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1.  INTRODUCTION 

Seaweed-dominated ecosystems, such as kelp for-
ests, are among the most extensive, productive and 
diverse coastal habitats globally (Teagle et al. 2017, 
Wernberg & Filbee-Dexter 2019, Duarte et al. 2022, 
Pessarrodona et al. 2022). The biogeographic dis-
tribution of seaweeds is primarily driven by tempera-
ture (van den Hoek 1982, Lüning 1990, Martínez et al. 
2018), although many other factors including irradi-
ance and photoperiod, nutrients, wave exposure, cur-

rents, salinity and herbivores can also be important, 
especially at regional to local spatial scales (e.g. Hurd 
2000, Wernberg et al. 2013b, Vergés et al. 2014). 

Climatic conditions over long time scales have led 
to the evolution of species-specific thermal ranges, 
within which the growth, reproduction and survival of 
seaweeds is optimal (van den Hoek 1982, Lüning 
1990). Warming affects most aspects of the biology of 
seaweeds (Davison 1991, Kordas et al. 2011, Eggert 
2012, de Bettignies et al. 2018), and ocean warming 
driven by climate change has been linked to changes 
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in seaweed genetics, physiology, ecology and bio-
geography (Harley et al. 2012, Wernberg et al. 2019b, 
Coleman et al. 2020, Smale 2020, Wernberg et al. 
2024). Concurrent with long-term ocean warming, 
marine heatwaves (MHWs), discrete warm-water 
events (Hobday et al. 2016), have increased in fre-
quency and duration (Oliver et al. 2018), and these 
extreme events have been linked to a plethora of cli-
mate-mediated impacts on seaweeds, ranging from 
bleaching and reduced growth to changes in abun-
dance and local extinctions (Straub et al. 2019). 

The coastal zone is a focal point for human activities 
where warming and MHWs are superimposed onto 
other stressors such as pollution, coastal develop-
ment, fisheries, invasive species and aquaculture 
(Wern berg et al. 2011, Halpern et al. 2015). Through 
effects on physiological performance and population 
survival, warming and MHWs have the potential to 
affect responses to other stressors (e.g. Wernberg et 
al. 2010). That is, while the direct effects can be easily 
observable when temperatures are extreme enough 
to exceed the physiological thresholds of marine 
orga nisms (e.g. Wernberg et al. 2016), warming and 
MHWs can have insidious indirect effects through 
complex interactions with other stressors (e.g. Strain 
et al. 2014). Conversely, local conditions can also 
mediate responses to high temperatures (Helmuth et 
al. 2006, Starko et al. 2024) and, given that seaweeds 
re spond to numerous and complex environmental 
changes at local to global scales, it is important to 
understand their sensitivity and responses to multiple 
stressors (e.g. Edwards & Hernández-Carmona 2005, 
Ling et al. 2009, Rogers-Bennett & Catton 2019, Tait et 
al. 2021). 

A major pressure on seaweeds and coastal eco-
systems, in addition to warming and MHWs, is coas-
tal darkening (UNEP 2023): reduced light availability 
caused by run-off, eutrophication and blooms of phy-
toplankton and turf algae (e.g. Seers & Shears 2015, 
Blain et al. 2021, Frigstad et al. 2023). Light availabil-
ity combined with temperature drives photosynthesis 
and primary production (Singh & Singh 2015, Pessar-
rodona et al. 2022), and the combined effects of high 
temperature and low light on seaweeds are often syn-
ergistically negative (e.g. Tait & Schiel 2013, Strain et 
al. 2014, Blain & Shears 2019, Tait et al. 2021). 
Changes to the light and temperature environment, 
therefore, have major implications for primary pro-
ducers (Pehlke & Bartsch 2008, Bartsch et al. 2016) 
and can alter the structure of coastal ecosystems 
(Strain et al. 2014, Filbee-Dexter & Wernberg 2018) 
and the productivity of coastal food webs (Singh & 
Singh 2015). 

Specifically, seaweeds tend to have a shallower and 
narrower depth range in areas with increased turbid-
ity and lower light levels (Pedersén & Snoeijs 2001, 
Pehlke & Bartsch 2008, Bartsch et al. 2016) and their 
physiological light demand to maintain metabolic 
functions is higher in a warmer ocean (Stæhr & Wern-
berg 2009, Tait & Schiel 2013). Therefore, we tested 
the hypothesis that reduced light levels will interact 
with extreme temperatures during MHWs to com-
pound negative effects on the performance of 3 co-
occurring brown seaweeds with contrasting eco -
logical functions and thermal affinities: Ecklonia 
radiata, Zonaria turneriana and Lobophora variegata. 

2.  MATERIALS AND METHODS 

2.1.  Study site and specimen collections 

Individual thalli of juvenile kelp (stage 1 to small 
stage 2) Ecklonia radiata (C. Agardh) J. Agardh, 
and 2 smaller foliose seaweeds, Zonaria turneriana 
J. Agardh and Lobophora variegata (Lamouroux) C. 
Agardh, were collected at Horseshoe Reef (31°50’
18” S, 115°42’ 60” E), approximately 25 km north of 
Perth (Western Australia) in November 2016 (late 
Austral spring). E. radiata is a temperate canopy-
forming kelp that dominates Australia’s Great 
Southern Reef (Wernberg et al. 2019a). Z. turneriana 
is a temperate seaweed common from Kalbarri, in 
Western Australia, along the southern coastline 
and Tasmania to Port Phillips Heads in Victoria. L. 
variegata is a tropical to warm-temperate distributed 
seaweed which can be abundant in tropical lagoons, 
on degraded coral reefs and tropicalised temperate 
reefs (e.g. Diaz-Pulido et al. 2009, Fulton et al. 
2014, Wernberg et al. 2016). These species maxi-
mised the range and diversity of potential responses 
that could be expected. Around 50 individuals of 
each species were collected haphazardly from the 
reef between 7 and 10 m depth by SCUBA divers. 
The seaweeds were collected with intact holdfasts, 
placed in calico bags and transported in a dark, 
chilled cooler to the laboratory. Within 4 h of col-
lection, all individuals were placed in a holding 
tank with flowing, temperature-controlled seawater 
and aeration. Individual seaweeds were then 
weighted by attaching holdfasts to small pebbles 
with rubber bands to ensure a natural upright posi-
tion, transferred to the experimental aquaria and 
acclimated at 19°C (ambient temperature at time of 
collection) for 7 d prior to commencement of the 
experiment. 

50



Wernberg & Straub: Seaweeds, marine heatwaves and coastal darkening

2.2.  Experimental setup 

The experimental setup consisted of 18 × 45 l in -
door aquaria and two 1000 l sumps filled with recircu-
lating filtered seawater. Both sumps fed water to and 
from all aquaria, and water temperatures were regu-
lated by controlling the flow rate to each aquarium, 
with one ‘hot’ sump heated to 29°C and one ‘cold’ 
sump chilled to 18°C (Hailea 2HP Chiller/Heater 
units). Pre-filtered (Odyssea CFS-1200), UV-steril-
ized (SunSun CUV-155) hot and cold seawater was 
supplied to each aquarium, and experimental tem-
peratures were achieved by direct mixing from the 
2 sumps into each aquarium (combined flow rate: 
~100 l h–1) to experimental temperatures. Tempera-
ture was monitored continuously using Aquatronica 
temperature sensors and maintained at ±0.5°C of the 
assigned temperature. Aeration and additional water 
motion was achieved using air curtains. Fluorescent 
lights (GM Powerchrome T5) were placed above the 
aquaria on an 8 h light:16 h dark cycle. Light levels 
were adjusted by dimming and were ascertained in 
each aquarium using a hand-help PAR logger (Apo-
gee MQ-510) prior to the experiment. Salinity was 
monitored twice per week using a hand-held refrac-
tometer but did not vary over the experiment. 

Six different treatments were applied, combining 2 
levels of light and 3 levels of temperature. Each treat-
ment was replicated 3 times. Half of the aquaria 
received moderate light (ML: ~40 μmol m–2 s–1; 
~115 mol d–1) and the other half received low light 
(LL: ~10 μmol m–2 s–1; ~0.29 mol d–1). These light 
levels were under or just over the critical compensa-
tion point for E. radiata (Stæhr & Wernberg 2009) and 
therefore likely stressful. Importantly, they mimicked 
summer conditions at the reef surface of the collec-
tion site under a canopy of 2–4 kelp sporophytes per 
0.25 m2 (Wernberg et al. 2005) and they represent a 
>75% reduction in available light, as is commonly 
seen as a consequence of darkening from increased 
dissolved matter in the coastal zone (e.g. Mustaffa et 
al. 2020, Blain et al. 2021). 

Within the 2 light levels, aquaria were randomly as -
signed a temperature treatment of either background/
control (19°C), moderate (25°C) or extreme (28°C) 
MHW conditions, where the moderate and extreme 
MHW conditions were within the range of tempera-
tures recorded during previous events in the region 
(cf. Smale & Wernberg 2009, Wernberg et al. 2018). 
Seaweeds were acclimated at 19°C for 1 wk, with ~25 
specimens per species acclimated at ML levels and 
~25 specimens per species acclimated at LL levels. At 
the end of the acclimation period, 3 healthy-looking 

specimens of each seaweed species were haphazardly 
assigned to each aquarium. Temperature increases 
were applied at a rate of 1°C h–1 until experimental 
conditions were reached and then maintained for 15 d 
before returning to control temperature conditions 
at a rate of 1°C h–1, where they were kept for a 1 wk 
period of recovery. 

2.3.  Measurements 

Tissue bleaching, biomass and maximum quantum 
yield (Fv/Fm) were measured periodically over the 
experimental period (n = 6 measurements per species 
per treatment). Pigment composition and concentra-
tion were assessed on Day 15 after termination of 
treatments (n = 3 per species per treatment). 

Tissue bleaching (% cover of thallus) was visually 
assessed every second day as visible discolouration of 
the thallus tissue (Xiao et al. 2015). Biomass (in g wet 
weight [WW] after gentle removal of water) was 
measured at the start of full treatment exposure 
(Day 0), at the termination of MHWs (Day 15) and on 
the last day of the recovery period (Day 22). Relative 
growth rates (RGR; % day–1) were calculated based on 
the biomass measurements for the treatment duration 
and the recovery period following the equation: 

RGR (% d–1) = [(Wt / Wi)1/t – 1] × 100 

where Wi is the initial WW, Wt is WW on the respect-
ive day and t = 15 d for treatment duration and 7 d for 
recovery phase. 

Fv/Fm was determined every 2–3 d throughout the 
treatment exposure as well as at the end of the re -
covery period. Fv/Fm values were measured between 
09:30 and 14:30 h (MINI-PAM II, Waltz). Prior to 
Fv/Fm measurements, the seaweed tissue was dark-
acclimated for 15 min using dark leaf clips. Measure-
ments were taken fully submerged within the aquaria 
to maintain stable treatment conditions and to mini-
mise any stress for the seaweeds. 

Tissue samples for pigment composition and con-
centration were taken on Day 15 (~0.2 ± 0.4 g WW 
randomly sampled from the middle of the lamina ~1/3 
of the length above the meristem), placed in tin foil 
packages, snap-frozen in liquid nitrogen and stored at 
–80°C. For the extraction of chlorophylls and carote-
noids, tissue samples were dipped in liquid nitrogen 
and ground in a cold mortar while adding high-
 performance liquid chromatography (HPLC)-grade 
acetone. After sonication in an ice bath for 3 min to 
further disrupt cell walls, extracts were incubated 
overnight in a dark refrigerator at 4°C and sonicated 
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the following morning. Extracts were transferred into 
Eppendorf tubes, centrifuged (5 min at 13000 × g) and 
then 0.8 ml of supernatant was transferred to HPLC 
vials and stored at –80°C until HPLC measurements. 
The HPLC analyses were performed according to 
Tamm et al. (2015) with minor modifications. Se -
paration was achieved at a temperature of 25 ± 1°C 
in 50 min on a Spherisorb ODS2 (Waters) column 
(250 mm × 4.6 mm i.d. with 5 μm particle), using a 
Waters® HPLC system (600E pump, 717+ autoinjec-
tor with carousel temperature control set at 10°C and 
996 photodiode-array detector). The mobile phase 
consisted of 2 pre-mixed eluents: A = 80:20 meth-
anol:0.5 M ammonium acetate (pH 7.2) and B = 80:20 
methanol:acetone. Data acquisition with the photo-
diode array was from 350 to 750 nm at a resolution of 
1.2 nm, with achieved detection and quantification of 
the pigments at 450 nm. All linear cali-
brations were calculated according to 
peak area, and pigment standards were 
run routinely to ensure the validity of 
pigment retention time. 

2.4.  Statistical analysis 

Data were analysed by analysis of 
variance by permutation (PERMA-
NOVA) in PRIMER v.6 (9999 permuta-
tions) (Anderson et al. 2008). Given the 
permutation-based approach, it was 
assumed that tests were robust to devi-
ations from normal distribution. Tem-
perature (Te), light (Li) and time as 
days (Da) since the start of the experi-
ment were considered fixed factors. 
Species and measures were analysed 
separately and as such were treated as 
independent tests with no adjustment 
for multiple testing. Full statistical out-
puts are provided in Tables S1–S5 in 
the Supplement at www.int-res.com/
articles/suppl/m747p049_supp.pdf. 

3.  RESULTS 

3.1.  Tissue bleaching 

Tissue bleaching varied significantly 
with temperature, light and duration of 
exposure for Ecklonia radiata, Zonaria 
turneriana and Lobophora variegata 

(p ≤ 0.001; Table S1). Interaction terms were signifi-
cant for Da × Te as well as Te × Li for all 3 species, and 
additionally the interaction terms of Da × Li and Da × 
Te × Li for Z. turneriana and L. variegata (Table S1). 
Generally, for all species, only minor bleaching was 
ob served at 19° and 25°C (Fig. 1). For E. radiata, the 
ex treme MHW (28°C) resulted in significantly in -
creased bleaching in comparison to background con-
ditions (ML: p ≤ 0.003; LL: p ≤ 0.009) and 25°C (ML: 
p ≤ 0.007; LL: p ≤ 0.007) at both light regimes 
(Fig. 1A). Similarly, 25°C significantly increased 
bleaching of Z. turneriana (Fig. 1B) after 15 d at ML 
(p ≤ 0.015) and after 19 d at LL (p ≤ 0.036) levels. The 
MHW (28°C) significantly increased bleaching at ML 
after 4 d (19°C: p ≤ 0.003; 25°C: p ≤ 0.030) and at LL 
after 6 d (19°C: p ≤ 0.009; 25°C: p ≤ 0.046). In contrast, 
the onset of tissue bleaching was later but more rapid 
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Fig. 1. Mean (±SE) tissue bleaching (% thallus cover) for (A) Ecklonia radiata, 
(B) Zonaria turneriana and (C) Lobophora variegata over time for different tem-
perature (19°, 25°, 28°C) and light (ML: moderate: LL: low) levels. Shaded area:  

recovery period during which all treatments were returned to 19°C
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in L. variegata (Fig. 1C), and exposure to 28°C re -
sulted in significantly increased bleaching rates of L. 
variegata at ML after 15 d (19°C: p ≤ 0.002; 25°C: p ≤ 
0.006), and at LL from Day 10 onwards (19°C: p ≤ 
0.009; 25°C: p ≤ 0.003). LL levels resulted in signifi-
cantly increased bleaching of E. radiata at 19°C after 
15 d (p ≤ 0.027) and at 28°C after 19 d (p ≤ 0.039). LL 
levels significantly increased bleaching cover of Z. 
turneriana at 19°C after 10 d (p ≤ 0.033), and at 25°C 
(p ≤ 0.048) and 28°C (p ≤ 0.016) after 19 d. For L. va-
riegata, LL increased tissue bleaching in comparison 
to ML levels, with significantly higher bleaching at 
19° and 25°C from Day 15, and at 28°C from Day 12 
onwards. For all 3 species, 28°C led to the highest tis-
sue bleaching rates, with LL levels further enhancing 

tissue bleaching in contrast to ML levels. No recovery 
was observed in the recovery week during which sea-
weeds were returned to control conditions at 19°C. 

3.2.  Biomass and growth rates 

The biomass of E. radiata (Fig. 2A) was significantly 
affected by temperature (p ≤ 0.001; Table S2) and the 
interaction Da × Te (p = 0.024). While E. radiata bio-
mass remained relatively unchanged at 19° and 25°C, 
it decreased over time when exposed to 28°C at both 
ML and LL levels by Day 15. In contrast, the biomass 
of Z. turneriana (Fig. 2B) was not significantly 
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Fig. 2. Mean (±SE) biomass and relative growth rate (RGR) at different times after starting the experiment (exposure durations: 
0, 15 and 22 d) for (A,D) Ecklonia radiata, (B,E) Zonaria turneriana and (C,F) Lobophora variegata for different temperature (19°, 
25°, 28°C) and light (ML: moderate; LL: low) levels. Biomass was wet weight (WW) of seaweed on Days 0, 15 and 22. RGR was cal-
culated over the heatwave (Days 0–15) and the recovery period (Days 15–22). Measurements taken at start (Day 0) and end  

(Day 15) of the heatwave are shown in grey; recovery measurements are shown in blue (Day 22)
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affected by any of the treatments (p > 0.262), although 
it did show a decreasing trend over time in all treat-
ments, with the most pronounced trend in the 28°C LL 
treatment. The biomass of L. variegata (Fig. 2C) was 
affected by exposure duration (p ≤ 0.001) and tem-
perature (p = 0.002), but light levels had no effect (p 
= 0.428). 

Temperature had a negative effect on RGRs for 
all 3 species (p ≤ 0.002; Table S3). The temperature 
effects were complex for E. radiata (Fig. 2D), with 
significant interactions for exposure duration (Da × 
Te; p = 0.015) and light (Te × Li; p = 0.018). Re -
lative growth of E. radiata (Fig. 2D) remained con-
stant over time at 19° and 25°C irrespective of light 
levels; however, at 28°C, RGR declined after 15 and 
22 d, with LL levels clearly exacerbating the 
negative effects even during the recovery phase. 
RGR of Z. turneriana (Fig. 2E) was 
affected by temperature (p ≤ 0.001), 
exhibiting a similar but much smaller 
drop in growth during the recovery 
phase at 25° and 28°C. RGR remained 
re latively constant for L. variegata 
(Fig. 2F), although there was a sig-
nificant effect of temperature (p = 
0.002) and Da × Te interaction (p ≤ 
0.033). 

3.3.  Fv/Fm 

Temperature and duration of expo-
sure were the main factors causing a 
change in Fv/Fm for all 3 species (Da × 
Te, p ≤ 0.001; Fig. 3, Table S4). For all 
species, yield declined slightly over 
the treatment duration at 19° and 25°C, 
with a strong reduction when exposed 
to 28°C. For E. radiata (Fig. 3A), yield 
values were reduced already after 5 d 
at 28°C under both light levels. In com-
parison, yield values of Z. turneriana 
(Fig. 3B) were unaffected at 25°C; how-
ever, at 28°C, yield declined at LL 
levels after 5 d and after 15 d at ML 
levels. Similarly, yield values for L. 
variegata (Fig. 3C) were negatively 
affected at 28°C with a reduction at 
both light levels after 15 d, where the 
greatest decline was seen at LL levels. 
Due to tissue deterioration and loss, no 
measurements were possible at 28°C 
and LL levels after the recovery period. 

3.4.  Pigments 

HPLC measurements identified 10 different pig-
ments: chlorophyll (chl) c1, c2 and a, fucoxanthin, 
neoxanthin, lutein, β-carotene and the xanthophyll 
cycle pigments violaxanthin, antheraxanthin and zea -
xanthin. From these, concentrations could be quanti-
fied for 7 pigments: fucoxanthin, chl a, β-carotene, 
lutein and the xanthophyll cycle pigments. As ex -
pected for brown seaweeds, the major pigments for all 
3 species were fucoxanthin, chl a and chl c. E. radiata 
had the lowest and Z. turneriana the highest overall 
pigment concentrations of the 3 species (Fig. 4). 

Fucoxanthin, chl a and β-carotene concentrations 
of E. radiata were not significantly affected by treat-
ment conditions (p > 0.188; Table S5); however, a trend 
toward reduced concentrations at 28°C was evident 
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Fig. 3. Mean (±SE) maximum quantum yield (Fv/Fm) measured after 15 min 
dark acclimation for (A) Ecklonia radiata, (B) Zonaria turneriana and (C) Lobo-
phora variegata over time for different temperature (19°, 25°, 28°C) and light 
(ML: moderate; LL: low) levels. Shaded box: recovery period during which all  

treatments were returned to 19°C
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(Fig. 4). Lutein concentrations in E. radiata increased 
with increasing temperatures, but the photoprotective 
pigment was absent at 19° and 25°C under LL condi-
tions (p = 0.006). In contrast, fucoxanthin (p = 0.003), 
chl a (p ≤ 0.001) and β-carotene (p = 0.001) concen-
trations of Z. turneriana were significantly affected by 
temperature, with a slight increase in pigment con-
centrations at 25°C and a strong re duction at 28°C. 
Additionally, LL levels significantly reduced concen-
trations of fucoxanthin (p = 0.038) and chl a (p = 
0.048) of Z. turneriana. Lutein concentrations in Z. 
turneriana were not af fected by tem-
perature (p = 0.510) but showed a re-
sponse to light levels (p = 0.043), with 
the absence of lutein at LL and 19°C 
and reduced levels at 25°C and ML. Fu-
coxanthin concentrations of L. varie-
gata were not affected by treatment 
conditions (p > 0.388); however, chl a 
(p = 0.031), β-carotene (p = 0.01) and 
lutein (p = 0.034) concentrations were 
significantly affected by temperature. 
Increasing temperatures resulted in a 
reduction of chl a and β-carotene of L. 
variegata and an in crease of lutein. 
Overall, 28°C generally reduced con-
centrations of fuco xanthin, chl a and β-

carotene, whereas lutein concentrations increased 
with increasing temperature. 

The xanthophyll cycle pool, as the sum of the 3 pig-
ments violaxanthin, antheraxanthin and zeaxanthin, 
showed strong species-specific responses (Fig. 5, 
Table S5). At ML levels, the xanthophyll pool size in -
creased for E. radiata with increasing temperatures, 
with a significant reduction of violaxanthin (p = 
0.034) and increased zeaxanthin concentrations. At 
ML levels, zeaxanthin (p = 0.003) concentrations of E. 
radiata significantly increased, whereas at LL levels, 
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Fig. 4. Mean ± SE pigment concentrations of fucoxanthin, chlorophyll a (chl a), β-carotene and lutein for Ecklonia radiata, 
Zonaria turneriana and Lobophora variegata at Day 15 for different temperature (19°, 25°, 28°C) and light (ML: moderate;  

LL: low) levels

Fig. 5. Mean ± SE pigment concentrations of the xanthophyll cycle pigments 
zeaxanthin, antheraxanthin and violaxanthin for Ecklonia radiata, Zonaria turn-
eriana and Lobophora variegata after 15 d for different temperature (19°, 25°,  

28°C) and light (ML: moderate; LL: low) levels
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violaxanthin (p = 0.027) content was significantly 
higher. In contrast, the xanthophyll pool size of Z. 
turneriana was drastically reduced at 28°C due to a 
strong reduction of violaxanthin (p ≤ 0.001) levels. 
Additionally, the zeaxanthin content of Z. turneriana 
was significantly reduced at LL levels (p = 0.046). 
Xanthophyll cycle pigment concentrations of L. varie-
gata were not affected by light levels (p > 0.309), but 
violaxanthin (p = 0.005) concentrations de creased 
with increasing temperature, whereas zea xanthin con-
centrations were significantly increased at 28°C (p = 
0.005). Overall, at 28°C, zeaxanthin levels increased, 
whereas violaxanthin levels were re duced with in-
creasing temperatures for all 3 species of seaweeds. 

4.  DISCUSSION 

MHWs and coastal darkening are increasing anthro -
pogenic stressors in many marine ecosystems globally. 
Our study showed that when seaweeds simultaneously 
experience discrete warming and low levels of light, 
their responses mainly depend on the magnitude of 
temperature increase, with irradiance levels having a 
lesser effect. However, under extreme temperatures, 
low light levels drastically compounded the negative 
effects on seaweed performance and there was little to 
no indication of short-term recovery once the tem-
perature stress abated. These results support growing 
evidence that the combined effects of MHWs and 
coastal darkening on marine primary producers — the 
foundations of coastal ecosystems — could accelerate 
habitat loss (Strain et al. 2014, Filbee-Dexter & Wern-
berg 2018, Kendrick et al. 2019). 

Temperature was the main factor affecting the per-
formance of all 3 tested species (Ecklonia radiata, 
Zonaria turneriana and Lobophora variegata). Per-
formance (e.g. tissue bleaching, biomass, RGR, 
photo synthetic activity) was comparable between 19° 
and 25°C (representing background temperatures in 
spring and autumn) and warm (medium MHW) 
summer conditions experienced by the seaweeds at 
their location of collection. Currently, 25.5°C repre-
sents the upper threshold for local near-future climate 
predictions (Lough et al. 2012), and all 3 seaweeds 
withstood 25°C for 15 d with only minor effects on 
their performance. These projections, however, rep-
resent future mean conditions, and as the mean in -
creases, so does the severity of MHWs (Oliver et al. 
2018). Exposed to +3°C above the summer values, 
representing extreme MHW conditions of 28°C, the 
performance of all 3 seaweeds declined significantly, 
and these effects were compounded by LL conditions. 

Intense tissue bleaching and reduced photosynthetic 
activity were evident for all 3 species. These negative 
effects of extreme temperatures are consistent with 
field observations from the region, where a sustained 
increase to similarly high temperatures during a 
MHW reduced the performance, productivity and 
survival of brown seaweeds (Bearham et al. 2013, 
Smale & Wernberg 2013, Andrews et al. 2014, Wern-
berg et al. 2016). Additionally, E. radiata indivi -
duals ex perienced a significant loss of biomass and 
negative RGRs at extreme temperatures. The sensiti -
vity of E. radiata to 28°C is consistent with studies 
concerning the impacts of the 2010–2011 MHW in 
Western Australia, which resulted in local extinctions 
and reduced abundances in areas experiencing ~28°C 
exposure (Pearce & Feng 2013, Wernberg et al. 2016). 
Of the 3 species, L. variegata showed the highest 
 tolerance to temperature increase for bleaching and 
photosynthetic activity. Still, the sensitivity of L. 
variegata to the extreme MHW was surprising, as this 
species is widely distributed in tropical and warm 
temperate seas and is known to increase in abun-
dance on degraded coral reefs (Mumby et al. 2005, 
Nugues & Bak 2008) and tropicalized temperate reefs 
(Wernberg et al. 2016). Local adaptation might ex -
plain the temperature sensitivity and reduced per-
formance of L. variegata as seen in other brown sea-
weeds (Bennett et al. 2015). 

High temperatures can evoke photoprotection and 
pigmentation responses in seaweeds (Davison 1991, 
Kuebler et al. 1991). The carotenoid responses and 
other pigment concentrations were generally highest 
at ambient (19°C) and moderate warming (25°C), 
consistent with recent thermal history influencing 
pigment content (Davison 1991, Stengel & Dring 
1998, Robledo & Freile-Pelegrín 2005). Carotenoids 
and xanthophyll cycle pigments are involved in pho-
toprotection, assisting thermal dissipation of excess 
light energy (non-photochemical quenching), which 
for the xanthophyll cycle pigments involves a de-
 epoxidation from violaxanthin to zeaxanthin (Jahns 
& Holzwarth 2012). In E. radiata, Z. turneriana and L. 
variegata, photoprotective responses of the carote-
noids were not evident at the extreme MHW, with 
reduced fucoxanthin, chl a and β-carotene levels and 
a shift within the xanthophyll cycle pool from violax-
anthin to zeaxanthin. These pigment responses sug-
gest the seaweeds were stressed beyond an ability to 
invest in the accumulation of photoprotective pig-
ments (Goss & Jakob 2010, Stengel et al. 2014). The 
strongest overall pigment reductions were evident in 
Z. turneriana, and the strongest shift within the xan-
thophyll pool was present for E. radiata. 
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While the strongest effects were observed in re -
sponse to temperature, light levels also had some 
effect on the performance of the seaweeds. At low and 
intermediate temperatures (19° and 25°C), light levels 
showed only minor effects, suggesting the seaweeds 
were able to respond and adjust under these condi-
tions. However, low light combined with extreme 
temperatures greatly enhanced tissue bleaching, 
diminished photosynthetic activity and reduced pig-
ment contents of all 3 species. E. radiata was the most 
sensitive species, experiencing strongly progressed 
tissue bleaching and biomass loss under the interac-
tion be tween extreme warming and low light. Overall, 
these re sponses suggest that when temperatures turn 
ex treme, low light levels compound the negative 
effects on sea weed performance. Similar interactions, 
with low light levels exacerbating the negative effects 
of MHWs, have been found for other kelps. In New 
Zealand, a broad-scale remote sensing study of Mac-
rocystis pyrifera found negative effects of MHWs on 
kelp canopy cover everywhere but the loss was sig-
nificantly greater where water clarity was low (Tait et 
al. 2021). In Europe, a laboratory study found a syner-
gistic ef fect of low light on the effects of simulated 
MHWs on photosynthesis of 2 kelps, where the cool-
temperate Laminaria digitata responded more 
strongly than the warm-temperate L. ochrolueca (Bass 
et al. 2023). The mechanism underpinning the inter-
action between MHWs and low light levels is likely 
the exponentially in creasing respiratory demands at 
higher temperatures: warming and increasing turbid-
ity have been shown to drive a non-linear increase in 
the light compensation point of seaweeds such as E. 
radiata (Stæhr & Wernberg 2009, Blain & Shears 
2019). These findings add to a growing list of empir-
ical studies that show how the impacts of MHWs are 
modulated by a range of diffe rent human activities 
and localised eco logical and environmental condi-
tions (Starko et al. 2024), including diseases, nutrient 
levels, grazers, topography and turbidity (Wernberg 
et al. 2013a, Rogers-Bennett & Catton 2019, Tait et al. 
2021, Thomsen et al. 2021, Tolimieri et al. 2023). 

In conclusion, extreme temperatures were a promi-
nent cause of reduced performance and photoprotec-
tive response in common and ecologically significant 
seaweeds, and low light levels exacerbated these 
negative effects. MHWs and coastal darkening are 
key threats to marine macrophytes. These threats are 
almost universally projected to intensify into the 
Anthropocene, where increasing degradation and 
loss of marine foundation species are expected as a 
consequence (Wernberg et al. 2024). While the 
increasing threat from MHWs can only be confronted 

through decisive global climate action, it will be dis-
proportionately  im portant with regional and local 
management of activities that reduce coastal darken-
ing in order to curb the accelerating impacts of cli-
mate change and humans in the coastal zone. 
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