
1.  INTRODUCTION 

Predation is one of the greatest selective forces 
that affect the survival of prey species. Predation 
pressure has resulted in the evolution of a variety of 
effective defensive tactics in prey (Abrams 2000). 
These tactics can be divided into 2 categories: those 
focusing on the pre-capture phase, such as counter-
adaptations against searching, recognition, and 
attack by predators (Davies et al. 2012, Cooper et al. 
2015), and those that are effective after prey have 
been captured. Compared to the pre-capture defen-

sive tactics of prey (e.g. mimicry, schooling, and 
escape responses) (Joron & Mallet 1998, Mallet & 
Joron 1999, Davies et al. 2012, Cooper et al. 2015), 
there have been fewer reports on post-capture defen-
sive tactics. Moreover, most of those tactics are lim-
ited to passive mechanisms, such as the use of spines 
(Hoogland et al. 1956, Forbes 1989, Morgan 1989, 
Bosher et al. 2006) and poison (Losey 1972, Sugiura 
& Sato 2018) to prevent being swallowed or using 
protective armors (Norton 1988, Silva et al. 2019, 
Lovas-Kiss et al. 2020) to prevent digestion and allow 
passage through the gut. 
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ABSTRACT: Predation is one of the major forces driving the evolution of defensive tactics in prey. 
Recently, post-capture active escape behaviors of different prey animals from the predator’s diges-
tive tract have been reported. However, no studies have yet examined when these escape behaviors 
are developed through the ontogeny of the prey. This study examined the ontogenetic change in a 
unique defensive tactic of juvenile Japanese eels Anguilla japonica in which they escape via the 
predator’s gills after being captured. We used A. japonica ranging in stage from pre-settlement 
glass eels to post-settlement yellow eels (based on their habitat change from tidal estuaries to fresh-
water rivers). The results indicated that individuals in the 2 earliest stages of glass eels (stages VIA0 
and VIA1) never escaped after being captured, while 28.1% of individuals after the middle glass eel 
stages (VIA2 and later stages) escaped via the predator’s gill. The ontogenetic timing of the devel-
opment of escape ability coincides with when eels settle into benthic riverine and estuarine habitats 
as suggested by previous studies. Additionally, the pre-capture attack avoidance ability of Japa-
nese eels improved rapidly with growth in the subsequent elver and yellow eel stages. These results 
suggest that the unique post-capture defensive tactic of eels may be particularly important during 
the vulnerable period around the settlement phase when they are less capable of avoiding predator 
attacks. Our study offers valuable insights into the behavioral ecology and conservation of anguil-
lid eels, which have faced considerable population declines.  
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Recently, some active behaviors to allow escape 
from the digestive tract of predators after being cap-
tured have also been reported. For example, an 
aquatic beetle captured by frogs can move through 
their digestive tract toward the end of the intestine 
and be expelled alive in a short period of time (Sugi-
ura 2020). The parasitic gordian worm can escape 
through the mouth, nose, or gills when the host 
insect is captured by fish or frogs (Ponton et al. 
2006). The Japanese eel Anguilla japonica can 
escape through a predator’s gill clefts by navigating 
backward from the stomach of a predatory fish after 
being swallowed (Hasegawa et al. 2022, 2024) (see 
Fig. 1). However, there are only limited reports of 
these active escapes, and detailed information 
regarding their ontogeny, mechanisms, and evolu-
tion is still largely lacking. 

Generally, the ability of prey to avoid predation im -
proves with ontogeny in the prey species due to the 
development of their physical and sensory organs and 
the acquisition of experience and learning (Werner & 
Gilliam 1984, Warkentin 1999, Pongrácz & Altbäcker 
2000, Lind & Cresswell 2005). Given that prey with 
underdeveloped escape abilities are vulnerable to a 
wide range of predators, the early life history period is 
a major bottleneck that exerts particularly strong 
selection pressure on most prey species (Folkvord & 
Hunter 1986, Fuiman & Magurran 1994, Cowan et al. 
1996, Hinke et al. 2020). This intense selection pres-
sure during early life history has shaped the evolution 
of a variety of morphological (e.g. armors, mimicry, 
and coloration) and behavioral (schooling, freezing, 
use of the refuges, and parental care) defensive tac-
tics in prey species, enabling them to survive this 
 vulnerable period (Fuiman & Magurran 1994). There-
fore, exploring the anti-predator tactics accompany-
ing the development of prey is essential for under-
standing their survival strategies in predator–prey 
interactions. 

Anguillid and other eels have a pelagic larval 
phase, and these larvae are referred to as leptoceph-
ali (Bertin 1956, Tesch 2003). After birth in offshore 
pelagic waters, anguillid leptocephali are trans-
ported toward their continental recruitment areas 
by ocean currents before they metamorphose into 
transparent glass eels (Miller & Tsukamoto 2017). 
After glass eels reach riverine and estuarine habitats, 
they gradually increase body pigmentation and 
become pigmented elvers (Fukuda et al. 2013). 
Once the eels complete the pigmentation process, 
they are referred to as yellow eels. Throughout 
these developmental stages, their morphology and 
behaviors change (Imbert et al. 2008, Hatakeyama 

et al. 2022). It is possible that these changes in -
fluence their defensive tactics against predators. 
Moreover, fishes with a pelagic larval phase develop 
considerably in their swimming and sensory per-
formance leading up to settlement in new habitats 
(Fuiman & Magurran 1994, Leis 2006, 2010). This 
suggests that during the settlement phase, individ-
ual traits become more crucial in response to 
various natural selection pressures, including pre-
dation, compared to during the pelagic phase, 
which is more influenced by random events (e.g. 
passive transportation). Therefore, juveniles around 
the settlement phase are a particularly important 
stage with which to investigate defensive behavior. 

Temperate anguillids (e.g. Japanese eels A. japon-
ica, European eels A. anguilla, and American eels 
A. rostrata) are well-known for their high commercial 
value, and their populations have drastically declined 
in recent decades (Haro et al. 2000, Kaifu & Yokouchi 
2019, Righton et al. 2021). In response to these pop-
ulation declines, various factors affecting their pop-
ulation levels have been studied, including migration 
patterns, habitat selection, and the amount of fishery 
catches (Righton et al. 2021). However, surprisingly 
little is known about their defensive tactics against 
predators, even though predation is a crucial factor 
for the survival of prey species in general. 

Previously, we discovered a unique defensive be -
havior of juvenile Japanese eels in which more than 
half of the captured individuals escaped via the 
predator’s gill by moving between the gill arches 
(Hasegawa et al. 2022) (Fig. 1). In all successful 
escapes, the tails of the eels emerged first through 
the gill, and then their whole bodies slipped out in a 
backward direction. Further experiments using an 
X-ray video system revealed that the eels escape by 
moving back up through the digestive tract from the 
stomach towards the gills (Hasegawa et al. 2024). 
Although we have clarified fundamental information 
(e.g. escape rate, time, route, and behavioral charac-
teristics) about this unique escaping behavior, it is 
still not clear how this defensive tactic develops 
through ontogeny. 

In this study, we investigated changes in the defen-
sive ability of juvenile Japanese eels through their 
development. We conducted a predator–prey inter-
action experiment to examine how escape behavior 
after capture varies across different developmental 
stages of A. japonica juveniles, from pre-settlement 
glass eels to post-settlement yellow eels. Further-
more, we evaluated changes in their ability to evade 
predator attacks before capture across various devel-
opmental stages. 
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2.  MATERIALS AND METHODS 

2.1.  Fish samples 

We used Anguilla japonica juveniles (mean ± SD: 
60.3 ± 6.2 mm, n = 302) that were reared by recruit-
ing early stage glass eels each year over 3 seasons in 
2021–2023. They were purchased from licensed 
local fishermen at the Tone River estuary in Chiba, 
Japan. The eels were maintained in glass aquariums 
(600 × 300 × 360 mm) and were fed frozen Chirono-
mus sp. larvae once every 1–2 d. For the predator 
species, we used adult dark sleeper, Odontobutis 
obscura (167.4 ± 22.6 mm, n = 14; see Table S1 in 
the Supplement at www.int-res.com/articles/suppl/
m752p137_supp.pdf), a nocturnal carnivorous fish 
that is a common predator in southwestern Japanese 
rivers. In the laboratory, O. obscura actively prey on 

A. japonica, and the eels have been confirmed to 
escape via the predator’s gill following predation 
(Hasegawa et al. 2022). All O. obscura were kept in 
10 l holding tanks (270 × 200 × 200 mm) after being 
collected using a hand net in the Urakami River in 
Nagasaki, Japan. Only those individuals that ate 
food under observation were transferred to the 
experimental tanks. O. obscura were initially fed 
frozen Manila clams, which have high palatability in 
the early rearing period, and were fed live Japanese 
killifishes Oryzias latipes for several days before 
starting the experiment.  

2.2.  Experimental procedure 

Each experimental trial began with the retrieval of 
an A. japonica individual from the rearing aquarium 
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Fig. 1. Escape of Japanese eel Anguilla japonica juvenile via the predator’s gill after being captured. (a) Snapshot of the 
post-capture escape of A. japonica. (b) Mode and sequence of escape, with parts of the eel inside the predatory fish  

shaded black

https://www.int-res.com/articles/suppl/m752p137_supp.pdf
https://www.int-res.com/articles/suppl/m752p137_supp.pdf
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using a hand net. After anesthetization with 2-phen-
oxyethanol, its total length (TL) and body weight 
(BW) were quickly measured, and photographs were 
taken from both side and top views with a stereo-
microscope (Zeiss Stemi 305; Carl Zeiss). The devel-
opmental stage was then determined as one of 7 
stages (VIA0, VIA1, VIA2, VIA3, VIA4, VIB, and yellow 
eels; see Table 1) based on the progression of their 
pigmentation (Fukuda et al. 2013). Each measured 
individual was used in the experiment after recover-
ing in a small tank (200 × 150 × 120 mm) for 1 d. 
Predator–prey experiments were conducted in a 
large glass aquarium (900 × 600 × 300 mm, 20.5 ± 
1.4°C) divided into 8 sections by nylon mesh fabric 
(250 × 170 × 300 mm, mesh opening: 0.55 × 0.75 mm; 
Nagasaki Tenmaku). The measured individual was 
introduced into a PVC pipe (30 mm diameter), set in 
the center of one section of the experimental tank 
containing a predator, and left to acclimate for at 
least 10 min. Then, the trial was started by slowly 
removing the PVC pipe to release the eel, and the 
predator–prey interaction was recorded using a 
video camera (DSC-RX0; SONY) from the dorsal 
view. If O. obscure showed no attack behavior to -
wards A. japonica or failed to capture the eel after 
20 min, the experiment was finished. In cases where 
the predator attacked the eel, we counted the number 
of attacks by the predator (i.e. the number of attack-
evasion instances by A. japonica) until the end of the 
trial. If the predator captured A. japonica, we con-
tinued recording their interaction for at least 3 min. 
This recording time was adopted based on the maxi-
mum escape time of A. japonica (130 s) in our pre-
vious studies (Hasegawa et al. 2022, 2024). All indi-
viduals that escaped via the predators’ gill were kept 
in plastic tanks (200 × 150 × 120 mm) for at least 48 h 
to investigate whether they could survive after the 
trial. While O. obscura individuals were repeatedly 
used (167.4 ± 22.6 mm, n = 14; Table S1), each A. 
japonica individual (60.3 ± 6.2 mm, n = 302) was 
used only once. 

The experiment was conducted over 3 seasons 
from 2021 to 2023 to collect behavioral data on A. 
japonica at various developmental stages, ranging 
from early glass eels to yellow eels. In 2021, monthly 
experiments were conducted from May to Sep-
tember, using 20 or 30 eels each time (n = 120). The 
following year, in 2022, the experiment was carried 
out from March to May with 15 eels used each week 
(n = 180). Addi tional experiments were conducted 
in July and September 2022 (n = 15) and in February 
2023 (n = 15) due to a lack of data on early glass eels 
and yellow eels. 

2.3.  Ethical statement 

Animal care and experimental procedures were ap -
proved by the Animal Care and Use Committee of the 
Faculty of Fisheries, Nagasaki University (Permit No. 
NF-0054) in accordance with the Guidelines for Ani-
mal Experimentation of the Faculty of Fisheries and 
the Regulations of the Animal Care and Use Commit-
tee of Nagasaki University. 

2.4.  Statistical analysis 

Given that there was a small number of individuals 
in the earliest stage (VIA0, n = 5), this stage was com-
bined with VIA1 as stage VIA01 in all statistical analy-
ses. A generalized linear mixed model (GLMM) ana -
lysis with a binomial distribution and logit link 
function was used to test whether the developmental 
stage of A. japonica influenced escape success via the 
predator’s gill. Escape success and failure were desig-
nated as one and zero, respectively, and were consid-
ered objective variables. In this model, the develop-
mental stage of A. japonica was regarded as an 
ex  planatory variable (i.e. fixed effect), and the pred-
ator identification was included as a random effect. 
The significance of the developmental stage was as -
sessed by removing it from the model and comparing 
the change in deviance using a likelihood ratio test 
(LRT) with a χ2 distribution. 

Additionally, we analyzed the effect of the develop-
mental stage of A. japonica on their defensive behav-
iors by categorizing interactions with predators into 
3 phases (Fig. 2): (1) pre-captured attack evasion, (2) 
tail emergence via the predator’s gill after being cap-
tured, and (3) completing the escape. In each model, 
the predator's identification was included as a random 
effect. In the first phase analysis, we tested whether 
the developmental stage of A. japonica in fluenced 
the evasion behavior before being captured during an 
attack by O. obscura by using the mixed-effect Cox 
 regression model (Fig. 2a). This model is based on a 
widely used semi-parametric survival model, the Cox 
proportional hazard model (Cox 1972). It can include 
individuals that never undergo the event of interest as 
sources of censored data. Censoring allows for the cal-
culation of probability functions without attributing 
event times. Although time is usually used as the axis 
of the abscissa in this model, in this study we utilized 
the number of times each individual successfully 
evaded a predator’s attack by the end of the experi-
ment. This approach was adopted to quantify the abil-
ity of A. japonica to escape before they were captured 
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using anti-predator behaviour. The definition of attack 
avoidance was that the eels could try to evade capture 
by showing some response behavior against the ap-
proaching predator with its mouth open. Survival 
without being eaten by O. obscura until the end of the 
experiment was re garded as censoring. The LRT with a 
χ2 distribution was used to test the significance of the 
developmental stage. A hazard ratio was calculated 
based on the exponentiated parameter coefficients. 
The hazard ratio indicates the relative risk of the event 
occurring (i.e. the risk of being captured by the pred-
ator) for different stages of eel development compared 
to the reference group. A hazard ratio greater than 1 
indicates an increased risk, while a hazard ratio less 
than 1 indicates a decreased risk compared to the ref-
erence group. 

In order to identify factors that influenced the 
escaping success of A. japonica after capture, we ana-
lyzed each of the 2 phases, tail emergence (Fig. 2b) 
and escape completion (Fig. 2c), by using a binomial 
GLMM analysis with a logit link function. Whether 
the tail part emerged or not and final escape success 
or failure were the objective variables, designated 
as 1 and 0, respectively. As in the pre-captured analy-

sis, we assessed the significance of the developmen-
tal  stage of A. japonica using the LRT with a χ2 
 distribution. 

All analyses were conducted using R v.4.2.1 (R Core 
Team 2022) with the package ‘survival’ for the mixed 
effect Cox regression model, the package ‘lme4’ for 
the GLMM. 

3.  RESULTS 

3.1.  Developmental changes in escape  
success after capture 

During the 3 yr experiment, across 305 trials, we ob -
served 254 interactions between Anguilla japonica 
and the predator Odontobutis obscura, and 227 in -
stances of escape behaviors after capture were re -
corded from 7 pigmentation stages (Table 1). These 
trials and interactions included 5 stages of glass eels 
(VIA0, VIA1, VIA2, VIA3, VIA4), elvers (VIB), and yellow 
eels. Of the 227 eels that were captured by predators, 
26.4% (60 out of 227) of the individuals escaped via 
the predator’s gill. Individuals in the 2 earliest devel-
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Fig. 2. Interactions between Anguilla japonica and the predatory fish Odontobutis obscura throughout the experiment, showing 
(a) pre-captured attack evasion phase, (b) tail emergence phase via the predator’s gills after being captured, and (c) escape  

completion phase
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opmental stages (VIA0 and VIA1) never escaped after 
they were captured (Fig. 3). Individuals at the VIA3 
and VIA4 stages showed lower escape rates (16 and 
17%, respectively) than those in the other develop-
mental stages of VIA2, VIB, and yellow eel (30, 33, and 
33%, respectively) (Fig. 3). Escape probability was 
significantly affected by the developmental stage 
(GLMM: χ2 = 15.47, df = 5, p < 0.01), but there was no 
effect of stage on the escape time through the pred-
ator’s gill (GLMM: χ2 = 6.82, df = 4, p = 0.15). In mor-
phometric measurements, the TL and BW of A. japon-
ica continued to decrease during the glass eel stage, 
and then these values increased sharply during the 
elver and yellow eel stages (Fig. S1). 

3.2.  Developmental changes in pre- and  
post-capture escape abilities 

In the attack avoidance phase against predators 
prior to capture (Fig. 2a), there was a significant effect 
of the developmental stage of A. japonica on attack 
avoidance probability (LRT: χ2 = 16.4, df = 5, p < 0.01; 
Fig. 4). Based on calculations using hazard ratios, the 
capture risk for A. japonica glass eels (VIA01, VIA2, 
VIA3, and VIA4) and elvers (VIB) was approximately 3.7 
times and 2.4 times higher, respectively, than that of 
yellow eels during the trials (Fig. 4, Table S3). 

After being captured by the predatory fish (Fig. 2b), 
41.4% of individuals (94 out of 227) were able to ex -
tend their tail through the predators’ gill clefts; 63.8% 
of those that achieved tail-emergence succeeded in 
escaping completely (60 out of 94; Fig. 2c), while 
36.2% of individuals were swallowed again (i.e. died). 
Although the developmental stage of A. japonica sig-
nificantly influenced the tail emergence phase 
through the predator’s gill (GLMM: χ2 = 17.2, df = 5, 
p < 0.01), no significant effect was observed in the 
subsequent escape completion phase (GLMM: χ2 = 
6.7, df = 5, p = 0.24) (Fig. 5). 

4.  DISCUSSION 

This study tested the ability of eels at 7 different 
developmental stages — from early-stage glass eels to 
young yellow eels — to avoid the attacks of a predator 
or subsequently escape via the gill of the predator. 
The results indicated that the post-capture escape 
ability of Anguilla japonica changes with develop-
ment, and underdeveloped glass eels (i.e. VIA0 and 
VIA1) are incapable of escaping via the predator’s gills 
(Figs. 3 & 6). Although the precise timing of their 
settlement in freshwater habitats is still lacking, most 
individuals that are caught at the surface of estuaries 
during the recruitment period across a wide range of 
regions are glass eels up to the VIA1 or VIA2 stage 
(Fukuda 2010, Aoyama et al. 2012, Leander et al. 2013, 
Fukuda et al. 2016, Guo et al. 2024), whereas in the 
lower reaches of the river, most individuals were 
found to be at or beyond the VIA3 stage (Fukuda 
2010). These reports, together with our results, sug-
gest that A. japonica move up into freshwater areas 
during the middle stage of the glass eel period (i.e. 
around VIA1–VIA3) and develop the ability to escape 
through the gills of predators during this transitional 
period (Fig. 6). 

Predator–prey interactions can be divided into 4 
stages: searching, recognition, catching, and hand-
ling (Davies et al. 2012). Prey species have counter-
adaptations at each of these stages. Generally, be -
cause prey in their early life history are vulnerable to 
predator attacks, they have developed defensive tac-
tics to avoid being searched for (e.g. crypsis and hab-
itat selection) or recognized (e.g. warning signals and 
mimicry) by their predators (Gotceitas & Brown 1993, 
Fuiman & Magurran 1994, Palma & Steneck 2001, 
Randall 2005, Lindstedt et al. 2008, Miller et al. 2013, 
Ruxton et al. 2019). Similar to those prey species, to 
survive the vulnerable period when eels are less 
capable of avoiding attacks from predators, the evolu-
tion of the unique anti-predator tactic focusing on 
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Stage                    Trials             Captured             Post-capture             Escape time (s)                    TL (mm)                          BW (g) 
                                                                             escape (Number [%])        (mean ± SD)                  (mean ± SD)                 (mean ± SD) 
 
VIA0                           4                         3                             0 [0]                                 –                            60.29 ± 0.98                   0.17 ± 0.02 
VIA1                         14                       14                            0 [0]                                 –                            58.18 ± 2.67                   0.14 ± 0.02 
VIA2                         10                       10                           3 [30]                       56.7 ± 11.6                   58.45 ± 2.79                   0.14 ± 0.03 
VIA3                         21                       18                           3 [16]                        21.0 ± 3.7                      58.10 ± 1.81                   0.12 ± 0.03 
VIA4                         38                       35                           6 [17]                       28.0 ± 14.7                   57.23 ± 2.06                   0.10 ± 0.03 
Elver (VIB)            162                    144                        47 [33]                       32.1 ± 18.3                   61.07 ± 6.62                   0.15 ± 0.10 
Yellow eel               5                         3                            1 [33]                              26.0                           73.18 ± 9.66                   0.38 ± 0.14

Table 1. Summary of parameters at each developmental stage. Only data from trials where the predator exhibited attack behavior  
at least once were used. Refer to Table S2 for the summary of each year. TL: total length; BW: body weight
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handling, whereby they escape via the gill of pred-
atory fish, might have been selected for. This hypo -
thesis is supported by the fact that eels develop the 
post-capture escape ability (VIA2 stage) earlier than 
they improve their pre-capture attack avoidance abil-
ity (elver and yellow eel stages) (Fig. 6). Although 
knowledge about the predators of eels around the set-
tlement phase is quite limited, recruited eels would 
likely encounter a variety of predators in coastal, 
estuarine, and riverine environments (Needler 1929, 
Miyake et al. 2018). Conducting similar predator–
prey experiments with various types of predators 
would further strengthen our hypothesis that this be -
havior contributes to juvenile eel survival in the wild. 

In the detailed analysis that divided the escape be -
havior into 2 phases (i.e. tail emergence and escape 
completion) (Fig. 5), only the tail emergence phase 
was significantly affected by the developmental 
stage of eels. Observations of morphological changes 
with development in A. japonica suggest that 
changes in volved in their swimming and loco motor 
performance, such as increased mucus cells and 
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Fig. 3. Mean (±SE) probability of Anguilla japonica escaping via the gill of the predatory fish in each developmental stage 
(shown as illustrations based on progression of pigmentation; Fukuda et al. 2013). As the transition from elver (VIB) to yellow 
eel (Y) results from guanine deposition in the peritoneal membrane rather than on the body surface, an illustration for Y is not  

included. Numbers in parentheses: number of captures by predatory fish for each stage
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erythrocytes as well as the formation of lateral mus-
cles, occur during the glass eel period (Hata keyama 
et al. 2022). These findings suggest that morphologi-

cal changes and im proved locomotor 
performance with development might 
be necessary  for A. japonica to navi-
gate back through the predator’s 
digestive tract toward the gill after 
they are captured (Hasegawa et al. 
2024). On the other hand, the success 
of completing the escape after the tail 
emerges might be influenced by fac-
tors other than the developmental 
stage of the eels, such as the energy ex -
pended until tail emergence. Further 
experiments are re quired to identify 
the de tailed traits of A. japonica that 
enable post-capture escape by com-
paring escape success after measuring 
their behavioral performance (e.g. en -
durance and burst swimming) and 
physiological development (e.g. mu -
cus and muscle mass) across various 
developmental stages. 

The change in the developmental 
stage of eels also significantly im -
proved their ability to avoid attacks 
from predators before capture. This 
is  likely due to the improvement in 
escape performance (e.g. re sponse, 
velocity, and acceleration) or the emer-
gence of a specific response, similar to 
other larval and juvenile fish (Webb 
1976, Fuiman 1993, Hale 1999, Kopf et 
al. 2014). Although the escape behav-

ior of eels differs from that of general fish (e.g. C-start 
behavior) in that eels instantaneously retract their 
head and swiftly swim backward against stimulation 
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juvenile eels. AHabitat schematic was created based on previous studies (Fu-
kuda 2010, Aoyama et al. 2012, Leander et al. 2013, Fukuda et al. 2016, Guo et  

al. 2024); Bmorphology was designed based on Hatakeyama et al. (2022)

Fig. 5. Mean (±SE) probability of (a) tail emergence and (b) escape completion in each developmental stage of Anguilla japonica. 
Numbers in parentheses represent the data points (denominators for probability) for each stage: (a) number of captures and (b)  

number of tail emergences
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(D’Août & Aerts 1999, Ward & Azizi 2004), there is no 
knowledge of developmental changes in these behav-
iors. The formation and increase in lateral muscles 
with development in eels (Fig. 6) may have resulted in 
the emergence or improvement of their escape behav-
iors, including backward swimming and head retrac-
tion, thereby increasing the escape probability against 
attacks by predators. 

In line with previous studies on A. japonica (Fukuda 
et al. 2013, Hatakeyama et al. 2022, Guo et al. 2024), 
al  though the TL and BW of A. japonica decreased 
during the glass eel stages, a marked increase in these 
values was ob served during the elver (VIB) and yellow 
eel stages (Fig. S1 and Fig. 6). Such decreases in size 
during and after metamorphosis have been observed 
in other anguillid species (Tesch 2003) and other fish 
having a leptocephalus phase (Pfeiler 1984, Miller 
2009). These changes can be attributed to variations 
in body water content as well as modifications in mus-
cles and other organs (Pfeiler 1984, Hatakeyama et al. 
2022). Interestingly, the late glass eel stages, just be -
fore these values start to increase, showed the lowest 
escape success rates (VIA3, 16%; VIA4, 17%, respec-
tively) compared to other stages that can successfully 
escape (32% on average; Fig. 3, Table 1). This sug-
gests that A. japonica may have a vulnerability, at 
least for escaping via the gills of O. obscura, at the end 
of their reduction in TL and BW (i.e. the late glass eel 
stages). The fact that defensive abilities, once devel-
oped, decline in certain stages is intriguing and open 
to further research, including the investigation of vul-
nerabilities to other factors affecting their survival 
(e.g. feeding and intraspecific competition) during 
this period. 

Knowledge about ontogenetic changes affecting 
survival is important from a conservation perspective. 
In temperate eels, especially European eels, restock-
ing (trap-and-transport) programs are actively con-
ducted (Pedersen 2000, Desprez et al. 2013, Ovidio 
et al. 2015, Nzau Matondo et al. 2019, 2021, Delrez et 
al. 2021). This strategy for resource restoration is to 
capture pre-settlement glass eels and release them 
back into inland rivers. Although protecting the 
period during which they are most vulnerable to var-
ious natural selection forces in the wild could im -
prove their survival rates after release, the specific 
developmental stages at which they are most vul -
nerable and truly need protection are still unclear. 
Further research on the behavioral, physiological, 
and physical changes in eels through ontogeny can 
provide insights into selecting the appropriate devel-
opmental stages and individuals for release. There-
fore, our research has the potential to help establish 

effective and efficient approaches for restoring pop-
ulations of temperate eels. 

Overall, this study reveals that Japanese eels de -
velop the ability to escape after being captured at a 
certain developmental stage, and this stage might co -
incide with their settlement timing in riverine and 
estuarine habitats. Some invertebrate prey also pos-
sess the ability to actively escape from the digestive 
tract of their predators (Ponton et al. 2006, Sugiura 
2020). Our study offers some fundamental insight that 
serves as an important guideline for investigating 
developmental changes in these active escape behav-
iors of prey species. Moreover, we found that the 
developmental stage of A. japonica significantly in -
fluenced both pre-capture attack avoidance and 
post-capture escape behaviors. Our findings indicate 
the vulnerability of the early stage eels to predatory 
fish immediately after reaching freshwater habitats, 
thereby providing valuable insights into the ecology 
and conservation of anguillid eels, which have faced 
remarkable population declines. 
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