A second 
explanation for the habitat results is that our models 
captured habitat variation within other drivers that 
had significant relationships with A. achilles pres-
ence, including depth, rugosity, wave energy, and 
productivity drivers. A third possible explanation is 
that A. achilles are not selective in their habitat use. 
Surgeonfish play important roles as active mobile 
trophic links, and studies indicate that the capacity of 
surgeonfish to link reef and non-reef habitats may be 
higher than other reef fish families (Sambrook et al. 
2019, Tebbett et al. 2022). Future analysis of habitat 
type could be improved by combining new data 
sources to delineate unknown habitat areas, by con-
sidering non-reef habitats in a broader seascape ap -
proach, and by evaluating the influence of habitat at 
different spatial resolutions. 

We found a greater influence of environmental 
drivers as compared to anthropogenic drivers, pos-
sibly because the influence of anthropogenic drivers 
may be harder to detect given the rarity of A. achilles 
presence. Another possibility is that the influence of 
anthropogenic drivers was overwhelmed by the envi-
ronmental drivers, and as our model did not include 
interactions, we were not able to capture this in -
fluence which previous studies have identified in 
Hawai‘i (Williams et al. 2008, Helyer & Samhouri 
2017). Of relevance to management for this species, 
most of the fishing drivers included in this analysis 
had non-significant relationships with A. achilles 
presence. The exceptions to this pattern were com-
mercial line fishing, which had a significant negative 
relationship across all 3 models, and combined net 
fishing, which had a significant negative relationship 
in the adult and full models. These results should be 
interpreted cautiously, as they represent broad trends 
in fishing for all reef species and do not specifically 
focus on the A. achilles fishery. The prediction layers 
we used were based on island-wide totals (McCoy et 
al. 2018) that were then spatially dispersed in near-
shore areas using different methods specific to the 
fishery (commercial, non-commercial) and gear type 
(Lecky 2016, Wedding et al. 2018). These layers rep-
resent our best understanding of the highly diverse 
and spatially dispersed non-commercial fisheries of 
Hawai‘i of all reef fishes. The other significant rela-
tionship that emerged from the fishing drivers was 
a  positive relationship between aquarium fishing 
and A. achilles presence in the full model. While no 
species-specific data are available for the food fish-
ery, we know that A. achilles was the fourth most col-
lected aquarium species prior to the statewide closure 
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of all aquarium fishing in 2018, although commercial 
aquarium landings had declined in the previous 2 
decades prior to the aquarium fishery closure (Walsh 
et al. 2019), and non-commercial estimates of reef fish 
landings in West Hawai‘i were estimated to be 3 times 
the amount of landings by the aquarium fishery 
(Walsh 2014). As A. achilles are a prized aquarium 
species, we would expect that aquarium fishers would 
target areas with high numbers of A. achilles and thus 
aquarium fishing and preferred A. achilles habitats 
would have similar spatial distributions. Further, the 
magnitude of the relationship was small relative to 
other drivers and not significant when adults and juve-
niles were investigated separately, so overall evidence 
of a relationship is weak. Nonetheless, this is a correl-
ative study, and given that cause and effect cannot be 
established, and that the direction of this relationship 
is counter to the expectation that fishing can reduce 
population sizes, this finding does not indicate that 
aquarium fishing increases A. achilles presence. 

We found wide variation in the probability of A. 
achilles between islands, demonstrated by the stark 
differences between the island of O‘ahu, which had 
the lowest predicted probabilities of presence, and 
Kaho‘olawe, which had the highest predicted prob-
abilities of presence. O‘ahu and Kaho‘olawe repre-
sent opposite extremes of human population across 
Hawai‘i. O‘ahu is the most densely populated island, 
with a population density more than 5 times higher 
than Maui, the next most densely populated island 
(United States Census Bureau 2020), and contempo-
rarily, Kaho‘olawe is uninhabited. Previous studies 
have established that resource fish biomass in the 
main Hawaiian Islands varies with population density 
and found Kaho‘olawe to have the highest biomass 
and densely populated O‘ahu to have the lowest 
(Friedlander et al. 2018). While population density 
provides a good lens of comparison between these 2 
islands, and our results follow similar patterns, these 
differences are also likely related to the environmen-
tal variation that differs between the 2 islands, given 
the dominance of those factors in our models. We 
found one of the largest contiguous patches of very 
high predicted probabilities of A. achilles presence 
along the southern coast of Kaho‘olawe. The patterns 
of high predicted probability in this area align with 
the patterns of underlying driver layers which show 
high rugosity and high chl a anomaly frequency in 
this area, both of which were strong drivers in the 
model. In contrast, nearshore areas around O‘ahu had 
the lowest predicted probabilities of A. achilles and 
were characterized by low rugosity, areas of mod-
ified habitat, and large swaths of pavement habitat, all 

of  which had negative relationships with A. achilles 
presence. 

We found that drivers influencing the presence of 
all individuals and juveniles and adults were gen-
erally consistent. In some cases, we only detected the 
influence of a given driver in the model of all individ-
uals, likely owing to statistical power from a larger 
proportion of observations with the species present. 
While the spatial predictions from the adults and 
juveniles followed similar patterns of locations with 
higher predicted probabilities of presence, the adult 
model predicted higher probabilities in presence with 
(1) respect to the geographic extent (more pixels with 
higher probabilities) as well as (2) higher individual 
probabilities (predicted value in a given pixel) in 
those areas, as compared to the juvenile model. Very 
little is known about the habitat use and geographic 
distribution of juvenile A. achilles, and our results do 
not add much to this lack of knowledge except that 
the underlying drivers are generally similar to those 
of adults. 

Species distribution models are important tools to 
support decision-making and resource management 
but are often subject to multiple forms of uncertainty 
that limit their practical use (Rocchini et al. 2011). 
Uncertainty can stem from multiple sources, includ-
ing the selection of variables, the spatial and temporal 
scales of the underlying data, and the statistical algo-
rithm used (Wiens et al. 2009). Reporting the spatial 
distribution of uncertainty, alongside the estimated 
values from species distribution models, supports the 
utility of results for informing management because 
it  helps users understand the overall quality of the 
model and can inform field application of model 
results (Guisan & Zimmermann 2000). However, de -
spite the importance of presenting uncertainty, a 
review of marine-based species distribution models 
found that 94% of studies did not report uncertainty 
from data deficiencies and model parameters (Robin-
son et al. 2017). In our study, we analyzed and dis-
played uncertainty levels around our spatial predic-
tions to highlight their strengths and limitations. The 
uncertainty levels of the predicted values are lowest 
around either limit of our predictions, 0 and 1, and the 
highest uncertainty values correspond with areas that 
have predicted probabilities of presence of around 
0.50. Given that the data set we analyzed includes 
many more observed absences than presences, we 
anticipated having a higher degree of certainty in 
predicting areas with a high probability of presence. 
We included the prediction intervals on our maps to 
make the uncertainty around our predicated prob-
ability explicit and to indicate areas where mapped 
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values are the most reliable, which is important for 
decision-makers in considering the management of 
this sensitive fishery. 

Our study is not an investigation of trends over time 
and cannot conclude which drivers are causing the 
observed population declines noted by Walsh (2014) 
and Walsh et al. (2019); however, we provide valuable 
insights on the characteristics of important habitat for 
this species. Our work contextualizes past observed 
de clines by emphasizing the strong role of environ-
mental variability in the presence of A. achilles. By 
combining these insights with time-series of drivers, 
future work could identify where population declines 
may or may not be related to human stressors. The com-
bined database of underwater surveys from HIMARC 
provides a spatially and temporally robust fishery-
independent database that made it possible to study 
this data-poor species. Concerns about the ability of 
monitoring protocols to capture A. achilles presence 
at shallow depths have been reported (Walsh et al. 
2019), but we found A. achilles presence was well rep-
resented across depths by the in-water dive surveys 
used in this analysis (Fig. S4). A caveat of the driver 
layers is that they span 2004–2014, prior to several 
major bleaching events in Hawai‘i that occurred in 
2014, 2015, and 2019. These major bleaching events 
were highly site-specific and altered the reef commu-
nity structure (Bahr et al. 2017, Winston et al. 2022). 
Including data following these bleaching events would 
contribute to additional understanding of how cli-
mate drivers are influencing habitat distribution 
of  A.  achilles. Finally, the data format provided by 
some data providers constrained our identification 
of YOY, which we used to distinguish between juve-
nile and adult individuals. Life history analyses sug-
gest that YOY might reach 13.8 ± 1.1 cm fork length 
(mean ±  SE) (T. B. Grabowski et al. unpubl.), but 
because some data providers record individual length 
using bins of values (e.g. 12–15 cm), we were con-
strained by those bins and thus defined juveniles as 
≤15 cm and adult individuals as >15 cm. 

5.  CONCLUSION 

We combined a robust set of presence and absence 
data with a suite of anthropogenic and environmental 
drivers to parse out the influence of different drivers 
on the probability of Acanthurus achilles presence 
and map how these driver relationships contributed 
to the spatial variation in patterns of predicted prob-
ability. Environmental drivers emerged as important 
in explaining patterns of A. achilles presence at the 

statewide scale. While minimizing human stressors 
remains important, these findings highlight the im -
portance of considering the role of ecosystem vari-
ability in species distributions, especially in the con-
sideration of different management approaches. 
Preferred habitat for A. achilles includes areas that 
are warm and shallow with high rugosity, high 
energy, and high productivity. Spatial patterns of pre-
dicted presence vary between and within islands, 
which underscores the importance of local variation. 
Local fisheries management should consider these 
differences when evaluating interventions. Employ-
ing a species distribution modeling approach aug-
ments our understanding of data-poor fisheries to 
make informed management decisions, an especially 
imperative task given the importance of reef fish eco-
logically and socially and the multitude of threats that 
they face. 
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