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1.  INTRODUCTION 

Rapid climate change in high-latitude ecosystems 
presents a profound challenge for our understanding 
of ecosystem dynamics. High northern latitudes are 
experiencing rapid warming, including the Bering Sea 
(Danielson et al. 2020), which has recently experienced 
major shifts in community composition associated 
with high temperatures that are unprecedented in cli-
mate records (Grebmeier et al. 2006, Huntington et al. 

2020). Evidence is also mounting that many  climate–
biology relationships in the North Pacific might be 
non-stationary (Litzow et al. 2018, 2019, Wainwright 
2021). Non-stationary relationships, which occur when 
the relationship between 2 (or more) variables changes 
through time, might be revealed as high-latitude re-
gions enter novel climate states due to anthropogenic 
climate change (Williams & Jackson 2007). Non-
 stationarity would compound the challenges of re-
sponding to climate change for management and con-
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Gadus chalcogrammus, an ecologically and commercially important species. Using survey catch per 
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abundance–bottom temperature relationship, but little evidence for a sharp transition associated 
with marine heatwave conditions. Because pollock have expanded their range into novel habitats in 
the northeast Bering Sea (NEBS), we tested whether our models, parameterized for the southeast 
 Bering Sea (SEBS), had predictive skill in the northeast. Our models were generally able to identify 
areas of high and low CPUE, though they under-predicted the magnitude of abundance observed in 
the northeast during the warm years. Spatial associations between pollock and other species differed 
between the warm period (2014–2019) and previous decades (1982–2013) for 3 of 9 species, provid-
ing mixed evidence for non-stationarity. These findings contrast with results showing sharp rather 
than gradual changes in climate–biology relationships associated with climate transitions in nearby 
ecosystems. The same processes that govern walleye pollock abundance and distribution appear to 
apply to both the SEBS, historically the core of their distribution, and the NEBS.  
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servation, as it would imply a loss of predictive skill for 
models based on existing ecological knowledge. 

Rapid climate change is of particular concern in the 
Bering Sea region, which supports some of the largest 
single-species fisheries in the world. Beginning in 
2013–2014, a marine heatwave and subsequent ex -
tended warm period have exposed the Bering Sea eco-
system to a previously unobserved set of climate con-
ditions (Di Lorenzo & Mantua 2016, Huntington et al. 
2020). This marine heatwave has been formally attrib-
uted to anthropogenic radiative forcing (Walsh et al. 
2018, Laufkötter et al. 2020). In response, many 
species have shifted their distributions (Stevenson & 
Lauth 2019), with several commercially important spe-
cies moving northward from the southeastern Bering 
Sea (SEBS) to the northeastern Bering Sea (NEBS) 
(Stevenson & Lauth 2019, Thorson et al. 2019, Marsh et 
al. 2020, O’Leary et al. 2020). Much of our biological 
understanding of eastern Bering Sea (EBS) population 
and community dynamics was developed prior to the 
current extended warm period. The ex tent to which 
this understanding will or will not hold under novel cli-
mates remains unknown (Williams & Jackson 2007). 
Given that 2014–2019 climate conditions are novel 
among contemporary climate re cords, the question 
can be raised whether non-stationary relationships be-
tween climate variables and community composition 
might result. Non- stationarity in the relationships that 
govern population and community dynamics would 
complicate the interpretation of population projec-
tions for research and management purposes. 

Walleye pollock Gadus chalcogrammus (henceforth 
referred to as pollock) landings are among some of the 
highest landings globally of any fish species (FAO 
2023). Bering Sea pollock support the largest fishery in 
the United States by volume, with a 2019 catch of 1.41 
million tons, and first-wholesale value of US $1.55 bil-
lion (Ianelli et al. 2020). Traditionally, pollock have 
occurred at very high abundances in the SEBS but 
only at very low abundances in the NEBS (Stevenson 
& Lauth 2019). Pollock are targeted by the fishery in 
the SEBS but not the NEBS. In the SEBS, pollock are 
not only a dominant species in terms of commercial 
catch but also in terms of the influence they exert on 
the ecosystem, in large part due to their high abun-
dances and their ecological role as both an important 
forage fish and a predator (Aydin & Mueter 2007). Pol-
lock recruitment and abundances are influenced by 
many factors, including fishing, predator and prey 
densities (Ciannelli et al. 2002, Hunt et al. 2011), age-
class dynamics (Thorson et al. 2017, Ianelli et al. 
2018), and environmental conditions (Hunt et al. 
2011). In particular, pollock distribution is shaped by 

the annual extent of sea ice and the cold pool, or the 
area of bottom temperature below 2°C in the Bering 
Sea, which adult pollock tend to avoid (Kotwicki et al. 
2005, Mueter & Litzow 2008, Kotwicki & Lauth 2013). 

Warm temperatures since 2014 have coincided with 
an exceptionally small or absent cold pool in the SEBS 
and a remarkably rapid distributional shift of pollock 
from the SEBS into the northern Bering Sea in both US 
and Russian waters (Eisner et al. 2020, O’Leary et al. 
2020). Relatively high abundances of pollock have 
been detected in areas of the NEBS since 2017, 
whereas surveys in 2010 and earlier generally found 
low pollock abundances (Stevenson & Lauth 2019). 
Previous studies have shown that including cold pool 
extent and/or bottom temperature in models of pol-
lock abundance and distribution im proves model per-
formance (e.g. Thorson 2019, O’Leary et al. 2020). 
However, whereas previous studies have investigated 
non-linear and/or spatially varying responses to cold 
pool and bottom temperature, the associations with 
cold pool and bottom temperature are typically con-
sidered to be temporally stationary — i.e. that a single 
temperature–pollock relationship pertains through-
out the observational period. 

The unprecedented climate conditions and pollock 
distributions observed in recent years raise the ques-
tion of whether pollock are responding to novel con-
ditions in a previously unobserved manner. Warmer 
temperatures result in higher metabolic demands 
and thus higher prey requirements (Brown et al. 
2004) which could alter foraging behavior. Increas-
ing temperatures could also alter habitat suitability, 
especially if preferred temperatures become uncou-
pled from otherwise preferred habitat features. Cur-
rent efforts to fit environmentally dependent species 
distribution models (SDMs) to historical data or to 
project future distribution changes in pollock gen-
erally assume stationary relationships with tempera-
ture (Thorson et al. 2017, Alabia et al. 2018, Thorson 
2019). However, SDMs parameterized with observa-
tional data are known to be vulnerable to failure 
when deployed out of sample (Araujo & New 2006, 
Williams & Jackson 2007, Urban et al. 2016), in par-
ticular if underlying relationships with climate prove 
to be non-stationary (Fitzpatrick & Hargrove 2009, 
Veloz et al. 2012, Urban et al. 2016). Furthermore, 
recent SDMs have revealed important changes in 
distributions in response to climate or between cold 
and warm periods in the EBS (Thorson et al. 2017, 
Alabia et al. 2018, Thorson 2019), but the potential 
for novel climate conditions to arise in the future 
could limit the utility of historic data to predict 
future distributions. 
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As pollock distributions respond to novel climate 
conditions, so might the distributions of their prey, 
competitors, and predators, which could result in dif-
ferent microhabitats being favored. Shifting patterns 
of species overlap and changing strengths of species 
interactions can both provide a further source of error 
for SDMs (Urban et al. 2012, 2016). Already there is 
evidence that warmer temperatures and reduced cold 
pool extent can negatively influence pollock recruit-
ment by increasing the extent of overlap with pred-
ators (Hunsicker et al. 2013, Spencer et al. 2016, Uchi-
yama et al. 2020, Thorson et al. 2021) while reducing 
the extent of overlap with prey (Siddon et al. 2013). In 
addition, evidence from invasion biology has shown 
that dispersers and individuals at the leading edge of 
expanding ranges often have important phenotypic 
differences compared to individuals near the core dis-
tribution that can alter their ecological interactions 
and impacts (Cote et al. 2017, Pinsky et al. 2020). It is 
possible that the pollock that moved into the NEBS 
could differ in their habitat preferences or behavior 
compared to those that stayed in the SEBS. Given that 
marine heatwaves similar to the 2013–2015 event are 
predicted to occur more frequently with climate 
change (Frölicher et al. 2018, Oliver et al. 2018, Lauf-
kötter et al. 2020), we sought to determine whether 
the 2013–2015 heatwave in the North Pacific and 
subsequent warm period in the Bering Sea corre-
sponded to a fundamental shift in the relationship 
between pollock abundance and temperature or 
interactions between pollock and other species. 

The overarching goal of our study was to investi-
gate whether recent (2014–2019) unprecedented 
warm temperatures in the EBS represent a new cli-
mate envelope in which knowledge of pollock 
dynamics and species interactions gained under past 
climate conditions might no longer be predictive. In 
particular, our first objective was to determine 
whether the relationship between local pollock abun-
dance and bottom temperature in the SEBS has 
changed in the warm 2014–2019 period relative to 
the 1982–2013 period. Next, we turned to the NEBS, 
where 2014–2019 climate conditions were more typi-
cal of those in the SEBS during previous decades, but 
where different habitats or species interactions might 
result in fundamentally different responses to bottom 
temperature. Thus, to investigate whether our under-
standing of pollock distributions from the SEBS will 
hold in the NEBS, our second objective was to assess 
the ability of models of local pollock abundance fit to 
data from the SEBS to predict pollock abundance in 
the NEBS. Different age classes of pollock tend to 
have different spatial and vertical distributions (Kot-

wicki et al. 2005, 2015). Thus, our third objective was 
to determine whether the local abundances of differ-
ent size classes responded differently to warm tem-
peratures in the warm 2014–2019 period. Finally, the 
potential for different species to respond to warming 
in different ways, or to encounter new species as they 
shift northwards, could result in shifting species inter-
actions. Our fourth objective was to evaluate the 
evidence for non-stationarity in spatial associations 
between the local abundance of pollock and the abun-
dances of other common species in the SEBS. 

2.  MATERIALS AND METHODS 

2.1.  Study system 

The EBS (Fig. 1) is characterized by a large, shallow 
shelf subject to nutrient-rich currents flowing north-
ward over the shelf and exiting through the Bering 
Strait into the Chukchi Sea (for a general review of the 
EBS ecosystem, see Aydin & Mueter 2007). The SEBS 
is characterized by strong cross-shelf gradients de-
fined by bathymetry and water column structure that 
are dominant drivers of the biogeography of fish on 
the shelf (Mueter & Litzow 2008). Similar cross-shelf 
gradients are evident on the northern Bering Sea shelf 
but their impact on fish distributions in this region is 
poorly understood. For the purposes of our study, we 
distinguish between SEBS and NEBS (Fig. 1). 

The EBS supports some of the largest fisheries in 
the United States and includes economically impor-
tant stocks of pollock, Pacific salmon Oncorhynchus 
spp., crabs (e.g. Chionoecetes spp. and Paralithodes 
sp.), and flatfishes (e.g. yellowfin sole Limanda aspe -
ra). The ecology of the EBS ecosystem is dominated 
by demersal fishes and in particular has been dom-
inated by pollock since the 1980s (Aydin & Mueter 
2007). The region encompasses the boundary be -
tween the sub-Arctic and Arctic ecoregions where 
species from both ecoregions mix (Aydin & Mueter 
2007, Mueter & Litzow 2008). The EBS is strongly 
influenced by seasonal ice cover and a persistent cold 
pool of bottom temperatures below 2°C, the extent 
and timing of both of which exert strong ecosystem 
influence and vary greatly among years (Walsh & 
Johnson 1979, Aydin & Mueter 2007). However, the 
years 2014–2019 were characterized by unprece-
dented warm temperatures, low sea ice extent, and 
low or non-existent cold pool extent (Di Lorenzo & 
Mantua 2016, Duffy-Anderson et al. 2019, Danielson 
et al. 2020, Huntington et al. 2020, Rohan et al. 2022). 
These rapid changes have led to broad-scale shifts in 
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species distributions (Alabia et al. 2018, Stevenson & 
Lauth 2019, Eisner et al. 2020, O’Leary et al. 2020) and 
an increasing dominance of sub-Arctic taxa in the 
EBS (Mueter & Litzow 2008). 

2.2.  Bottom trawl survey data 

The pollock data used in this study come from the 
annual bottom trawl surveys of the SEBS conducted 
by the National Oceanic and Atmospheric Adminis-
tration (NOAA) National Marine Fisheries Service 
(NMFS) Alaska Fisheries Science Center (AFSC) 
Groundfish Assessment Program (GAP). The bottom 
trawl data provide estimates of the abundance and 
biomass of demersal species within the survey region, 
including the demersal portion of the EBS pollock 
stock. In addition, in certain years, GAP extended the 
bottom trawl survey into the NEBS following the 
SEBS survey. Both surveys use the same methodology 
as summarized in annual reports published by NOAA 
(e.g. Lauth et al. 2019). In the SEBS, 376 fixed stations 

on a 20 × 20 nautical mile (nmi) (37 × 
37 km) grid are sampled each year by 
an 83-112 eastern bottom trawl (83 ft 
[25 m] headrope and 112 ft [34 m] foot-
rope). Sampling in the NEBS has been 
more opportunistic and occurred with 
less consistent schedules and stations, 
but has been conducted using the 
same gear, vessels, and design as in 
the SEBS. Triennial surveys from 
1982–1991 sampled portions of the 
NEBS along a 40 × 40 nmi (74 × 74 km) 
grid. In 2010 and again in 2017, 2019, 
and 2021, the NEBS was sampled as an 
extension of the standard 20 × 20 grid 
in the SEBS. An emergency survey 
was conducted in the NEBS in 2018 
along a 30 × 30 nmi (55.6 × 55.6 km) 
grid in response to decreased abun-
dances in the SEBS. We downloaded 
SEBS and NEBS bottom trawl survey 
data for years 1982–2021 from the on-
line RACEBASE archive (https://www.
fisheries.noaa.gov/foss/f?p=215:28), 
which assigns non-standard stations 
to the name of the nearest standard 
station (Kearney 2021). We ex cluded 
stations from the 10 × 10 nmi (18.5 × 
18.5 km) grid sampled in Norton 
Sound in the 1980s because this grid 
has not been sampled recently.  

The bottom trawl survey is conducted for monitor-
ing and assessment purposes, hence methods are 
standardized as much as possible across stations and 
years to ensure that catch per unit effort (CPUE, 
swept area estimate of biomass per unit area in kg 
ha–1) can be directly compared across time and space. 
As a metric of relative abundance for our analyses, we 
natural-log-transformed CPUE after adding a small 
constant (log(CPUE + 1)) to achieve approximate 
normality of model residuals and to account for occa-
sional zeros. In addition to the CPUE data described 
above, we were also interested in CPUE by size class. 
Data on CPUE binned by sex and total length (in 1 cm 
bins) were obtained for years 1982–2019 from a query 
of RACEBASE (Table S1 in the Supplement at www.
int-res.com/articles/suppl/m749p141_supp.pdf). 

2.3.  Community data 

In addition to pollock, we selected several species 
that may interact with pollock to investigate whether 
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Fig. 1. Study area, with sampling events from northeast Bering Sea (NEBS) and 
southeast Bering Sea (SEBS) sites. The bottom trawl survey samples a standard 
grid of stations each year, so sampling events from different years but the same 
station tend to cluster tightly in space. The 50 m (light blue), 100 m (blue), and  

200 m (dark blue) depth contours are indicated
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correlations among pollock and these species have 
shifted in the recent warm period (Objective 4, see 
Section 1). We focused on species that are commonly 
detected in the bottom trawl survey and that are 
expected to interact with pollock as competitors or 
predators based on a re view of the pollock literature. 
These species in cluded: Alaska plaice Pleuronectes 
quadrituberculatus, arrowtooth flounder Atheresthes 
sto mi as, flathead sole Hippoglossoides elassodon, 
Pacific cod Ga dus macrocephalus, Pacific halibut 
Hip po glossus steno lepis, rock sole Lepidopsetta spp., 
snow crab Chio noe cetes opilio, Tanner crab C. bairdi, 
and yellowfin sole Limanda aspera. 

2.4.  Haul-specific environmental data 

We were primarily interested in the effects of bottom 
temperatures on the spatial distribution of pollock but 
also considered several spatial covariates re corded 
during each haul of the bottom trawl survey, including 
latitude, longitude, and bottom depth. Latitude and 
longitude coordinates were converted to reflect actual 
distances using the equal-distance Albers projection 
via the function ‘mapproject’ in the mapproj package 
version 1.2.7 (McIlroy et al. 2020). We excluded any 
individual hauls that were sampled at depths greater 
than 180 m because they are rare in the dataset (n = 24 
hauls) and are beyond the typical bottom depths in-
habited by pollock. Bottom temperature (°C) was not 
recorded for a small subset of SEBS hauls (524/14 023 
records). To fill in these missing values, we constructed 
general additive models (GAMs) of bottom tempera-
ture with a non-linear smoothed effect of bottom 
depth and a tensor product interaction between lati-
tude and longitude. Each year was modeled separately 
and R2 values were generally high (ranging from 0.623 
to 0.893). Based on the re corded bottom depth and co-
ordinates of the hauls with missing temperature data, 
we replaced missing values with predicted bottom 
temperatures from these models. 

2.5.  Statistical analyses 

The main question we aimed to address was 
whether the relationship between local pollock abun-
dance (using CPUE as a proxy) and bottom tempera-
ture changed in the warm 2014–2019 period relative 
to the 1982–2013 period. To test this, we followed an 
information-theoretic approach and compared 4 gen-
eralized additive mixed models (GAMMs) that reflect 
alternative hypotheses about the response of pollock 

to local temperatures based on a priori understanding 
of pollock ecology. The 4 models differed primarily in 
how temperature affects CPUE, with other model 
structure held constant across models. We then 
assessed the relative strength of evidence for our 
competing hypotheses. 

Model 1: non-linear response model. This was our 
base model allowing for a non-linear response to 
local bottom temperatures, based on the following 
para meterization: 

                                 (1) 

where Yt,i is log(CPUE + 1) at station i in year t, α is the 
overall intercept, and at is a random year effect to ac-
count for interannual variability in average CPUE and 
the resulting lack of independence of samples taken 
within the same year. The smooth function ƒ1(zt,i) is a 
smoothed effect of bottom depth (zi) to account for 
the fact that pollock tend to aggregate on deeper por-
tions of the shelf, particularly near the 100 m isobath 
(Kotwicki et al. 2005). Local bottom temperature is in-
cluded as a smoothed effect, ƒ2(BTt,i). We fit bottom 
temperature as a nonlinear effect rather than a linear 
effect because preliminary analyses and some pre-
vious studies (Thorson 2019, Grüss et al. 2020) suggest 
that the effect of bottom temperature on pollock den-
sity is non-linear, likely reflecting a preference for in-
termediate temperatures, and be cause there is no a 
priori reason to assume a linear response. We limited 
the flexibility of the smooth term to 3 effective de -
grees of freedom (basis dimension k = 4 for smooth 
term) because we considered a more complex re-
sponse to be biologically unrealistic. In addition, we 
accounted for potential spatial autocorrelation in the 
residuals, εt,i, using an exponential spatial correlation 
structure that assumes that, within a given year, resid-
ual correlations among stations decay exponentially 
with distance. Other correlation structures, including 
Gaussian, spherical, and ratio nal quadratic spatial 
correlations, were explored but provided worse fits. 
We used this approach be cause we were primarily in-
terested in the mean re sponse to temperature, but 
needed to account for any remaining spatial autocor-
relation in the residuals. 

Model 2: non-stationary non-linear response. 
This model accounts for possible non-stationarity 
by allowing for a separate non-linear relationship 
be tween pollock CPUE and bottom temperature in 
the warm 2014–2019 period compared to the 1982–
2013 period. This model retains the same structure 
as the non-linear model, but updates the BTt,i term 
to allow for different temperature responses by 
period (p), modeled as a factor smooth interaction 

ƒ ƒY a z BT , , , ,t i t t i t i t i1 2a f= + + + +_ _i i
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between bottom temperature and period (1982–
2013 versus 2014–2019): 

                               (2) 

Model 3: non-stationary linear response. This 
model assumes a linear response to local tempera-
tures whose magnitude and/or sign may differ be -
tween periods to account for possible non-stationar-
ity. This model is similar to Model 2 but uses a linear 
interaction between period and bottom temperature: 

                             (3) 

where βp is a slope that is specific to each period 
(early: 1982–2013; late: 2014–2019) and is modeled 
as an interaction between BTt,i and a categorical vari-
able for period. For both the non-stationary non-
linear and non-stationary linear models, we would 
interpret a significant interaction between bottom 
temperature and period to indicate a non-stationary 
relationship between CPUE and bottom temperature 
associated with the onset of unusually warm tempera-
tures in the late period. 

Model 4: time-varying model. The final model 
allowed the response to temperature to change 
through time using a tensor product interaction be -
tween bottom temperature and year. This model is the 
most flexible, allowing the bottom temperature–
CPUE relationship to change smoothly over time, 
rather than a one-time change at the onset of the 
2014–2019 warm period. Specifically: 

                       (4) 

where t is year. The bottom temperature-by-year 
interaction was implemented using a ‘t2’ tensor-
 product smooth. 

We compared the 4 models described above 
using the Akaike information criterion (AIC) and 
Akaike weights (Burnham & Anderson 2002) to 
assess the relative strength of evidence for our 
competing hypo theses. We excluded data from sta-
tions that had been sampled in fewer than 5 years 
and from any station that is considered to be part of 
the NEBS. To address concerns regarding collinear-
ity of covariates, correlations among covariates 
(bottom depth and bottom temperature) were 
assessed to confirm that they did not exceed |r| = 
0.5. Distributions of residuals are provided in Fig. S1. 
As an ad ditional measure of model fit, we performed 
leave-one-out cross validation by dropping 1 year 
of data, fitting each model to the remaining years 
of data, and then predicted log(CPUE + 1) for all 
values in the missing year. Within-sample predictive 

ability was assessed using root mean square error 
(RMSE). 

A potential challenge for our modeling efforts arises 
from the fact that the early and late periods differed in 
their overall climate patterns: bottom temperatures 
observed in the late period were generally warmer 
than those observed in the early period, consistent 
with the observed pattern of warming in the Bering 
Sea (Walsh et al. 2018, Duffy-Anderson et al. 2019). 
Consequently, there was limited overlap be tween the 
range of temperatures observed within each period 
such that period-specific temperature effects (Models 
2 and 3) could be strongly influenced by cold ex -
tremes in the early period and by warm extremes in 
the late period. As a sensitivity analysis, we reran 
Models 2 and 3 using total pollock CPUE data (all 
body lengths combined) over a limited range of ob-
served bottom temperatures that excluded the coldest 
and warmest temperatures to maximize the extent of 
overlap between periods. Because warm temperatures 
were relatively rare in the colder 1982–2013 period, 
we removed (from both periods) observations that 
were warmer than the 95th warmest percentile of tem-
peratures observed in the early period (i.e. tempera-
tures warmer than 4.8°C). Likewise, we removed tem-
peratures colder than the 5th coldest percentile of 
temperatures observed in the warm late period (i.e. 
temperatures colder than 0.0°C). This filtering ap-
proach resulted in 79.7% of observations (11 159 ob-
servations out of 14 006) being retained in the new 
limited dataset. These percentiles for filtering were 
chosen somewhat subjectively, as our goal was simply 
to remove extreme observations and rerun our models 
to check for potential bias caused by these extremes. 
All other model aspects were held the same. 

We conducted further sensitivity analyses using 
total pollock CPUE to address uncertainties due to 
our a priori choice of a breakpoint between 2013 and 
2014 and due to the limited number of years available 
for analysis since the warming trend began around 
2014. First, to determine whether the selected break-
point was appropriate, we re-fit the 2 models with 
period interactions (Models 2 and 3) for every poten-
tial breakpoint with at least 6 years of data on either 
side (before/after). We compared AIC across these 
models to determine whether a better breakpoint 
could be identified. Second, to determine whether 
having only 6 years of data in 1 period impacts model 
choice, we re-fit Models 2 and 3 for every potential 
breakpoint using only 6 years of data for the late 
period. For example, for breakpoint 2000, the early 
period would include years 1982–1999, while the late 
period would include years 2000–2005. We then as -

ƒY a z BT , , , ,t i t t i p t i t i1 #a b f= + + + +_ i

,ƒ ƒY a z BT t  , , , ,t i t t i t i t i1 2a f= + + + +_ _i i

,ƒ ƒY a z BT p  , , , ,t i t t i t i t i1 2a f= + + + +_ _i i
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sessed whether our choice of breakpoint affected how 
often the non-stationary models (Models 2 and 3) 
were selected over the non-linear model (Model 1) 
based on AIC. 

Finally, to assess the ability of models fit to data 
from the SEBS to predict pollock CPUE in the NEBS 
(Objective 2), we used the best model for the SEBS 
along with observed temperatures and depths from 
NEBS surveys to predict CPUE in the NEBS for any 
years for which survey data were available (1982, 
1985, 1988, 1991, 2010, 2017–2019, 2021). Predictions 
for a given year were done with random effects set to 
their predicted value for a given year, which assumes 
that year-specific deviations in mean CPUE estimated 
for the SEBS also apply to the NEBS. Predicted pat-
terns in CPUE were compared visually to the ob -
served CPUE in these years by plotting them through 
space and by fitting a linear model to the observed vs. 
predicted CPUE. If the slope of the linear model is 
similar to the slope of a 1:1 line, we interpreted that 
the model preforms similarly well at different catch 
levels. Prediction skill was compared among years 
using RMSE. 

2.5.1.  CPUE by length 

To assess possible variation in the response of 
younger and older pollock to temperatures, we re-fit 
the CPUE models described above separately for se -
lected body length classes. The CPUE for each length 
class was estimated by apportioning catches based on 
random subsamples of pollock caught in a given haul 
that were measured to the nearest centimeter of fork 
length. Pollock CPUE within each of 5 length bins was 
computed following Thorson et al. (2017): 0–20, 20–
30, 30–40, 40–50, and >50 cm. Distributions of resid-
uals are provided in Figs. S2–S6. 

2.5.2.  Community 

We tested for non-stationarity in the spatial associ-
ation between pollock and other species by compar-
ing the extent to which pollock were correlated with 
that species through space in the early versus late 
period. For each year, we calculated an annual Pear-
son correlation coefficient between station-specific 
pollock CPUE and the CPUE of each other species 
across the SEBS. We used a separate t-test for each 
species to ask whether the mean correlation between 
pollock and that species differed between the early 
and late periods, assuming that each year within a 

period provides an independent estimate of the 
between-species association for that period. 

Because we conducted multiple tests (9 t-tests in 
total), we controlled the false discovery rate (FDR) fol-
lowing the procedure proposed by Benjamini & Hoch-
berg (1995) (Verhoeven et al. 2005). Our null hypo -
thesis for each test was that there was no difference in 
correlation between species in the early versus late 
period. For each of the m tests, p-values were ranked 
in ascending order (Pi, where i is ranked order) and all 
null hypotheses for which Pi ≤  α–m i were rejected. 

All statistical analyses were performed using R ver-
sion 4.1.2 (R Core Team 2021). Models described in 
Section 2.4 were fit and missing values were predicted 
using the mgcv package (Wood 2011, 2017). All CPUE 
models described in Section 2.5 were fit using the 
gamm() function in package mgcv (Wood 2017). Cor-
relations were examined using the cor() function in R 
(R Core Team 2021). Figures were created using pack-
ages ggplot2 (see our Figs. 1, 4, 5, & 7; Wickham 2009), 
rnaturalearth (see our Figs. 1 & 4; South 2017), itsadug 
(see our Fig. 2A,B; van Rij et al. 2020), mgcViz (see our 
Fig. 2C; Fasiolo et al. 2020), and gratia (see our Figs. 3 
& 6; Simpson 2022). Code used to perform analyses 
and create figures for this study is publicly available 
at: https://github.com/KristaOke/bold-new-pollock-
CPUE.  

3.  RESULTS 

3.1.  Pollock CPUE 

Our first objective was to determine whether the 
relationship between local pollock abundance and 
bottom temperature in the SEBS has changed in the 
warm 2014–2019 period relative to the 1982–2013 
period. Pollock CPUE data were best fit by the 
model that allowed for a time-varying response to 
bottom temperature (Model 4, Table 1). This result 
suggests that there has been a slow shift in the bot-
tom temperature–local pollock abundance relation-
ship through time. The time-varying effect of bottom 
temperature was similar to the single smoothed 
effect of temperature (Model 1), which was dome-
shaped, with low CPUE at temperatures below 0°C, 
rising to a maximum around 2°C, and declining 
again beyond temperatures of 4°C (Fig. 2). Few 
measurements at very high temperatures contrib-
uted to high uncertainty above temperatures of 8°C. 
The key difference be tween Models 1 and 4 was 
that the time-varying effect in Model 4 showed a 
shift beginning around 2010 towards higher CPUEs 
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at cold bottom temperatures. The next best fit was 
provided by the model that allowed the non-linear 
effect of bottom temperature on CPUE to differ be -
tween periods (Model 2), but the shapes of the 
1982–2013 and 2014–2019 smoothers were similar 
both to one another and to the single smoother from 

Model 1. Similar to Model 4, cold temperatures had 
a less negative effect on log(CPUE + 1) in the late 
period, while warm temperatures had a more neg-
ative effect, compared to the 1982–2013 period. The 
model with a linear bottom temperature–period 
interaction (Model 3) provided the worst fit. 
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Model                      R2             AIC           ΔAIC      Akaike     RMSE       Effect of      Temperature           Effect of temperature  
                                                                                      weight                            depth                 term                                         
 
Model 1:              0.299     45605.88      20.41           0              1.52        F = 91.62,      Main effect             F = 78.80, p < 0.0001 
non-linear                                                                                                       p < 0.0001 
Model 2:               0.300     45612.97      27.50           0              1.52       F = 92.294,          Factor        Early: F = 78.407, p < 2 × 10–16 
non-stationary                                                                                              p < 0.0001        smoothed          Late: F = 7.918, p < 0.0001 
non-linear                                                                                                                                  interaction 
Model 3:              0.205     46077.07      491.6           0              1.62        F = 110.8,       Interaction              F = 36.48, p < 0.0001 
non-stationary                                                                                               p < 0.0001 
linear 
Model 4:              0.320     45585.46          0               1              1.51        F = 92.40,             Time                  F = 17.759,  p < 0.0001 
time-varying                                                                                                   p < 0.0001          varying               (interaction with year)

Table 1. Comparison of model fit for the 4 alternative models compared for Objective 1. AIC: Akaike information criterion;  
RMSE: root mean square error from leave-one-out cross validation
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Fig. 2. The partial effect of bottom temperature 
on pollock log(CPUE + 1) from models fit with 
(A) a single non-linear effect of local bottom 
temperature (Model 1), (B) a non-linear interac-
tion be tween bottom temperature and period 
(Model 2) (early period: 1982–2013; late warm 
period: 2014–2019), and (C) a time-varying ef-
fect of bottom temperature (Model 4). In (C), 
colors represent the strength of the effect, with 
strong positive effects in yellow transitioning 
towards strong negative effects in blue. Shading 
in (A,B): 95% CIs. CPUE: catch per unit effort
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In all models, bottom depth had a significant non-
linear effect on CPUE (Table 1). For all 4 models 
(Fig. 3), CPUE increased with increasing depth from 0 
to 100 m then decreased between depths of about 
100–130 m. Beyond about 130 m, uncertainty in -
creased as the effect on CPUE became slightly more 
positive. Given that the effect of bottom depth was 
very similar across models and because we include it 
primarily to account for the known effect of bottom 
depth on pollock CPUE, we focus the rest of the paper 
on the results for temperature effects that address the 
main goals of our study. 

Our second objective was to assess the ability of 
models of local pollock abundance fit to data from the 
SEBS to predict pollock abundance in the NEBS. Out-
of-sample predictions of pollock CPUE generally 
 captured relative spatial patterns in CPUE in the 
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Fig. 3. The partial effect of bottom depth on eastern Bering 
Sea pollock catch per unit effort (log(CPUE + 1)) from 
models with a single, non-linear response to local bottom  

temperature (Model 1). Shading: 95% CIs
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Fig. 4. Model skill for pollock distribution in the north-
eastern Bering Sea during (A) 1982–1991 and (B) 
2010–2021. Plots compare actual pollock log(CPUE + 
1) for individual bottom trawl survey stations with 
model-predicted log(CPUE + 1). Warmer colors are 
higher values of log(CPUE + 1), cooler colors are lower.  

CPUE: catch per unit effort
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NEBS, although not in all areas in all years (Fig. 4). 
However, the model did a poor job predicting the 
magnitude of catches in the NEBS in recent years. 
The model overestimated CPUE in the NEBS in 
2010, whereas in 2017–2019 and to some extent in 
2021, the model strongly underpredicted CPUE 
(Fig. 5). RMSE for each year was generally lower in 
earlier or cooler years (RMSE1982 = 0.844, RMSE1988 = 
1.08, RMSE1991 = 1.23, RMSE2010 = 1.03), except 1985 
(RMSE1985 = 1.66), and higher in the warm late 2010s 
(RMSE2017 = 1.87, RMSE2018 = 1.44, RMSE2019 = 1.56, 
and RMSE2021 = 1.23), although late years tended to 
have higher correlations among predicted and ob -
served CPUE (Fig. 5). In short, the model built on data 
from the SEBS successfully predicted where high and 
low CPUE would occur in the NEBS, but overesti-
mated CPUE in cold years and underestimated CPUE 
in warm years. 

The sensitivity tests supported the results from the 
models discussed above. Results based on a subset 

of the data spanning a narrower temperature range 
were generally consistent with those based on the 
entire dataset. The time-varying model (Model 4) 
provided the best fit, followed by the nonlinear 
model (Model 1, ΔAIC = 25.5), and the estimated 
effects of bottom temperature were very similar to 
the effects estimated for the entire dataset. Rerun-
ning the linear interaction model with all possible 
breakpoints generally did not identify a better break-
point than 2014 (i.e. most potential breakpoints were 
not better than 2014 by ΔAIC of 4 or more), with 1 
interesting exception. The best breakpoint identified 
was 1988 (ΔAIC = –19.4 relative to the model with-
out a breakpoint), and 1989 (ΔAIC = –9.55), 1990 
(ΔAIC = –13.2), 1991 (ΔAIC = –7.52), and 2012 
(ΔAIC = –2.62) were also better than 2014 (ΔAIC = 
7.09). When including only 6 years of data after each 
breakpoint, only 1988 (ΔAIC = –12.0) was meaning-
fully better than 2014. The 1988 and 1989 break-
points correspond to a well-documented regime shift 

Fig. 5. 1:1 plot comparing actual catch per unit effort (log(CPUE + 1)) on the y-axis with model-predicted CPUE on the x-axis. 
Points that fall along the 1:1 line (black line) show good agreement between predicted and actual results, whereas points that fall 
above the 1:1 line had higher actual CPUE than the model predicted, and vice versa. The further an individual point is from the 
1:1 line, the worse the agreement between predicted and actual catch for that sampling point. We also fit a linear model (blue) to 
the observed vs. predicted to aid in interpretation. If the slope of the linear model is similar to the slope of the 1:1 line, we would 
interpret that the model preforms similarly well at different catch levels. Years with linear model fits that fall entirely above the 
1:1 line represent years with generally higher catch than predicted, and vice versa. Boxed numbers: correlations between  

predicted and observed values for each year
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in the North Pacific. While it is beyond the scope of 
our project, future work investigating possible non-
stationarity in the bottom temperature–pollock 
CPUE relationship surrounding the 1988/89 event 
might be fruitful. 

3.2.  Pollock CPUE by length 

Our third objective was to determine whether the 
local abundances of different size classes responded 
differently to warm temperatures in the warm 2014–
2019 period. As was the case for the overall CPUE 
model, CPUE by size class (5 length bins) was gen-
erally best fit by models that included a time-varying 
effect of bottom temperature (Table 2, Fig. 6). Data 
from the smallest size bin (0–20 cm) were better fit by 
a single, dome-shaped effect of temperature (Model 
1). Data from the largest size bin (>50 cm) were simi-
larly well fit by either a temperature-by-period inter-
action (Model 2) or a temperature-by-year interaction 
(Model 4, ΔAIC = 0.284), favoring the more parsimo-
nious Model 2. Overall, the response to temperature 
was similar across size classes, though perhaps 
slightly different for the smallest and largest size bins. 

CPUE within the preferred temperature range was 
generally higher for the larger length bins, as would 

be expected given that the bottom trawl survey has a 
higher selectivity for larger fish and more biomass 
accumulates in the larger length bins. In addition, the 
dome shape of the bottom temperature term became 
much more pronounced as body size increases, sug-
gesting that larger fish have a stronger affinity for or a 
better capacity to stay within a preferred temperature 
range. These results, along with the fact that the 
models for the largest length bins were more similar 
to the overall (all size classes) model than were those 
for the smaller length bins, suggest that the overall 
response to temperature is largely being driven by 
fish larger than 40 cm. 

3.3.  Community 

To address our fourth objective (to evaluate the ev-
idence for non-stationarity in the spatial association 
between the abundance of pollock and other common 
species), we compared the extent of spatial as so ci -
ation between pollock and other species in the early 
and late periods (Fig. 7). After controlling for the FDR 
to account for multiple tests, 3 of 9 species showed a 
significantly different correlation with pollock in the 
early versus late period: Alaska plaice (t20.2 = –5.33, 
p = 3.15 × 10–5), Tanner crab (t7.08 = 3.22, p = 0.014), 

and Pacific halibut (t9.00 = 2.95, p = 
0.016). A weakly negative correlation 
(mean = –0.08) be tween plaice and 
pollock in the early period shifted to a 
weak positive correlation (mean = 
0.13) in the late period, whereas a 
weakly negative correlation be tween 
halibut and pollock in the early period 
(mean = –0.072) became more neg-
ative in the late period (mean = 
–0.238). The positive correlation be -
tween Tanner crab and pollock (mean = 
0.173) disappeared in the late period 
(mean = –0.068). Correlations be-
tween pollock and the other 6 species 
did not differ significantly between 
periods. Overall, there appears to be 
some evidence that the magnitude 
and/or sign of spatial associations be -
tween pollock and some other common 
SEBS species has changed, reflecting 
an increased association with a more 
northern species (Alaska plaice) and 
weaker associations with 2 more south-
ern species (halibut and Tanner crab) in 
the 2014–2019 warm period. 
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Length bin (cm)      Model           R2              AIC            ΔAIC     Akaike weight 
 
0–20                                1              0.048       12015.86            0                  0.975 
                                         2              0.049       12023.77         7.91               0.019 
                                         3              0.025       12071.42         55.6                   0 
                                         4              0.055       12026.02         10.2               0.006 
20–30                             1              0.116       18596.10         34.5                   0 
                                         2              0.119       18564.16         2.60               0.215 
                                         3              0.071       18728.21          167                    0 
                                         4              0.149       18561.56            0                  0.785 
30–40                             1              0.211       35191.85         70.0                   0 
                                         2              0.212       35137.65         15.8                   0 
                                         3              0.179       35330.45          209                    0 
                                         4              0.242       35121.83            0                    1.0 
40–50                             1              0.347       42406.94          106                    0 
                                         2              0.341       42323.57         22.9                   0 
                                         3              0.256       42627.21          327                    0 
                                         4              0.399       42300.63            0                      1 
>50                                   1              0.183       39314.40         51.6                   0 
                                         2              0.189       39262.77            0                  0.536 
                                         3              0.104       39762.26          499                    0 
                                         4              0.210       39263.05        0.284              0.464

Table 2. Comparison of model fit for the alternative models for each length bin 
compared for Objective 3. Models compared include the non-linear (Model 1), 
non-stationary non-linear model (Model 2), non-stationary linear (Model 3),  

and time varying (Model 4) models. AIC: Akaike information criterion
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4.  DISCUSSION 

The relationship between local bottom temperature 
and pollock CPUE through time has shifted signifi-
cantly but subtly through time. The bottom tempera-
ture–local abundance relationship was generally 
dome-shaped, with both very high and very low tem-
peratures correlating with low CPUE (Fig. 2). Pollock 

CPUE data were best fit by a time-varying model 
(Model 4, Fig. 2C), but the change through time was a 
gradual shift towards less negative impacts of cold 
temperatures later in the time series rather than a 
sharp transition. This model, developed based on data 
for the SEBS, had some predictive skill in the NEBS, 
capturing general spatial patterns of CPUE but under-
predicting CPUE during warm years. In ad dition, ev-
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Fig. 6. The partial effect of bottom temperature on 
log-transformed catch per unit effort (CPUE) for 
pollock from the best fit general additive mixed 
models for each body length bin, (A) 0–20 cm, (B) 
20–30 cm, (C) 30–40 cm, (D) 40–50 cm, and (E) 
>50 cm, each modeled separately. (A) shows the 
partial effect of bottom temperature on log(CPUE + 
1) from Model 1 (solid line) with confidence lines at 
5 standard deviations (dashed lines). (B–E) show 
the partial effect of bottom temperature-by-year in-
teraction. Colors represent the strength of the ef-
fect, with strong positive effects in yellow tran-
sitioning towards strong negative effects in blue. 
Panels conditional on median values of other model  

terms (bottom depth, location, and day of year)
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idence was limited that recent warm temperatures re-
vealed non-stationarity in community interactions, 
given that the extent of spatial correlation between 
pollock and several prey, predator, and competitor 
species was significantly different following the onset 
of warm conditions in 2014 in only 3 of 9 cases (Alaska 
plaice, Tanner crab, and Pacific halibut). Overall, our 
results suggest that although climate and species dis-
tributions have changed rapidly in the EBS, there is 
limited evidence for non-stationary relationships be-
tween pollock and temperature, or in associations be-
tween pollock and other common demersal species. 

4.1.  Pollock CPUE 

Across models, there was generally a dome-shaped 
effect of bottom temperature, with CPUE increasing 
with increasing temperature to a certain point, be -
yond which warmer temperatures resulted in declin-

ing CPUE. This result is not surprising, given exten-
sive evidence that species have thermal performance 
curves that influence organismal performance and 
fitness (Kingsolver 2009). The best fit model (Model 4, 
Fig. 2C) showed the dome shape changing though 
time, with later (2014–2019) warm years showing a 
lower magnitude negative impact of cold tempera-
tures on CPUE. Cooler temperatures were observed 
less frequently during the later warm years, but were 
generally associated with higher CPUE. Together 
with recent documentation of dramatic northward 
shifts in the distribution of pollock (Stevenson & 
Lauth 2019, Eisner et al. 2020, O’Leary et al. 2020), our 
results suggest that temperatures in the EBS during 
the warm 2014–2019 period could have exceeded 
pollock’s thermal optimum, causing them to seek out 
areas of cooler water or avoid areas of warm water by 
moving northward during summer. Range shifts in 
response to changing climate have been widely doc-
umented (Parmesan & Yohe 2003, Perry et al. 2005, 
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Fig. 7. Distribution of within-year correlations between pollock and other Bering Sea species across sampling stations plotted for 
early vs. late period to visualize whether the extent of correlation in log(CPUE + 1) between pollock and other species has 
changed. The correlations differed significantly between periods for 3 comparisons: pollock and Alaska plaice, pollock and Pacific 
halibut, and pollock and Tanner crab. Smaller grey points: annual correlations, jittered for visibility; larger black points: boxplot 
outliers. The zero line (red) would indicate no correlation between pollock and the other species; points falling above (below) the 
zero line indicate positive (negative) correlations. Thick center line on each box: median; upper and lower hinges: first and third 
quartiles; whiskers: the largest (upper) or smallest (lower) value at least 1.5 × the interquartile range. CPUE: catch per unit effort
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Pinsky et al. 2020) and present a major challenge for 
fisheries management (Cheung 2018). 

The weaker support for temperature effects interact-
ing with period suggests that the exceptionally warm 
conditions that occurred beginning in 2014 were not 
associated with a sharp transition in the relationship 
between local pollock abundance and temperature. 
From a practical standpoint, our results suggest that 
accounting for potential temporal non-stationarity in 
pollock–temperature relationships in the Bering Sea 
might not be of high priority. Several recent studies on 
pollock have included dome-shaped relationships 
with temperature (e.g. Thorson et al. 2017, Grüss et al. 
2020). While our re sults suggest that this relationship 
has shifted over the range of temperature conditions 
that have been observed to date, it does not appear to 
have undergone any sharp transitions that might lead 
to major breakdowns in predictive ability. However, 
allowing these dome-shaped temperature relation-
ships to change through time might be prudent, espe-
cially if the relationship continues to change in future 
climate conditions. 

A potential concern as pollock shift their distribu-
tion into new habitats in the NEBS is that patterns in 
their local abundance could differ in response to 
novel environmental conditions or community inter-
actions found in the NEBS but not in the SEBS. It was 
encouraging that the model parameterized for the 
SEBS did have predictive skill in the NEBS. The 
model was able to generally identify areas of high or 
low CPUE during the warm period in the NEBS 
(Fig. 4), although predictions tended to underesti-
mate CPUE compared to actual observations from 
2017–2019 and in 2021 and to overestimate CPUE in 
2010. Pollock tend to aggregate along the edges of the 
cold pool at 2°C (Kotwicki et al. 2005), as evident in a 
peak in CPUE (Fig. 2), but clearly tolerate cooler 
waters with relatively high densities extending into 
the cold pool in at least some years (Ianelli et al 2020). 
However, the extensive cold pool in 2010 (Kotwicki & 
Lauth 2013) may have limited summer feeding migra-
tions into the northern Bering Sea. In contrast, the 
cold pool was much smaller or absent during the 
warm years from 2017–2019 and 2021, promoting the 
northward migration of pollock to stay within their 
preferred temperature range. Pollock CPUE in the 
NEBS in these years may have been higher than pre-
dicted because a large proportion of the EBS pollock 
population shifted northward (Stevenson & Lauth 
2019), presumably to avoid warm temperatures on the 
southern shelf. The surface area of the NEBS shelf is 
smaller than that of the SEBS, which could have 
resulted in higher than predicted CPUE as pollock 

crowded into more favorable habitats over a relatively 
smaller area on the NEBS shelf. Taken together, it 
appears that the environmental factors that control 
pollock local abundances and distribution in the SEBS 
generally hold in the NEBS and will be useful covari-
ates in modeling future pollock distribution through-
out, and potentially beyond, the current SEBS–NEBS 
survey area. 

Other factors could contribute to the model’s under-
estimation of CPUE in the NEBS during warm years. 
First, the NEBS and SEBS have different oceano -
graphic features. Our model included a smoothed bot-
tom depth term, which showed highest CPUE at 
depths around 100 m in the SEBS corresponding to a 
prominent frontal structure between 2 oceanographic 
domains (Aydin & Mueter 2007). The NEBS is gen-
erally shallower than the SEBS, with a maximum depth 
of about 80 m. It seems likely that the model could be 
failing to predict high CPUE because bottom depth is 
generally shallower than the optimal depths for 
pollock in the SEBS. Second, we set the year random 
effect to its predicted value when predicting NEBS 
CPUEs, which assumes year-specific deviations in 
mean CPUE estimates for the SEBS apply to the NEBS. 
However, we expect many or most of the pollock 
caught in the NEBS moved there from the SEBS. Thus, 
years of high catch in the NEBS are likely low catch 
years in the SEBS, which could partially ex plain why 
our model underpredicted the magnitude of CPUE in 
the NEBS. Third, our models were unable to include 
other variables that could influence pollock distribu-
tions, particularly the cold pool. Pollock avoid the cold 
pool (Kotwicki et al. 2005, Mueter & Litzow 2008, Kot-
wicki & Lauth 2013) and including indices that 
measure cold pool extent (annual or spatial) might im-
prove future models’ predictive ability in the NEBS. 
Finally, an unexplored consideration is that pollock 
have likely not only moved into the portion of the 
NEBS covered by NOAA survey efforts but also into 
the Russian portion of the NEBS (Eisner et al. 2020, 
O’Leary et al. 2022). While movement out of the 
survey area would not explain our model’s tendency 
to underpredict local abundances in the NEBS, it will 
be an important consideration as pollock shift their 
distribution in response to warming. 

4.2.  Pollock CPUE by length 

The strongly non-linear relationship between bot-
tom temperature and pollock CPUE appears to be 
largely driven by fish greater than 40 cm, which have 
higher CPUE by biomass in the bottom trawl survey 
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than smaller pollock. Indeed, caution is likely war-
ranted in interpreting results for the smallest size 
classes, whose distribution may not be well repre-
sented by the bottom trawl survey due to gear selec-
tivity and because of their greater tendency to occur 
off bottom compared to larger fish (Kotwicki et al. 
2015). Overall, length classes differed primarily in the 
amplitude of the response — the CPUE of all length 
classes peaked around 2°C and decreased at colder or 
warmer conditions (Fig. 6) — rather than a fundamen-
tal difference in the shape of the response among size 
classes. These consistent relationships across size 
classes contrast with a recent study that shows age-
specific impacts of sea surface temperature (SST) on 
EBS pollock weight-at-age (Oke et al. 2022). 

4.3.  Community 

Species do not respond to climate change in a 
vacuum. Different species respond differently to climate 
change, leading to shifts in community dynamics, in -
cluding new predator–prey interactions, mis-matches 
between predators and prey, and changes in competi-
tion (Williams & Jackson 2007, Urban et al. 2012). We 
expected that the northward movement of many species 
from the SEBS into the NEBS (Stevenson & Lauth 2019, 
O’Leary et al. 2020) might result in different spatial as-
sociations between pollock and other species in the late 
(post-2014) period compared to the relatively cooler 
earlier period, with implications for pollock CPUE. 

Contrary to expectations, we found that spatial as-
sociations between pollock and other species 
changed significantly between the early and late 
period in only 3 of 9 comparisons (Alaska plaice, 
Tanner crab, and Pacific halibut; Fig. 7). However, our 
ability to detect such shifts could be limited by the 
relatively few years of observation in the warm 2014–
2019 period. Mean correlations between the local 
abundances of species across space were typically 
weak to moderate (|r| from 0 to 0.5). One exception 
was the moderately strong positive correlation be-
tween pollock and Pacific cod (mean: r = 0.47 in early 
period), which ranged from 0.21 to 0.72 in all but 
1 year, suggesting similar habitat requirements or 
similar responses to dynamic environmental drivers 
across both periods. Interestingly, the only year that 
Pacific cod and pollock were not strong ly correlated 
was 2014, the first year in the warm 2014–2019 
period, suggesting the possibility that one species 
could have shifted into the NEBS faster than the 
other, leading to a disconnect between their spatial 
distributions in the SEBS. The lack of a survey in the 

NEBS in 2014 makes this hypothesis difficult to test. 
We did not investigate the dynamics of other prey 
communities, such as zooplankton, which are the 
main prey of smaller pollock and could therefore be 
important, especially given the sometimes strong bot-
tom-up control on pollock recruitment predicted by 
the oscillating control hypothesis (Hunt et al. 2002, 
2011, Mueter et al. 2006). However, observations of 
high pollock condition during warm years (Boldt et al. 
2015), including 2016–2019 (Grüss et al. 2020, 2021), 
suggest that prey is generally not limiting. 

The weak evidence for non-stationarity in pollock–
temperature relationships and limited evidence for 
non-stationary pollock–community relationships in 
the EBS contrasts with extensive evidence for stark 
shifts or breakdowns in climate–biology and climate–
climate relationships in the Gulf of Alaska associated 
with a 1988–1989 regime shift. Non- stationary rela-
tionships with major climate indices have been de-
tected for many North Pacific species (Litzow et al. 
2018, 2019, 2020a,b, Puerta et al. 2019), including pol-
lock (Litzow et al. 2019, Puerta et al. 2019). However, 
even in systems like the Gulf of Alaska where non-
 stationarity is common, not all fishes show non-
 stationary climate–biology relationships. Of the 9 
species investigated by Puerta et al. (2019), herring 
Clupea pallasii, sablefish Anoplopoma fimbria, and ar-
rowtooth flounder Atheresthes stomias all showed sta-
tionary relationships between productivity and SST 
across the 1988–1989 regime shift. One possible ex-
planation for the lack of non-stationarity detected in 
our analyses could be that, unlike the more commonly 
considered 1988/1989 regime shift, the effects of a pu-
tative shift in temperatures that started around 2014 
were too recent to detect. In addition, future studies 
might better reveal the extent of non-stationarity (or 
lack thereof) using methods that consider community-
level dynamics, rather than multiple comparisons of 
species pairs. We note that a lack of non-stationarity 
for pollock–temperature relationships in the SEBS 
does not imply that other climate–biology relation-
ships are stationary across the 2014 shift. 

4.4.  Implications and conclusions 

As ecological novelty increases, due to either novel 
climate conditions or species interactions, the pre-
dictability of population responses is generally ex -
pected to decrease (Radeloff et al. 2015), which could 
present a challenge for fisheries management. Efforts 
to include ecosystem information in management 
decision making and especially stock assessment 
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models must address the potential for non-stationarity 
in climate–biology relationships, which could lead to 
weakened model performance in the future. For ex-
ample, well-documented environment–recruit ment 
relationships are known to frequently break down 
when tested with new data (Myers 1998, McClatchie 
et al. 2010). For SEBS pollock, our results revealed 
mixed evidence for temporal non-stationarity under 
the climate conditions that have been ob served to 
date, with little evidence of non-stationarity in pol-
lock–community relationships, but a gradual shift in 
local pollock abundance–temperature relationships. 
This limited evidence for non-stationarity shows that 
non-stationary responses are not ubiquitous, even in 
the face of rapid climate change. As species shift their 
distributions in response to climate change, our study 
could provide a template for evaluations of the extent 
of non-stationarity in local abundance patterns to 
help scientists and managers understand whether 
species will be associated with similar habitat features 
in areas of newly expanded distributions. These sorts 
of evaluations will be im portant as assessment authors 
and management bodies work towards ecosystem-
based fisheries management. Future work on pollock 
dynamics in the NEBS and the warming SEBS, as well 
as the dynamics of their predators, competitors, and 
prey, will help to determine the extent to which 
models parameterized for pollock dynamics in the 
SEBS can be extrapolated into the NEBS and beyond 
as the Bering Strait region continues to change. 

Of course, our study considered several years of cli-
mate conditions that were considered highly improb-
able just a decade ago (Stabeno et al. 2012). What will 
happen to EBS climate in the next few decades re -
mains to be seen, but further warming could still re veal 
non-stationary processes. Our results showed some 
mixed evidence for temporal non-stationarity, but 
overall suggest that temporal non-stationarity does 
not currently appear to be of high concern for EBS pol-
lock. Testing for non- stationarity could help identify 
other circumstances or stocks for which  climate–
biology relationships have been either largely stable or 
shifted in ways that can be relatively easily accounted 
for statistically, which would encourage and facilitate 
the incorporation of environmental variables into the 
stock assessment process. As the North Pacific enters 
novel climate conditions, non-stationarity could be 
common but not ubiquitous, or could be delayed for 
certain areas or processes. Future inves tigations of 
 climate–climate and climate–biology  relationships 
will help determine the extent to which non-stationar-
ity does or does not complicate our understanding of 
ecosystem dynamics in the EBS. 

Acknowledgements. We thank J. Thorson, C. Cunningham, 
and C. O’Leary for helpful discussions. We are very grateful 
to the individuals and agencies who collected the data used 
in the current paper, especially those who have contributed 
to the collection and curation of the NOAA bottom trawl sur-
vey data which formed the basis for our study. We thank the 
editors and 3 reviewers for helpful comments that improved 
the paper. Work on this paper was conducted on Alutiiq/
Sugpiaq land home to the Sun’aq Tribe of Kodiak and on Lin-
gít Aaní home to the Áak’w Kwáan. Funding for this project 
was provided by the Pollock Conservation Cooperative Re -
search Center (PCCRC Project #19-02) and NOAA through 
the Saltonstall-Kennedy Grant Program (award #NA18NMF
4270202). 

 
 

LITERATURE CITED 
 

Alabia ID, Molinos JG, Hirawake SST, Hirata T, Mueter FJ 
(2018) Distribution shifts of marine taxa in the Pacific 
Arctic under contemporary climate changes. Divers Dis-
trib 24: 1583–1597 

Araujo MB, New M (2006) Ensemble forecasting of species 
distributions. Trends Ecol Evol 22: 42–47  

Aydin K, Mueter F (2007) The Bering Sea — a dynamic food 
web perspective. Deep Sea Res II 54: 2501–2525  

Benjamini Y, Hochberg Y (1995) Controlling the false discov-
ery rate:  a practical and powerful approach to multiple 
testing. J R Stat Soc 57: 289–300  

Boldt J, Rooper C, Hoff J (2015) Eastern Bering Sea groundfish 
condition. In:  Zador S (ed) Ecosystem considerations 2015:  
status of Alaska’s marine ecosystems. North Pacific Fish-
ery Management Council, Anchorage, AK, p 182–190 

Brown JH, Gillooly JF, Allen AP, Savage VM, West GB 
(2004) Toward a metabolic theory of ecology. Ecology 85: 
1771–1789  

Burnham KP, Anderson DR (2002) Model selection and 
multi model inference:  a practical information-theoretic 
ap proach. Springer, New York, NY 

Cheung WWL (2018) The future of fishes and fisheries in the 
changing oceans. J Fish Biol 92: 790–803  

Ciannelli L, Brodeur RD, Swartzman GL, Salo S (2002) Physi-
cal and biological factors influencing the spatial distribu-
tion of age-0 walleye pollock (Theragra chalcogramma) 
around the Pribilof Islands, Bering Sea. Deep Sea Res II 
49: 6109–6126  

Cote J, Brodin T, Fogarty S, Sih A (2017) Non-random dis-
persal mediates invader impacts on the invertebrate com-
munity. J Anim Ecol 86: 1298–1307  

Danielson SL, Ahkinga O, Ashjian C, Basyuk E and others 
(2020) Manifestation and consequences of warming and 
altered heat fluxes over the Bering and Chukchi Sea con-
tinental shelves. Deep Sea Res II 177: 104781  

Di Lorenzo E, Mantua N (2016) Multi-year persistence of the 
2014/2015 North Pacific marine heatwave. Nat Clim 
Change 6: 1042–1048  

Duffy-Anderson JT, Stabeno P, Andrews AGI, Cieciel K and 
others (2019) Responses of the Northern Bering Sea and 
Southeastern Bering Sea pelagic ecosystems following 
record-breaking low winter sea ice. Geophys Res Lett 46: 
9833–9842  

Eisner LB, Zuenko YI, Basyuk EO, Britt LL and others (2020) 
Environmental impacts on walleye pollock (Gadus chal-
cogrammus) distribution across the Bering Sea shelf. 
Deep Sea Res II 181: 104881  

https://doi.org/10.1111/ddi.12788
https://doi.org/10.1016/j.tree.2006.09.010
https://doi.org/10.1016/j.dsr2.2007.08.022
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1890/03-9000
https://doi.org/10.1111/jfb.13558
https://doi.org/10.1016/j.dsr2.2020.104881
https://doi.org/10.1029/2019GL083396
https://doi.org/10.1038/nclimate3082
https://doi.org/10.1016/j.dsr2.2020.104781
https://doi.org/10.1111/1365-2656.12734
https://doi.org/10.1016/S0967-0645(02)00336-3


Oke et al.: Pollock local abundances and temperature

FAO (Food and Agriculture Organization of the United 
Nations) (2023) Fishery and aquaculture statistics —
yearbook 2020. FAO yearbook of fishery and aquaculture 
statistics. FAO, Rome  

Fasiolo M, Nedellec R, Goude Y, Wood SN (2020) Scalable 
visualization methods for modern generalized additive 
models. J Comput Graph Stat 29:78–86 

Fitzpatrick MC, Hargrove WW (2009) The projection of spe-
cies distribution models and the problem of non-analog 
climate. Biodivers Conserv 18: 2255–2261  

Frölicher TL, Fischer EM, Gruber N (2018) Marine heat-
waves under global warming. Nature 560: 360–364  

Grebmeier JM, Overland JE, Moore SE, Farley EV and 
others (2006) A major ecosystem shift in the Northern 
Bering Sea. Science 311: 1461–1464  

Grüss A, Gao J, Thorson JT, Rooper CN, Thompson G, Boldt 
JL, Lauth R (2020) Estimating synchronous changes in 
condition and density in eastern Bering Sea fishes. Mar 
Ecol Prog Ser 635: 169–185  

Grüss A, Thorson JT, Stawitz CC, Reum JCP, Rohan SK, 
Barnes CL (2021) Synthesis of interannual variability in spa-
tial demographic processes supports the strong influence 
of cold-pool extent on eastern Bering Sea walleye pollock 
(Gadus chalcogrammus). Prog Oceanogr 194: 102569  

Hunsicker ME, Ciannelli L, Bailey KM, Zador S, Stige LC 
(2013) Climate and demography dictate the strength of 
predator–prey overlap in a subarctic marine ecosystem. 
PLOS ONE 8: e66025  

Hunt GL, Stabeno P, Walters G, Sinclair E, Brodeur RD, 
Napp JM, Bond NA (2002) Climate change and control of 
the southeastern Bering Sea pelagic ecosystem. Deep 
Sea Res II 49: 5821–5853  

Hunt GLJ, Coyle KO, Eisner LB, Farley EV and others (2011) 
Climate impacts on eastern Bering Sea foodwebs:  a syn-
thesis of new data and an assessment of the Oscillating 
Control Hypothesis. ICES J Mar Sci 68: 1230–1243  

Huntington HP, Danielson SL, Wiese FK, Baker M and 
others (2020) Evidence suggests potential transformation 
of the Pacific Arctic ecosystem is underway. Nat Clim 
Change 10: 342–348  

Ianelli J, Kotwicki S, Honkalehto T, Holsman K, Fissel B 
(2018) Chapter 1:  Assessment of the walleye pollock 
stock in the Eastern Bering Sea. NPFMC Bering Sea and 
Aleutian Islands SAFE Report. North Pacific Fishery 
Management Council, Anchorage, AK 

Ianelli J, Fissel B, Holsman K, De Robertis A and others 
(2020) Assessment of the walleye pollock stock in the 
Eastern Bering Sea. NPFMC Bering Sea and Aleutian 
Islands SAFE Report. North Pacific Fishery Management 
Council, Anchorage, AK 

Kearney K (2021) Temperature data from the eastern Bering 
Sea continental shelf bottom trawl survey as used for 
hydrodynamic model validation and comparison. US Dep 
Commerce, NOAA Tech Memo NMFS-AFSC-415 

Kingsolver JG (2009) The well-temperatured biologist 
(American Society of Naturalists presidential address). 
Am Nat 174: 755–768  

Kotwicki S, Lauth RR (2013) Detecting temporal trends and 
environmentally-driven changes in the spatial distribu-
tion of bottom fishes and crabs on the eastern Bering Sea 
shelf. Deep Sea Res II 94: 231–243  

Kotwicki S, Buckley TW, Honkalekto T, Walters G (2005) 
Variation in the distribution of walleye pollock (Theragra 
chalcogramma) with temperature and implications for 
seasonal migration. Fish Bull 103: 574–587 

Kotwicki S, Horne JK, Punt E, Ianelli JN (2015) Factors affect-
ing the availability of walleye pollock to acoustic and bot-
tom trawl survey gear. ICES J Mar Sci 72: 1425–1439  

Laufkötter C, Zscheischler J, Frölicher TL (2020) High-
impact marine heatwaves attributable to human-induced 
global warming. Science 369: 1621–1625  

Lauth RR, Dawson EJ, Conner J (2019) Results of the 2017 
eastern and northern Bering Sea continental shelf bot-
tom trawl survey of groundfish and invertebrate fauna. 
US Dep Commerce, NOAA Tech Memo NMFS-AFSC-
396 

Litzow MA, Ciannelli L, Puerta P, Wettstein JJ, Rykaczewski 
RR, Opiekun M (2018) Non-stationary climate–salmon 
relationships in the Gulf of Alaska. Proc R Soc B 285: 
20181855 

Litzow MA, Ciannelli L, Puerta P, Wettstein JJ, Rykaczewski 
RR, Opiekun M (2019) Nonstationary environmental and 
community relationships in the North Pacific Ocean. 
Ecology 100: e02760  

Litzow MA, Hunsicker ME, Ward EJ, Anderson SC and 
others (2020a) Evaluating ecosystem change as Gulf of 
Alaska temperature exceeds the limits of preindustrial 
variability. Prog Oceanogr 186: 102393  

Litzow MA, Malick MJ, Bond NA, Cunningham CJ (2020b) 
Quantifying a novel climate through changes in PDO-
 climate and PDO-salmon relationships. Geophys Res Lett 
47: e2020GL087972  

Marsh JM, Mueter FJ, Thorson JT, Britt L, Zador S (2020) 
Shifting fish distributions in the Bering Sea [in:  Richter-
Menge J, Druckenmiller ML (eds) State of the climate in 
2019:  the Arctic]. Bull Am Meteorol Soc 101: S254–S256  

McClatchie S, Goericke R, Auad G, Hill K (2010) Re-assess-
ment of the stock–recruit and temperature–recruit rela-
tionships for Pacific sardine (Sardinops sagax). Can J Fish 
Aquat Sci 67: 1782–1790  

McIlroy D, Brownrigg R, Minka TP, Bivand R (2020) mapproj:  
map projections, version 1.2.7. https: //cran.r-project.
org/package=mapproj  

Mueter FJ, Litzow MA (2008) Sea ice retreat alters the bio -
geography of the Bering Sea continental shelf. Ecol Appl 
18: 309–320  

Mueter FJ, Ladd C, Palmer MC, Norcross BL (2006) Bottom-
up and top-down controls of walleye pollock (Theragra 
chalcogramma) on the Eastern Bering Sea shelf. Prog 
Oceanogr 68: 152–183  

Myers RA (1998) When do environment–recruitment corre-
lations work? Rev Fish Biol Fish 8: 285–305  

Oke KB, Mueter FJ, Litzow MA (2022) Warming leads to 
opposite patterns in weight-at-age for young versus old 
age classes of Bering Sea walleye pollock. Can J Fish 
Aquat Sci 79: 1655–1666  

O’Leary CA, Thorson JT, Ianelli JN, Kotwicki S (2020) 
Adapting to climate-driven distribution shifts using 
model-based indices and age composition from multiple 
surveys in the walleye pollock (Gadus chalcogrammus) 
stock assessment. Fish Oceanogr 29: 541–557  

O’Leary CA, DeFilippo LB, Thorson JT, Kotwicki S and 
others (2022) Understanding transboundary stocks’ 
availability by combining multiple fisheries-independent 
surveys and oceanographic conditions in spatiotemporal 
models. ICES J Mar Sci 79: 1063–1074  

Oliver ECJ, Donat MG, Burrows MT, Moore PJ and others 
(2018) Longer and more frequent marine heatwaves over 
the past century. Nat Commun 9: 1324  

Parmesan C, Yohe G (2003) A globally coherent fingerprint 

157

https://doi.org/10.4060/cc7493en
https://doi.org/10.1080/10618600.2019.1629942
https://doi.org/10.1007/s10531-009-9584-8
https://doi.org/10.1038/s41586-018-0383-9
https://doi.org/10.1126/science.1121365
https://doi.org/10.3354/meps13213
https://doi.org/10.1016/j.pocean.2021.102569
https://doi.org/10.1371/journal.pone.0066025
https://doi.org/10.1016/S0967-0645(02)00321-1
https://doi.org/10.1093/icesjms/fsr036
https://doi.org/10.1038/s41558-020-0695-2
https://doi.org/10.1086/648310
https://doi.org/10.1016/j.dsr2.2013.03.017
https://doi.org/10.1093/icesjms/fsv011
https://doi.org/10.1126/science.aba0690
https://doi.org/10.1038/nature01286
https://doi.org/10.1038/s41467-018-03732-9
https://doi.org/10.1093/icesjms/fsac046
https://doi.org/10.1111/fog.12494
https://doi.org/10.1139/cjfas-2021-0315
https://doi.org/10.1023/A%3A1008828730759
https://doi.org/10.1016/j.pocean.2006.02.012
https://doi.org/10.1890/07-0564.1
https://cran.r-project.org/package=mapproj
https://doi.org/10.1139/F10-101
https://doi.org/10.1175/BAMS-D-20-0086.1
https://doi.org/10.1029/2020GL087972
https://doi.org/10.1016/j.pocean.2020.102393
https://doi.org/10.1002/ecy.2760
https://doi.org/10.1098/rspb.2018.1855


Mar Ecol Prog Ser 749: 141–158, 2024

of climate change impacts across natural systems. Nature 
421: 37–42  

Perry AL, Low PJ, Ellis JR, Reynolds JD (2005) Climate 
change and distribution shifts in marine fishes. Science 
308: 1912–1916  

Pinsky ML, Selden RL, Kitchel ZJ (2020) Climate-driven 
shifts in marine species ranges:  scaling from organisms to 
communities. Annu Rev Mar Sci 12: 153–179  

Puerta P, Ciannelli L, Rykaczewski RR, Opiekun M, Litzow 
MA (2019) Do Gulf of Alaska fish and crustacean popula-
tions show synchronous non-stationary responses to 
 climate? Prog Oceanogr 175: 161–170  

R Core Team (2021) R:  a language and environment for statis-
tical computing. R Foundation for Statistical Computing, 
Vienna 

Radeloff V, Williams JW, Bateman BL, Burke KD and others 
(2015) The rise of novelty in ecosystems. Ecol Appl 25: 
2051–2068  

Rohan SK, Barnett LAK, Charriere N (2022) Evaluating 
approaches to estimating mean temperatures and cold 
pool area from Alaska Fisheries Science Center bottom 
trawl surveys of the eastern Bering Sea. US Dep Com-
merce, NOAA Tech Memo NMFS-AFSC-456 

Siddon EC, Kristiansen T, Mueter FJ, Holsman KK, Heintz 
RA, Farley EV (2013) Spatial match-mismatch between 
juvenile fish and prey provides a mechanism for recruit-
ment variability across contrasting climate conditions in 
the eastern Bering Sea. PLOS ONE 8: e84526  

Simpson GL (2022) gratia:  graceful ggplot-based graphics 
and other functions for GAMs fitted using mgcv. https: //
cran.r-project.org/package=gratia  

South A (2017) rnaturalearth:  world map data from natural 
earth. https: //cran.r-project.org/package=rnaturalearth  

Spencer PD, Holsman KK, Zador S, Bond NA, Mueter FJ, 
Hollowed AB, Ianelli JN (2016) Modelling spatially 
dependent predation mortality of eastern Bering Sea 
walleye pollock, and its implications for stock dynamics 
under future climate scenarios. ICES J Mar Sci 73: 
1330–1342  

Stabeno PJ, Farley EV, Kachel NB, Moore S and others (2012) 
A comparison of the physics of the northern and southern 
shelves of the eastern Bering Sea and some implications 
for the ecosystem. Deep Sea Res II 65–70: 14–30  

Stevenson DE, Lauth RR (2019) Bottom trawl surveys in the 
northern Bering Sea indicate recent shifts in the distribu-
tion of marine species. Polar Biol 42: 407–421  

Thorson JT (2019) Measuring the impact of oceanographic 
indices on species distribution shifts:  the spatially vary-
ing effect of cold-pool extent in the eastern Bering Sea. 
Limnol Oceanogr 64: 2632–2645  

Thorson JT, Ianelli J, Kotwicki S (2017) The relative in -
fluence of temperature and size structure on fish distribu-

tion shifts:  a case study on walleye pollock in the Bering 
Sea. Fish Fish 18: 1073–1084  

Thorson JT, Fossheim M, Mueter FJ, Olsen E and others 
(2019) Comparison of near-bottom fish densities show 
rapid community and population shifts in Bering and 
Barents Seas. In:  Richter-Menge J, Druckenmiller ML, 
Jeffries M (eds) Arctic Report Card 2019. NOAA, Silver 
Spring, MD, p 72–80. www.arctic.noaa.gov/Report-Card  

Thorson JT, Arimitsu ML, Barnett LAK, Cheng W and others 
(2021) Forecasting community reassembly using climate-
linked spatio-temporal ecosystem models. Ecography 44: 
612–625  

Uchiyama T, Mueter FJ, Kruse GH (2020) Multispecies bio-
mass dynamics models reveal effects of ocean tempera-
ture on predation of juvenile pollock in the eastern 
Bering Sea. Fish Oceanogr 29: 10–22  

Urban MC, Tewksbury JJ, Sheldon KS (2012) On a collision 
course:  Competition and dispersal differences create 
 no-analogue communities and cause extinctions during 
climate change. Proc R Soc B 279: 2072–2080 

Urban MC, Bocedi G, Hendry AP, Mihoub JB and others 
(2016) Improving the forecast for biodiversity under cli-
mate change. Science 353: aad8466  

van Rij J, Wieling M, Baayen R, van Rijn H (2020) itsadug:  
interpreting time series and autocorrelated data using 
GAMMs. https: //cran.r-project.org/package=itsadug  

Veloz SD, Williams JW, Blois JL, He F, Otto-Bliesner B, Liu Z 
(2012) No-analog climates and shifting realized niches 
during the late quaternary:  implications for 21st-century 
predictions by species distribution models. Glob Change 
Biol 18: 1698–1713  

Verhoeven KJF, Simonsen KL, Mcintyre LM (2005) Imple-
menting false discovery rate control:  increasing your 
power. Oikos 108: 643–647  

Wainwright TC (2021) Ephemeral relationships in salmon 
forecasting:  a cautionary tale. Prog Oceanogr 193: 102522  

Walsh JE, Johnson CM (1979) An analysis of Arctic Sea ice 
fluctuations, 1953–77. J Phys Oceanogr 9: 580–591  

Walsh JE, Thoman RL, Bhatt US, Bieniek PA and others 
(2018) The high latitude marine heat wave of 2016 and its 
impacts on Alaska. Bull Am Meteorol Soc 99: S39–S43  

Wickham H (2009) ggplot2:  elegant graphics for data analy-
sis. Springer, New York, NY 

Williams JW, Jackson ST (2007) Novel climates, no-analog 
communities, and ecological surprises. Front Ecol Envi-
ron 5: 475–482  

Wood SN (2011) Fast stable restricted maximum likelihood 
and marginal likelihood estimation of semiparametric 
generalized linear models. J R Stat Soc 73: 3–36  

Wood SN (2017) Generalized additive models:  an introduc-
tion with R, 2nd edn. Chapman and Hall/CRC, New York, 
NY

158

Editorial responsibility: Konstantinos Stergiou, 
Thessaloniki, Greece 

Reviewed by: C. O'Leary and 2 anonymous referees

Submitted: June 30, 2023 
Accepted: September 23, 2024 
Proofs received from author(s): November 1, 2024

https://doi.org/10.1126/science.1111322
https://doi.org/10.1146/annurev-marine-010419-010916
https://doi.org/10.1016/j.pocean.2019.04.002
https://doi.org/10.1890/14-1781.1
https://doi.org/10.1371/journal.pone.0084526
https://cran.r-project.org/package=gratia
https://cran.r-project.org/package=rnaturalearth
https://doi.org/10.1093/icesjms/fsw040
https://doi.org/10.1016/j.dsr2.2012.02.019
https://doi.org/10.1007/s00300-018-2431-1
https://doi.org/10.1002/lno.11238
https://doi.org/10.1111/faf.12225
https://doi.org/10.1111/j.1467-9868.2010.00749.x
https://doi.org/10.1890/070037
https://doi.org/10.1175/BAMS-D-17-0105.1
https://doi.org/10.1175/1520-0485(1979)009%3C0580%3AAAOASI%3E2.0.CO%3B2
https://doi.org/10.1016/j.pocean.2021.102522
https://doi.org/10.1111/j.0030-1299.2005.13727.x
https://doi.org/10.1111/j.1365-2486.2011.02635.x
https://cran.r-project.org/package=itsadug
https://doi.org/10.1126/science.aad8466
https://doi.org/10.1098/rspb.2011.2367
https://doi.org/10.1111/fog.12433
https://doi.org/10.1111/ecog.05471
http://www.arctic.noaa.gov/Report-Card



