
1.  INTRODUCTION 

Physical and biological factors are known to 
influence the abundance and distribution of marine 
zooplankton and their predators. However, the ex -
planatory power of these factors differs across spatio-
temporal scales (Hunt et al. 1999). As zooplankton are 
important prey for many marine predators, under-
standing the magnitude and scales of environmental 
drivers of zooplankton availability to predators is crit-

ical because these factors regulate potential ener-
getic gain, with direct implications for predator pop-
ulation ecology and health. In marine environments, 
where prey is known to be patchy (Hyrenbach et al. 
2000) and zooplankton swarms are prone to predator 
evasion (Kaltenberg & Benoit-Bird 2013), extended 
searching for prey patches can be energetically costly 
for predators. Hence, understanding resource avail-
ability as it varies in time and space is crucial for con-
servation management, especially as ocean con-
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ditions are impacted by climate change (Joh & Di 
Lorenzo 2017), which may increase environmental 
stochasticity. 

Eastern boundary upwelling systems are known to 
have a disproportionately high contribution to bio-
logical productivity that propagates to higher trophic 
levels (Chelton et al. 1982, Bograd et al. 2023). As in 
all eastern boundary upwelling systems, spring and 
summer conditions in the California Current System 
(CCS) along the west coast of North America are 
characterized by wind-driven upwelling where sur-
face waters are advected offshore via Ekman trans-
port, bringing cold, nutrient-dense waters to the sur-
face. This biophysical process is known to increase 
primary productivity, influence phyto- and zooplank-
ton retention and aggregation, and provide foraging 
opportunities for marine predators. 

While strong northerly winds dominate during the 
upwelling season in Oregon, USA, nutrient retention 
that leads to productivity occurs when these winds 
relax (Barth et al. 2007). The intermittent upwelling 
hypothesis (IUH) posits that the balance between 
upwelling and relaxation periods (i.e. intermittent 
upwelling) during spring and summer seasons deter-
mines the input of biological availability and reten-
tion of key nutrients, enhances prey availability, and 
influences species interactions (Menge & Menge 
2013). Intermittent upwelling occurs when there is 
alternation between upwelling and relaxation, typi-
cally occurring at a scale of 1–2 wk. Menge & Menge 
(2013) theorized the impact of this variation in inter-
mittent upwelling with studies along coastal areas of 
Oregon, California, and New Zealand. They found 
that intermittency between upwelling and relaxation 
explained ~37% of the variance among ecological 
interactions. More theoretical models of the IUH 
established a baseline of 3 d for the duration of relax-
ation days needed for nutrient uptake and confirmed 
that optimal wind patterns for phytoplankton growth 
are periodic (Zimmerman et al. 1987, Dugdale et al. 
1990, Yokomizo et al. 2010). Through a long-term 
field study, Wilkerson et al. (2006) established that an 
upwelling pulse followed by a relaxation event lasting 
3–7 d led to increased phytoplankton availability and 
zooplankton biomass. 

Applied investigations of ecological responses to 
intermittent upwelling have centered mainly around 
pelagic euphausiids and anchovies (Benoit-Bird et al. 
2019) or larval recruitment, retention, and settlement 
in nearshore regions (Wing et al. 1995, Roegner et al. 
2003, 2007, Dorman et al. 2005, Narváez et al. 2006, 
Morgan et al. 2009, Shanks & Morgan 2018). While 
links between the biophysical processes of wind-

driven upwelling systems and marine predator forag-
ing have been documented (Croll et al. 2005, Keiper 
et al. 2005, Kono-Martínez et al. 2017, Sato et al. 2018, 
Barlow et al. 2021, Ryan et al. 2022), the impact of 
intermittent upwelling and wind re laxation days on 
predator–prey interactions remains largely under-
studied, particularly in nearshore areas of the CCS, 
where zooplankton are critical prey items for impor-
tant commercial and recreational fisheries (Bosley et 
al. 2014) and protected marine megafauna, including 
gray whales Eschrichtius robustus (Newell & Cowles 
2006, Hildebrand et al. 2021, 2022). 

While most gray whales in the Eastern North Paci-
fic population (ENP; abundance ~14 526 individuals; 
Eguchi et al. 2022) migrate from wintering grounds in 
Baja California, Mexico, to foraging grounds in the 
Arctic and sub-Arctic region, a sub-group of the ENP 
known as the Pacific Coast Feeding Group (PCFG) 
use the very nearshore (<3 km) coastal environment 
between northern California and southern British 
Columbia (latitudes ranging from 41° to 52° N) as for-
aging grounds from early June through the end of 
November (Scordino et al. 2011). While PCFG gray 
whales (~212 individuals; Harris et al. 2022) demon-
strate site fidelity to particular foraging sites within 
the PCFG range (Lagerquist et al. 2019), they also 
elicit flexibility in space use within the entire range as 
they move between foraging sites within a feeding 
season (Lagerquist et al. 2019) in search of prey. They 
forage benthically and throughout the water column 
(Darling et al. 1998) on a diversity of prey items in -
cluding infaunal and epibenthic amphipods (Feyrer 
&  Duffus 2011), mysids (Nelson et al. 2008), ghost 
shrimp (Dunham & Duffus 2001), and crab larvae 
(Jenkinson 2001, Nelson et al. 2008). 

PCFG gray whales increase foraging effort when 
overall prey availability increases and display prefer-
ences for calorically rich species, such as Holmesimy-
sis sculpta and Neomysis rayii, which are found in 
highest abundances near kelp and reef habitats (New-
ell & Cowles 2006, Hildebrand et al. 2022). Our study 
was conducted in Port Orford, Oregon, where there 
has been a documented decline in zooplankton abun-
dance and gray whale foraging over an 8 yr period 
that occurred simultaneously with increasing purple 
sea urchin Strongylocentrotus purpuratus occurrence 
and declines in bull kelp Nereocystis luetkeana con-
dition, providing evidence that a trophic cascade 
could extend to pelagic marine predators (Hilde-
brand et al. 2024). In their study, Hildebrand et al. 
(2024) demonstrated a strong positive relationship 
between zooplankton and kelp health, and weaker yet 
positive relationships between kelp and whales and 
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zooplankton and whales. Thus, while kelp provides 
important habitat for the zooplankton prey of PCFG 
gray whales at a fine scale, other environmental fac-
tors likely influence the availability of zooplankton 
and gray whale foraging in this nearshore ecosystem 
on both fine and broad temporal scales. 

PCFG whales have high interannual variation in 
body condition that is potentially linked to shifts in 
environmental and oceanographic conditions (Lemos 
et al. 2020, Akmajian et al. 2021), and photogram -
metric measurements have demonstrated that PCFG 
whales have lower body condition (a proxy for forag-
ing success) overall than the ENP (Torres et al. 2022). 
As warm water temperatures and changing ocean 
conditions can alter zooplankton community struc-
ture (Brodeur et al. 2019) and reproductive rates 
(Shanks et al. 2020), an improved understanding of 
the links between environmental conditions and zoo-
plankton abundance in the nearshore CCS will shed 
light on the potential impacts to the gray whales that 
rely on these nearshore prey resources. Thus, under-
standing the scales and patterns of environmental 
drivers of variation in zooplankton abundance avail-
able to PCFG whales is critical to anticipate individ-
ual health and population viability. Knowledge of the 
relationships between the environmental drivers of 
zooplankton abundance in very nearshore reef eco-
systems across the northern CCS is limited (Baring et 
al. 2016, Walter et al. 2018, Elliott Smith & Fox 2022). 
Additionally, how intermittent upwelling influences 
the occurrence of cetaceans and their zooplankton 
prey in these same ecosystems remains to be fully 
understood. Proposed mechanisms underlying zoo-
plankton response to intermittent upwelling can 
occur at both fine and broad scales, and can include 
nearshore retention during relaxation periods when 
upwelling-favorable winds are reduced or absent 
(Wroblewski 1980) as well as increased recruitment 
through pulses in primary productivity (Menge & 
Menge 2013). The impact of intermittent upwelling 
varies across species and life history (Roughgarden et 
al. 1988, Wing et al. 1995). In Monterey Bay, mysid 
abundance is influenced by upwelling processes, 
whereby high-frequency internal waves linked to up -
welling processes are correlated with the presence of 
zooplankton aggregation layers (McManus et al. 
2005); however, the response of mysid aggregations 
to upwelling in our study region remains to be inves-
tigated. Given that PCFG gray whales may face 
increasing nutritional stress due to environmental 
change (Lemos et al. 2020, Akmajian et al. 2021, 
Torres et al. 2022) alongside health threats caused by 
high microparticle ingestion (Torres et al. 2023) and 

elevated physiological stress related to increased ves-
sel traffic and ocean noise (Lemos et al. 2022b, Pirotta 
et al. 2023), these knowledge gaps are important to fill 
to support management efforts aimed at mitigating 
cumulative impacts on this small subgroup (Oldach et 
al. 2022). Thus, our study is motivated by 3 hypo -
theses: H1: fine-scale zooplankton abundance and 
gray whale occurrence are influenced by the same 
environmental factors with similar functional relation-
ships; H2: increased alternations between upwelling 
and relaxation days (intermittent upwelling) will have 
a positive relationship with zooplankton abundance 
and gray whale occurrence; and H3: prey (zooplank-
ton) and predator (gray whale) response depend on 
both broad (seasonal) and fine (days to weeks) tempo-
ral scales of intermittent upwelling dynamics. This 
study provides new findings on the relationships be -
tween environmental conditions, zooplankton abun-
dance, and gray whale habitat utilization, including 
research on the IUH as it relates to marine predator 
and prey occurrence. 

2.  MATERIALS AND METHODS 

2.1.  Study area 

Data for this study were collected beginning in 
July through the end of August for 6 consecutive 
years (2016–2021) near Port Orford, Oregon, USA 
(42.750° N, 124.500° W) (Fig. 1). All fieldwork efforts 
began at sunrise (~06:30 h) and continued throughout 
daytime hours, provided that weather conditions 
were favorable (e.g. low fog, wind speed < 10 knots, 
swell 0.91 m, Beaufort sea state < 3). This study is part 
of a long-term effort to investigate the fine-scale 
foraging ecology of gray whales Eschrichtius robus-
tus using theodolite tracking and kayak-based in situ 
sampling methods. The extent of the study area is 
approximately 12 km2 and is within the PCFG summer 
foraging ground. This area is proximal to the port of 
Port Orford, where the commercial fishing industry 
comprises the majority of vessel traffic (Sullivan & 
Torres 2018). 

2.2.  Zooplankton and kelp data 

A tandem kayak was used to sample zooplankton 
abundance at 2 sites within the study area where gray 
whales frequently forage: Mill Rocks and Tichenor 
Cove (Fig. 1). These sites are 1 km apart, with 6 kayak 
sampling stations in each site. The nearshore marine 
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environment at these stations is characterized by a 
mosaic of rocky reef, bull kelp beds, and sandy bot-
tom habitat. 

Relative zooplankton abundance data were col-
lected from the research kayak at every station using 
a GoPro camera and time–depth recorder (TDR) 
(Solinst Levellogger 3001 F100/30) array. The GoPro 
camera is programmed for continuous video re -
cording, attached to a weighted pipe, and systemati-
cally submerged into the water via a downrigger. 
When the array reaches the bottom, it is retrieved at a 
downrigger speed of a half rotation per second 
(approximately 0.2 m s–1). GoPro videos are synched 
with depth data from the attached TDR. Following the 
methods of Hildebrand et al. (2022), a single analyst 
processed the GoPro imagery to obtain a useful and 
accurate metric of relative zooplankton density at 
each sampling station per day. In brief, screenshots of 
the video were taken at 5 s intervals during the 
retrieval cast to obtain still imagery from the GoPro 
video. Images were then overlaid by a 3 × 3 cell grid 

and each grid cell was scored on a scale of 0–5 (0: no 
zooplankton present; 5: highest zooplankton density; 
NA: indeterminable due to low light and/or other 
obstructions). The calculated mean of all grid cells 
provides the relative abundance for a single still 
image, and the mean values for all images in a cast are 
summed to obtain a metric of zooplankton relative 
abundance (Fig. S1 in the Supplement at www.int-res.
com/articles/suppl/m752p001_supp.pdf). Then, the 
values obtained for each cast were averaged across all 
sampling stations for each day of sampling to obtain a 
daily relative zooplankton abundance metric in the 
study area. 

Using the same GoPro videos, a ranked score of 
kelp condition based on the impact of sea urchin 
grazing on both fronds and stalks was calculated 
following Hildebrand et al. (2022) (see Text S1 for 
full  details). Using reference videos, each station 
was  assigned one of 5 categories: no kelp (NK), all 
damaged (AD), mostly damaged/some healthy (MD), 
mostly healthy/some damage (MH), and all healthy 
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Fig. 1. Study area in Port Orford, Oregon, USA, with 12 kayak sampling stations (black circles) for GoPro camera deployments; 
bathymetric contour lines at 5 m depth bins from NOAA’s 1/3 arc-second MHW Coastal Digital Elevation Model; and Fort 
Point Observation Site (black cross), a central cliff overlook used for whale surveys. Inset: state of Oregon showing Port Orford;  

orange diamond: NOAA Buoy 4601 location

https://www.int-res.com/articles/suppl/m752p001_supp.pdf
https://www.int-res.com/articles/suppl/m752p001_supp.pdf
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(AH). For analysis, these kelp condition cate-
gories  were converted to a numerical score (NK: 1; 
AD: 2; MD: 3; MH: 4; AH: 5) and the mean kelp 
condition across all sampling stations on each day 
was calculated. 

2.3.  Whale survey data 

Fort Point observation site is an unobscured cliff 
location overlooking the study sites where whale 
surveys were conducted and sea state conditions 
monitored for kayak safety. Whale occurrence and 
movements were tracked using a Sokkia model 
DT210 theodolite connected to a laptop that runs 
the software Pythagoras (Gailey & Ortega-Ortiz 
2000). We used a Canon EOS 70D camera to obtain 
high-quality photo-identification images of tracked 
whales. When it was not possible to obtain identifi-
cation photographs (due to timing and/or distance), 
high-powered binoculars were used to spot, track, 
and identify the whale. To derive gray whale behav-
ior states (travel, search, forage), whale surfacing 
locations obtained by the theodolite were analyzed 
via residence in space and time (RST; Torres et al. 
2017) methodology, where distance traveled be -
tween surfacing and time be tween each surfacing 
are calculated. RST assigns a behavior state to each 
point within a whale trackline according to the space 
and time occupied by an individual within a given 
radius of 40.7 m, and classifies behavior into 3 states: 
time-intensive, time- and distance-intensive, and 
transit. This radius size was derived based on the 
mean travel speed of PCFG gray whales and the 
whale tracking sampling interval (Torres et al. 
2017) and was deemed ecologically appropriate as 
it falls within the range of baleen whale visual 
acuity (Mass & Supin 1997, Torres 2017), and is 
slightly greater than 3 body lengths of an average 
adult gray whale (Agbayani et al. 2020, Bierlich et 
al. 2023). Based on observed behavioral patterns of 
gray whales at this fine scale and in alignment with 
Hildebrand et al. (2022), behavioral interpretation 
of these states is as follows: time-intensive consti-
tutes foraging behavior, time- and distance-inten-
sive is equivalent to searching behavior, and transit 
is considered traveling behavior. 

2.4.  Environmental data 

Coastal wind speed and sea surface temperature 
(SST) data were acquired from in situ NOAA Buoy 

Station 46015, 28 km west of Port Orford (42.753° N, 
124.844° W; https://www.ndbc.noaa.gov/station_page.
php?station=46015) (Fig. 1). The northward wind 
stress component (τy) was calculated from the wind 
speed and direction recorded at the buoy station fol-
lowing the methods of Large & Pond (1981) (described 
in Kochanski et al. 2006; see Text S2 for code). The 
northward wind stress component (hereafter referred 
to as wind stress) was selected, as it describes the 
magnitude of upwelling-favorable wind in the region 
(Barth et al. 2007). Hourly measurements of both SST 
and wind stress were averaged to obtain daily values 
for each metric, for all years in this study. 

The magnitude and seasonal accumulation of coas-
tal upwelling and relaxation were derived from the 
Coastal Upwelling Transport Index (CUTI; https://
oceanview.pfeg.noaa.gov/products/upwelling/cuti
beuti) for latitude 42° N. CUTI estimates vertical 
transport using regional sea surface height, surface 
wind stress, and mixed layer depth via regional ocean 
reanalysis (Jacox et al. 2018). A 10 d smoothing filter 
was applied to daily CUTI values to smooth poten-
tially anomalous daily values and reveal trends in 
annual phenology. Then, daily CUTI values were 
used to calculate the cumulative daily upwelling 
index value for each sampling day, and the cumu-
lative upwelling information was used to determine 
the physical spring transition index (ST) and end of 
the upwelling season for each year following estab-
lished upwelling phenological definitions (Bograd et 
al. 2009, Oestreich et al. 2022, Barlow et al. 2024). 
Then, mean CUTI during the upwelling season (all 
days between ST and the end of the upwelling season) 
was calculated across all study years (mean: 0.6) and 
used as a threshold to define periods of relaxation, 
whereby a day was considered a ‘relaxation event’ 
when the daily CUTI value fell below the mean CUTI 
during the upwelling season (see Table S1 for full 
phenological metrics). We decided that CUTI was the 
best variable to determine relaxation timing, as data 
gaps from the NOAA buoy would prohibit incorporat-
ing 2 yr of data. Relaxation was summarized through 
2 different metrics: cumulative number of relaxation 
days and recent relaxation. The cumulative number of 
relaxation days is the summation of days below the 
mean CUTI value since ST, and recent relaxation is 
the sum of relaxation days within a 10 d moving aver-
age (i.e. within the 10 d prior to the day of interest) to 
account for the temporal scale at which relaxation can 
occur (Menge & Menge 2013) (see Fig. S2). These cal-
culations resulted in 2 fine-scale (daily CUTI, recent 
relaxation) and 2 broad-scale (cumulative CUTI since 
ST, cumulative number of relaxation days since ST) 
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metrics of upwelling and relaxation that were incor-
porated into subsequent analyses. Cumulative CUTI 
since ST and cumulative number of relaxation days 
since ST were selected for this analysis over day of 
the year, though these metrics are related, as CUTI 
best captures biologically relevant variation in sea-
sonal patterns. 

2.5.  Time series cross-correlation analysis 

As we would not expect zooplankton abundance to 
have an immediate response to environmental vari-
ability given that a response cannot be instantaneous 
due to the several physical and biological intermedi-
ate steps (Largier et al. 2006, Barlow et al. 2021), a 
time-series analysis was conducted to quantify lags 
between different oceanographic variables and zoo-
plankton abundance, and thereby identify more ap -
propriate temporal scales of environmental mech-
anisms. The cross-correlation function (CCF) in the 
‘astsa’ (applied statistical time series analysis; Stoffer 
2014) package in R measures the correlation between 
2 time series at different lagged time steps. We used 
the CCF to assess the lag at which the correlation 
between selected fine-scale oceanographic variables 
(daily CUTI, daily wind stress, and daily SST) and 
zooplankton abundance was the highest. Unfortu-
nately, the Port Orford NOAA buoy did not record 
data for 2018 and 2019 and for 3 d during our sam-
pling period in 2017, so cross-correlations including 
wind stress and SST were only conducted on available 
data. 

The CCF analysis was run separately for each sam-
pling year to assess the lagged cross-correlations 
(time step measured in days). Given the short time 
window of sampling (6 wk in each year), data did not 
require time-series decomposition to remove sea-
sonal variation prior to analysis. Then, the mean and 
median autocorrelation function (ACF) values per 
lag step (0–10 d) were compiled to identify the 
strong est relationship between a given environ -
mental variable and relative zooplankton abundance 
across the data set. Results were then cross-verified 
with available literature to determine the most appro-
priate temporal lags to include in multivariate model-
ing. To address the hypothesis that whales respond to 
the same environmental conditions as zooplankton 
and within the same temporal phase at a site scale (H1 
and H3), we applied the same lags determined for 
each environmental variable in the zooplankton 
cross-correlation analyses to the subsequent whale 
re sponse model. 

2.6.  Multivariate analysis using boosted  
regression tree models 

We implemented boosted regression trees (BRTs), 
which are tree-based machine learning models, to 
infer functional relationships between both zooplank-
ton relative abundance (BRTzoop) and whale presence 
or absence (BRTwhale) and environmental metrics. 
BRTs are complex additive regression models that are 
capable of fitting non-linear relationships, allow for 
and describe interactions between predictors, and are 
flexible to missing data (Elith et al. 2008). For both the 
BRTzoop and the BRTwhale, BRT models were created 
using the ‘dismo’ and ‘gbm’ packages (Greenwell et 
al. 2019, Hijmans et al. 2024), and final functional 
response plots were created using the ‘pdp’ package 
(Greenwell 2017) in R. Prior to BRT model fitting, we 
conducted a Pearson’s correlation analysis to test for 
correlation among the oceanographic predictor vari-
ables, and any pair of predictor variables with a corre-
lation coefficient of >0.7 or <–0.7 were not included 
simultaneously in the same model (see Fig. S3). This 
correlation analysis included day-of-year as a predic-
tor variable to assess whether seasonal phenology was 
driving overall patterns. 

Theodolite tracking data of whales was converted 
into a binomial metric of behavior state based on the 
RST behavioral classifications of each track location. 
Gray whale locations classified as either forage or 
search behaviors were considered presence data (1), 
and both will hereafter be referred to as gray whale 
foraging effort. For a given observation day, travel 
behavior and absence of a whale observation during 
the cliffside observation effort were considered 
absence data (0). To normalize the distribution of 
binomial data that was skewed toward zeros (absence 
or traveling), the total number of presences was 
divided by the total number of absences and added as 
a weight in the final BRT analysis, as this has been 
shown to increase the accuracy of BRT models (Bar-
bet-Massin et al. 2012). 

The BRTzoop model assessed the relationships 
between selected oceanographic variables and prey 
using a Poisson distribution, while the weighted 
BRTwhale model used a binomial distribution to 
examine relationships between the oceanographic 
predictor variables and whale behavior. Both BRTzoop 
and BRTwhale were iteratively tested to assess the 
optimal combination of tree complexity (1–3), learn-
ing rate (0.05, 0.001, 0.005, 0.01), and number of 
starting trees (50, 100). Tree complexity represents 
the number of interactions allowed in the model, 
and low values were chosen because increasing eco-
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logical interactions decreases ecological interpret-
ability. If the model had not converged when 1000 
trees were reached, the learning rate was reduced 
(Elith et al. 2008). Bag fraction was fixed at 0.75. 
Candidate models were generated from these 
parameters, and optimal model parameters were 
then selected based on model performance metrics 
(final learning rate, number of trees, cross-fold cor-
relation coefficient, and cross-validated [CrV] devi-
ance explained). CrV deviance explained describes 
how well the candidate models fit a subset of with-
held data (Buston & Elith 2011), and higher values 
of CrV deviance indicate a balance between com-
plexity and fit (Torres et al. 2013). Area under the 
receiver operating characteristic curve (AUC) was 
also used to assess overall performance for the bino-
mial BRTwhale model. The AUC assesses the measure 
of separability between true positive and true neg-
ative values between 0 and 1; an AUC > 0.7 is con-
sidered reliable (Swets 1988). 

3.  RESULTS 

3.1.  Data collection summary 

Over the 6 yr period, field teams successfully col-
lected 520 GoPro videos and conducted 761.9 h of 
whale survey effort (Table 1). All videos were used for 
image scoring, resulting in 20 377 still images that 
were scored, of which 2239 were obscured and scored 
as NA. Kayak-based sampling of relative zooplankton 
abundance resulted in 99 sampling days included in 
the BRTzoop model. Gray whale Eschrichtius robustus 
survey effort resulted in 62 individual whales 
observed, with 263 individual theodolite tracks 
recorded, including 11 299 combined foraging and 
searching points (see Fig. S4). Overall, 165 d of whale 
survey effort were included in the BRTwhale model, 
with 63 presence days (days with forage or search 
behavior observed) and 102 absence days (no whales 
observed or only transit behavior observed; Table 1). 

Fine-scale oceanographic variables displayed fluc-
tuations both within and between sampling periods 
(Fig. 2). Wind stress across all years showed alterna-
tions between upwelling-favorable winds and relax-
ation days, illustrating intermittent upwelling con-
ditions. The number of recent relaxed days showed 
variability across years, but with a distinct increase 
toward the end of the sampling period each year; SST 
similarly often increased towards the end of the sam-
pling periods. Zooplankton abundance dropped pre-
cipitously from 2016 to 2021 (Fig. 2). 

While the fine-scale oceanographic variables 
demonstrated variability among years, patterns in 
broad-scale oceanographic variables revealed dis-
tinct an nual shifts. There was a steady increase in 
cumulative  CUTI from 2016 to 2021 (Fig. 3). Notably, 
while 2021 showed the greatest total cumulative 
CUTI, it was also the year with the lowest zoo -
plankton abundance. However, 2018 had the third-
highest cumulative CUTI and a very early ST and also 
had the greatest zooplankton abundance (Table 1). The 
number of relaxation days since the ST (Fig. 3) across 
all years showed variation in magnitude and, while 
cumulative CUTI was high in 2021. The lowest zoo -
plankton abundance, as seen in 2021, occurred when 
cumulative CUTI since ST was highest and the number 
of relaxed days since ST was third lowest across all 
years (Fig. 3). 

3.2.  Time series cross-correlation analysis 

Among the potential lag days assessed (0–5 d), 
wind stress and zooplankton abundance showed 
the highest mean positive correlations at a 1 d and 
second highest at a 4 d lag (Fig. 4). All potential 
lags were considered in candidate models for multi-
variate BRT analysis (see Section 2.5), but wind stress 
at a 4 d lag was ultimately chosen for this study 
due to the statistical mean ACF values from cross-
correlation analysis, available literature that sup-
ported the biological plausibility of this lag (Roegner 
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                                                                                     2016                  2017                  2018                  2019                  2020                  2021 
 
In situ GoPro videos                                             n = 47               n = 56              n = 154              n = 53               n = 64              n = 146 
Relative zooplankton abundance                     279.16               313.38              1245.23              238.79               121.69                   15 
Total whale survey effort (min)                       7743.91            7036.90            8958.30            7318.92            7072.63            7583.65 
Total whale presences:absences (d)                 17:12                  6:21                  11:19                  21:7                   6:20                   2:23 
Total whale tracks                                                     77                       21                       59                       58                       40                        8

Table 1. Sampling summary table showing total number of in situ GoPro Casts, mean zooplankton relative abundance, cliff site 
whale survey effort, ratio of whale presence and absences days, and number of whale tracks by field season years (2016–2021)
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et al. 2003, 2007, Mace & Morgan 2006), and impact 
on preliminary BRT model performance. CUTI and 
zooplankton abundance correlation was strongest at 
a 3 d lag (Fig. 4). This lag selection was supported 
by the literature, as upwelling has been shown to 
correlate with wind stress at a 1 d lag (Narváez et 
al. 2006). Thus, since wind stress at a 4 d lag was 
chosen for the final model (as described above), it 
also follows that using CUTI at a 3 d lag was appro-
priate for our final analysis. 

SST and zooplankton abundance showed the stron-
gest positive correlation between a 0 and 1 d lag (Fig. 4). 
These lag values align with the ranges given in the 
available literature, where SST changes due to shifts 
in wind stress were observed at a lag of 0–4 d (Nar-
váez et al. 2006). All potential lags for SST (0–5 d) 
were considered in preliminary multivariate BRT an -
alysis, but SST at a 0 d lag was chosen as it reflected 
the strongest value in our data-driven correlation 
assessment. Day of the year was also included in the 
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Fig. 2. Time-series plots showing patterns of fine-scale (daily) oceanographic variables: wind stress [τ(y)], daily cumulative up-
welling transport index (CUTI), number of recent relaxed days in 10 d window (relaxed days), and sea surface temperature 
(SST); and the biological response of both relative zooplankton abundance (Zooplankton) and whale foraging effort (Whales; 
0: absent or transit; 1: forage) for all years within our sampling window (2016–2021) where data were available (data  

from NOAA buoy not available in 2018 and 2019)
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preliminary BRT analysis but was found to have a negli-
gible impact on model performance (Figs. S5 & S6). 

3.3.  Zooplankton response to  
environmental variables 

Pearson’s correlation analysis revealed no signifi-
cant correlations between oceanographic predictor 
variables (r > –0.7 and < 0.7) (see Fig. S2), so all 
predictors were initially included in the final BRT 

models. However, only predictor variables that con-
tributed more than 5% to the model were ultimately 
retained (Elith et al. 2008). 

BRTzoop had 52.6% of the CrV deviance explained 
by the selected environmental variables and cross-
fold correlation of 75% with a learning rate of 0.0025, 
total trees of 1950, and tree complexity of 2 (Fig. 5). 
Kelp condition was the top contributor to the model 
(32%; Fig. 5a), with a functional relationship in which 
zooplankton abundance sharply increases as kelp 
condition improves. Cumulative CUTI since the spring 

9

Fig. 3. Time-series plots showing the patterns of broad-scale oceanographic variables (relaxation days since the physical spring 
transition [ST)] and cumulative coastal upwelling transport index [CUTI] since the ST), relative zooplankton abundance, 
and whale foraging effort, for all years within our sampling window (2016–2021). The date of ST in each year is given at the top  

of each column
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transition (ST) was the second contributor to the 
model (23.4%; Fig. 5b), where the greatest abundance 
of zooplankton occurred between values of ~0 and 

150, after which zooplankton abundance decreased 
as CUTI accumulation increased. CUTI at a 3 d lag 
was the third-top predictor (12%; Fig. 5c), where 
strong upwelling 3 d prior to sampling increased zoo-
plankton abundance. The amount of recent relaxa-
tion contributed 10.5% (Fig. 5d) to the model and 
indicated that 0–4 d of relaxation within the past 10 d 
is correlated with increased zooplankton abundance, 
with a decline in zooplankton abundance after 5 or 
more days of recent relaxation. The SST functional 
response curve (7.9%; Fig. 5e) illustrates high zoo-
plankton abundance at both coldest and warmest 
temperatures, with greatest abundance at 14–16°C. 
Number of relaxation days since the ST (7.7%; Fig. 5f) 
shows a L-shaped curve, with high zooplankton 
when the cumulative relaxation days were <70 and 
increasing abundance when the number of relaxation 
days was >110. Wind stress at a 4 d lag contributed 
6.5% to the model (Fig. 5g), with high zooplankton 
abundance occurring after strong upwelling favor-
able winds 4 d prior. 

Strong interactions in the BRTzoop model were 
detected between cumulative CUTI and number of 
relaxation days (Fig. 6a), as well as cumulative CUTI 
and kelp health (Fig. 6b). Pearson correlation be -
tween cumulative CUTI and number of relaxation 
days was low, while cumulative CUTI and kelp health 
were the most correlated pair (see Table S2). 
However, both interaction plots (Fig. 6a,b) illustrate 
the importance of low cumulative CUTI since the ST 
on increased zooplankton abundance, with an added 
positive influence on zooplankton abundance with 
extreme values of cumulative relaxation since the ST 
or if kelp is in good condition. 

3.4.  Gray whale response to  
environmental variables 

For the BRTwhale model (Fig. 7), the same environ-
mental variables from BRTzoop were included as well 
as relative zooplankton abundance as a predictor. 
These variables combined explained 13.1% of the CrV 
deviance. Cross-fold correlation was 42.4% with an 
AUC score of 0.754, a learning rate of 5 × 10–4, a total 
of 2900 trees, and a tree complexity of 2. Wind stress 
at a 4 d lag was the greatest contributor (28.7%; 
Fig. 7a) to the BRTwhale model, where strong upwel-
ling-favorable winds correlated with increased whale 
foraging effort 4 d later. Cumulative CUTI since the 
ST was the second-top predictor (24.4%; Fig. 7b), 
where whale foraging effort was greatest between 
values of 0 and 150, after which whale foraging 
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Fig. 4. Cross-correlation plots showing the mean correlation 
auto-correlation factor (ACF) values across 0–5 d lags be-
tween selected oceanographic variables (wind stress, cumu-
lative coastal upwelling transport index [CUTI], and sea 
 surface temperature [SST]) and relative zooplankton abun-
dance for all sampling years where data were available 
(2016–2021; wind stress and SST data not available from 
NOAA buoy in 2018 and 2019). Gray cross marks: the mean 
for each year; black cross marks: the mean applied in model  

analysis. Note differences in the y-axis ranges
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Fig. 5. Partial dependence plots from boosted regression tree model of relative 
zooplankton abundance related to environmental conditions of (a) kelp health, 
(b) cumulative coastal upwelling transport index (CUTI) since the physical 
spring transition [ST], (c) CUTI at a 3 d lag, (d) recent relaxed days, (e) sea sur-
face temperature (SST) at a 0 d lag, (f), relaxation events since the ST, and (g) 
wind stress at a 4 d lag. Each plot shows smoothed partial dependence functional 
response curve (blue line), percent contribution to the model (top right of each 
panel), and distribution of available data via rug plot (blue ticks). Note that the y-
axes in (a) and (b) are larger than the rest, reflecting the stronger influence of  

these variables on relative zooplankton abundance compared to the others

Fig. 6. Three-dimensional partial dependence plot showing the top interactions from boosted regression tree model of zoo-
plankton relative abundance, showing (a) interaction between cumulative coastal upwelling transport index (CUTI) since the 
physical spring transition (ST) and relaxation events since the ST and the fitted value (marginal effect) on relative zooplankton 
abundance; and (b) interaction between cumulative CUTI since the ST and kelp health and the fitted value (marginal effect) on  

relative zooplankton abundance
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decreased as upwelling accumulation increased. The 
SST functional response curve (11.5%; Fig. 7c) illus-
trates that high foraging effort occurred at cold tem-
perature ranges (9–11°C). CUTI at a 3 d lag (8.4%; 
Fig. 7d) showed that whale foraging effort increased 
3 d after CUTI values were above average. Five to 10 
consecutive days of recent relaxation (8.1%; Fig. 7e) 
within the previous 10 d correlated with increased 
whale foraging, as did kelp condition (7.4%, Fig. 7f). 
The zooplankton abundance response curve (5.7%; 
Fig. 7g) showed a slight increase in whale foraging 
after zooplankton values rose above 0; otherwise, all 
values of relative zooplankton abundance above 5 
contributed to whale foraging equally. Lastly, the 
number of relaxation days since the ST (5.7%; Fig. 7h) 
correlated with an increase in whale foraging. The 
top-ranked interactions between environmental vari-
ables found in the BRTwhale model were between SST 
and recent relaxation (Fig. 8a), cumulative CUTI and 
kelp health (Fig. 8b), and cumulative CUTI and the 
number of relaxation days (Fig. 8c; see also Table S2). 

Unlike the interaction in the BRTzoop model, the inter-
action between cumulative CUTI and kelp health 
showed that at every value of kelp health, whale for-
aging is high with a slight increase in foraging if kelp 
health was low. 

4.  DISCUSSION 

Our results, derived from a 6 yr data set, contribute 
to the understanding of environmental drivers of both 
zooplankton availability and gray whale foraging 
response in nearshore areas of the Northern CCS. 
Results from BRT analysis demonstrate that predators 
and prey are influenced by the same environmental 
factors with similar functional relationships (Figs. 5 & 
7), although these environmental factors had greater 
explanatory power for the prey model. We assessed 
the dynamics between upwelling and relaxation, as 
suggested by the IUH, and found that an intermittent 
state produced maximal predator and prey occur-
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Fig. 7. Partial dependence plots from 
boosted regression tree model of gray 
whale foraging relative to environ-
mental conditions of (a) wind stress 
at a 4 d lag, (b) cumulative CUTI since 
the ST, (c) SST at a 0 d lag, (d) CUTI at 
a 3 d lag, (e) recent relaxed days, (f) 
kelp health, (g) zooplankton abun-
dance, and (h) relaxation events since 
the ST. See Fig. 5 for further details
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rence at both broad and fine temporal scales. While 
BRTzoop and BRTwhale model results differed in what 
predictor had the greatest contribution in the model 
(kelp health for zooplankton relative abundance and 
wind stress at a 4 d lag for whale foraging effort), we 
found that the broad-scale accumulation of upwel-
ling since the ST was the second-most important 
predictor in both models. Moreover, accumulation 
of  relaxation days at the broad seasonal scale and 
the duration of relaxation days at the fine scale during 
the sampling period also contributed to models of 
both species occurrence in our nearshore study sys-

tem. These results provide further support for the 
importance of considering lag times and scale in the 
context of predator space use within hierarchical, 
dynamic marine environments (Torres 2017, Barlow 
et  al. 2021). This knowledge gained can further 
inform investigations regarding top predator sensory 
cues and foraging strategies (Abrahms et al. 2019), 
especially in the very nearshore, where an under-
standing of the cross-shore transport of zooplankton 
is limited but may be in fluenced by similar velocity 
gradients found along the coastal boundary layer 
(Nickols et al. 2012). 
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Fig. 8. Three-dimensional partial dependence plot showing 
the top interaction from boosted regression tree model of 
whale presence or absence showing interaction between (a) 
sea surface temperature (SST) and recent relaxed days and the 
fitted value (marginal effect) on whale foraging effort; (b) cu-
mulative coastal upwelling transport index (CUTI) since the 
physical spring transition (ST) and kelp health and the fitted 
value (marginal effect) on whale foraging effort; and (c) cumu-
lative upwelling since ST and relaxation since ST and the  

fitted value (marginal effect) on whale foraging effort
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4.1.  Cross-correlation of fine-scale environmental 
variables with zooplankton and gray whales 

Cross-correlation results revealed important lags 
between wind stress (4 d), CUTI (3 d), and SST (0 d) 
and relative zooplankton abundance (Fig. 4). Model 
results for both BRTzoop and BRTwhale show that both 
zooplankton abundance and whale foraging effort 
increase 4 d after an upwelling-favorable wind event 
(Figs. 5g & 7a). Our results also describe increased 
zooplankton abundance and whale foraging effort 
3 d after high CUTI values. Findings in Menge & 
Menge’s (2013) study showed upwelling magnitude 
accounted for ~50% of the variance in ecological pat-
terns in rocky intertidal regions, and our study also 
found upwelling magnitude to be a strong predictor, 
with CUTI at a 3 d lag as the third-top predictor in the 
BRTzoop (12%) and fourth in the BRTwhale model (8.4%) 
(Figs. 5c & 7d). The variable-specific lags used in our 
analyses are within the ranges previously docu -
mented in the literature that describes wind-driven 
upwelling as a driver for larval transport in nearshore 
systems (Mace & Morgan 2006, Narváez et al. 2006, 
Papastephanou et al. 2006, Wilkerson et al. 2006, 
Roegner et al. 2007). 

4.2.  Cumulative upwelling and relaxation days as 
drivers of zooplankton and gray whales 

On the broad, seasonal temporal scale, cumulative 
upwelling was the second-greatest driver of both 
 zooplankton abundance and whale foraging effort. 
However, it is important to note that more upwelling 
since the ST was not always beneficial for predator–
prey response. Indeed, we see a decline in zooplank-
ton abundance and whale foraging effort after a 
cumulative CUTI value of approximately 150. 

We also document that relaxation days, at both the 
fine temporal scale (recent relaxation within 10 d win-
dow) and at the broad seasonal scale (total number of 
relaxation days since the ST), impacted prey and 
predator occurrence. However, it is important to note 
these results differ between prey and predator. For 
recent relaxation, the highest zooplankton abun-
dance occurred during 0–5 d of recent relaxation, 
while increased gray whale foraging effort was associ-
ated with relaxation 3 d prior, indicating that the 
greatest overlap in prey and predator species occur-
rence likely occurs when there are 3–5 d of relaxation 
within the past 10 d. 

Cumulative relaxation days since ST and SST func-
tional response curves illustrate increasing relative 

zooplankton abundance at the extremes of both vari-
ables, yet whale foraging effort showed a positive 
relationship between the broad-scale number of 
cumulative relaxation days since ST and a negative 
relationship with fine-scale SST temperature (Figs. 5 
& 7). Zooplankton abundance at higher temperatures 
may be caused by the retention of warmer water that 
is not advected during relaxation days, as zooplank-
ton response to wind stress at a 1–3 d lag is positive, 
and warmer waters are associated with these events. 
Cooler temperatures in upwelling systems have been 
shown to be a reliable predictor of whale foraging 
behavior (Heyning 2001, Munger et al. 2009), and in 
this study, model results showed a negative relation-
ship between gray whale foraging effort and increas-
ing SST temperatures (Fig. 7). Additionally, the inter-
action between SST and number of recent relaxation 
days (Fig. 8A) shows that gray whale foraging was 
correlated with cool, upwelled waters after a recent 
relaxation period of approximately 5–8 d. 

Zooplankton abundance as a driver in the BRTwhale 
model was one of the lowest predictors for whale for-
aging effort, explaining 5.7%. While prey metrics 
alone may not be sufficient for predictive modeling of 
gray whale habitat suitability, predators likely cue in -
to environmental drivers that regulate zooplankton 
variability (Torres 2008). The difference in CrV devi-
ance explained between the BRTzoop and BRTwhale 
models (52.6 and 13.1%, respectively) show that while 
environmental factors explain much of the variance in 
zooplankton response, gray whale foraging effort is 
likely influenced by more drivers not evaluated in 
this study. However, these results demonstrate that 
en vironmental variables are influential bottom-up 
drivers of zooplankton abundance and subsequent 
gray whale foraging effort. While top-down predation 
pressure may impact zooplankton community struc-
ture, including potential gray whale predation im -
pacts on zooplankton availability (Feyrer & Duffus 
2011, Burnham & Duffus 2018), bottom-up regula-
tion of zooplankton by environmental conditions 
likely plays a large role (Largier et al. 2006). However, 
documenting this relationship in very nearshore 
 systems (<1 km from shore) is often prohibited by 
challenging survey conditions not conducive to tradi-
tional boat-based sampling. Whether prey abun-
dance is regulated by top-down or bottom-up forc-
ings is situation-dependent, and neither should be 
ruled out as a significant mechanism unless otherwise 
demonstrated (Ottersen et al. 2010). While the zoo-
plankton abundance during our sampling season may 
have been impacted by top-down forcing on an 
hourly or daily scale, there appears to be no discern-
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able pattern between whale foraging effort and zoo-
plankton abundance across years (Fig. 2). Further 
investigation of environmental drivers of mobile gray 
whales at broader spatiotemporal scales can provide a 
more holistic understanding of these nuanced ecosys-
tem dynamics across the PCFG foraging range. 

4.3.  Interactive effects of environmental variables 
on zooplankton and gray whales 

Several variables revealed interesting interactive 
effects for both the BRTzoop and BRTwhale models. The 
interaction between cumulative upwelling and num -
ber of relaxation days was important in both models 
but with different marginal effects on response. For 
BRTzoop, it is clear that low broad-scale cumulative 
upwelling relative to values observed earlier in the 
field season paired with a low number of relaxation 
days resulted in high zooplankton abundance. How -
ever, if cumulative upwelling was high, as long as the 
number of relaxation days was sufficiently high as 
well, zooplankton abundance increased. Results from 
both interactions appear to align with the IUH where 
prey and predator response will be maximal at inter-
mittent states of upwelling. In the BRTwhale model, 
whale foraging effort was at its maximum where 
cumulative upwelling since the ST was low to moder-
ate, and the number of relaxation days since the ST 
was moderate to high (Fig. 7). The interaction be -
tween these variables demonstrates the balance 
needed between upwelling and relaxation (Fig. 8A). 
These results similarly align with the IUH, with pred-
ator foraging effort increasing with upwelling inter-
mittency. Relaxation days are known to increase tem-
peratures in the system; however, the interaction 
between SST and recent relaxed days shows that the 
system must be both relaxed and cool at the fine scale 
(days to weeks) to be positively related to whale for-
aging (Fig. 8a). While Menge & Menge (2013) pro-
posed this hypothesis to address barnacle coloniza-
tion and mussel growth rates, our results suggest this 
hypothesis may also hold for other zooplankton prey 
as well as whale predators in the nearshore system of 
Port Orford, Oregon. 

The functional response curves for recent relaxed 
days and wind stress (Fig. 7) indicate how gray whale 
foraging effort increases when the system has been 
recently relaxed for 3–10 d or if there was a strong 
upwelling-favorable wind event 4 d prior. While these 
findings may seem contradictory, they in fact demon-
strate that whales are sensitive to shifts in wind stress, 
as seen with blue whales (Barlow et al. 2021, Ryan et 

al. 2022), where both upwelling-favorable winds and 
relaxation days drive productive foraging opportuni-
ties. This balance between upwelling and relaxation 
conditions was also found to be a strong predictor of 
PCFG gray whale density at the scale of the Northern 
CCS across 31 yr (Barlow et al. 2024). 

4.4.  Kelp condition as a driver of zooplankton  
and gray whales 

Describing the relationship between intermittent 
upwelling and the biological response of prey and 
predator in our study area contributes to our under-
standing of how environmental variation affects mul-
tiple trophic levels (Hildebrand et al. 2024), especially 
as kelp systems are undergoing changes due to a rise 
in urchin barrens and environmental change (Rogers-
Bennett & Catton 2019). Our results highlight the role 
of kelp condition as a primary driver for zooplankton 
abundance (Fig. 5), which aligns with the findings of 
Hildebrand et al. (2024). Kelp populations require the 
cold, nutrient-rich waters provided by upwelling in 
order to grow (Tegner et al. 1996), and here we find 
that fine-scale zooplankton abundance is maximized 
by an interaction between kelp and broad-scale sea-
sonal upwelling accumulation (Fig. 6B). Our results 
suggest whales forage in areas of lower kelp con-
dition; however, it should be noted this was a very low 
interactive effect compared to the BRTzoop model. The 
interactive effect between kelp condition and cumu-
lative CUTI shows that as long as cumulative CUTI 
remained moderate, whale foraging was elevated at 
every value of kelp condition (Fig. 8B). These find-
ings suggest that environmental drivers may have an 
interactive effect with kelp condition to provide opti-
mal conditions for whale foraging. Further investiga-
tion of the interactions between kelp condition and 
environmental variability may be useful in these near-
shore systems where trophic relationships depend 
largely on kelp but where kelp abundance becomes 
less relevant as habitat complexity increases (Choat & 
Ayling 1987, Anderson 1994, Trebilco et al. 2015). 

4.5.  Future research directions 

While our models of relative zooplankton abun-
dance and PCFG gray whale foraging effort relative 
to environmental drivers perform well, these models 
are certainly not comprehensive. PCFG foraging ef -
fort should also be considered in the context of differ-
ent prey availability metrics such as aggregation and 
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patch density, especially as these relate to shifts in 
upwelling conditions. For example, prey patch struc-
ture has been shown to change in response to vari-
ance in upwelling, where zooplankton aggregations 
swarm during upwelling events and scatter during 
relaxation (Benoit-Bird et al. 2019). There is also a 
mosaic of interconnected nearshore dynamics that 
future studies should investigate to better understand 
this study system, including the roles of fine-scale 
topography (Shanks & Morgan 2018, Killeen et al. 
2023) and habitat complexity (Darling et al. 2017, 
Richardson et al. 2017), which would contribute to 
the current paucity of literature linking rugosity to 
marine mammal foraging (Cimino et al. 2020). Ad -
ditionally, Shanks et al. (2003) investigated holo-
plankton retention in Port Orford and noted that the 
headland that forms the Port Orford Bight causes an 
‘upwelling shadow’, which is a region of water pro-
tected from upwelling-favorable winds. This shadow 
results in a small-scale warm water feature in the lee 
of the Port Orford Bight, which may serve as an 
important retention and recirculation zone for pri-
mary productivity (Graham & Largier 1997). Indeed, 
PCFG whale density is elevated in the lee of promi-
nent headlands along the Northern CCS (Barlow et al. 
2024). ‘Upwelling shadows’ can act as convergence 
zones associated with greater zooplankton biomass 
(Woodson et al. 2007, Morgan & Fisher 2010, Ryan et 
al. 2010) and thus may be an important feature for 
future studies considering spatial analyses of prey 
availability for PCFG gray whales along the Northern 
CCS coastline with prominent headlands. On larger 
spatiotemporal scales, bottom-up mechanisms that 
produce a seasonal response in zooplankton life his-
tory are known to be sensitive to climate warming. 
Winder et al. (2009) documented a shift in zooplank-
ton annual recruitment over 44 yr from predictable 
patterns to much more stochastic patterns due to cli-
mate warming. Thus, ecosystem shifts due to climate 
change pose an increasing threat to nearshore pred-
ator–prey dynamics and could impact prey abun-
dance and distribution patterns, with subsequent 
impacts on predator health and vital rates. 

4.6.  Conclusions 

PCFG whales are currently facing a range of 
threats, from loss of bull kelp habitat (Hildebrand et 
al. 2024), to increased physiological stress from vessel 
traffic and noise (Lemos et al. 2022b, Pirotta et al. 
2023), behavioral disturbance from vessel traffic (Sul-
livan & Torres 2018), and low (Torres et al. 2022) and 

variable (Lemos et al. 2020, Akmajian et al. 2021) 
body condition. Lower body condition has been 
linked to higher cortisol stress levels (Lemos et al. 
2022a), indicating nutritionally compromised whales 
may not be as resilient to additional environmental 
stressors. Especially in a rapidly changing environ-
ment, continued monitoring and identification of the 
relationships between upwelling dynamics and prey 
is crucial to support the adaptive management of 
PCFG gray whales and their ecosystem. As this study 
presents new findings on the IUH relative to zoo-
plankton prey and whale predators, future work 
should further investigate the influence of intermit-
tent upwelling on prey availability and top predator 
foraging effort in upwelling systems across a range of 
spatiotemporal scales. Due to the dynamic and hierar-
chical nature of biological drivers in the nearshore 
environment, uncovering empirical relationships be -
tween drivers of habitat use and prey response met-
rics can be difficult (Folt & Burns 1999). However, 
results and methods from this study can help inform 
future research and management decisions concern-
ing this small subgroup of gray whales by identifying 
the important scales of environmental processes that 
influence the distribution and availability of their pri-
mary prey. 
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