
1.  INTRODUCTION 

Seabirds have long been study models in biolog-
ging-based movement studies (Weimerskirch et al. 
2002, Ryan et al. 2004). Their popularity in avian 
movement research can in part be attributed to their 
tendency to nest in colonies, which facilitates the 
recapture of the tagged individuals. As such, most 
studies in seabird movement ecology have been con-
ducted in the summer, when breeding birds exhibit 
colonial central-foraging behaviors (Wakefield et al. 
2009). In contrast, the more nomadic movements of 

seabirds during the winter are often understudied 
(Marra et al. 2015), despite being crucial to under-
standing phenology shifts, mortality, energy budgets, 
or overlap with fisheries during far less favorable 
environmental conditions (Croxall et al. 1984, Salton 
et al. 2015). 

The king penguin Aptenodytes patagonicus is a 
diving predator of the Southern Ocean. During the 
breeding season, it relies on schooling mesopelagic 
fish (myctophids) at the Polar Front, a circumpolar 
front of significant ecological importance and the 
northmost limit of the west-flowing Antarctic Circum-
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polar Current (Bost et al. 2009, Park et al. 2014, 
Scheffer et al. 2016). As circumpolar marine pred-
ators, king penguins can be used to monitor the lower 
trophic levels of sub-Antarctic waters (Bost et al. 
2002, 2015, Proud et al. 2021, Brisson-Curadeau et al. 
2023a). While their distribution during the summer 
has been extensively studied (e.g. Bost et al. 1997, 
Trathan et al. 2008, Scheffer et al. 2016, Brisson-Cura-
deau et al. 2024), few studies have looked at their 
winter movements. The consensus is that king pen-
guins move south in winter, towards the ice limit, 
likely to feed on prey concentrating just below the 
shallow thermocline of high latitudes (Charrassin & 
Bost 2001, Bost et al. 2004). However, these studies 
have been conducted on a limited number of colonies 
and may not be representative of the whole popula-
tion. A deeper understanding of the winter foraging 
ecology of king penguins is important, as this period 
of limited food abundance might have an impact on 
breeding success in the following seasons (e.g. Bris-
son-Curadeau et al. 2023b). 

The populations of the archipelagos of Crozet and 
Kerguelen provide contrasting environments for stu-
dying the foraging behavior of king penguins. While 
being oceanic neighbors (at 1300 km apart), these 2 
large populations are surrounded by drastically dif-
ferent marine dynamics, potentially impacting their 
foraging strategies in winter. For instance, the Polar 
Front is located far offshore from the colonies in 
Crozet, while it circulates much closer to Kerguelen 
(Pauthenet et al. 2018). Furthermore, the high iron 
input at Kerguelen sustained by wind-blown dust 
from the mainland stimulates high productivity around 
the colonies, while productivity is usually lower 
around the smaller archipelago of Crozet (Tripathy & 
Jena 2019). These differences create contrasting for-
aging conditions in the summer for various marine 
predators including penguins, influencing the direc-
tions, durations, and distances of foraging trips (Bost 
et al. 1997, Pütz 2002, Scheffer et al. 2016). However, 
it is unclear if and how these different marine dynamics 
also affect the wintering distributions. 

Here, we investigated the wintering distributions 
of these 2 king penguin populations; for the Crozet 
Archipelago, we aimed to confirm the southern 
wintering waters reported in the few previous 
studies (Charrassin & Bost 2001, Bost et al. 2004, 
Orgeret et al. 2019), and for the Kerguelen Archi-
pelago, this is the first report of wintering locations. 
We then explore potential explanations for the 
observed distribution patterns by analyzing tracking 
data in conjunction with available remotely sensed 
oceanographic data. 

2.  MATERIALS AND METHODS 

2.1.  Study site and phenology 

The study took place in 2 king penguin colonies 
 located in neighboring archipelagos of the southern 
Indian Ocean. La Grande Manchotière (46° 25’ S, 
51° 51’ E) is located on Possession Island (Crozet 
Ar chipelago) and hosts around 24 000 breeding 
pairs (Barbraud et al. 2020). The Ratmanoff colony 
(49° 14’ S, 70° 33’ E) is located in the Kerguelen 
Archipelago and hosts around 87 000 breeding 
pairs (Barbraud et al. 2020). Crozet and Kerguelen 
have 2 of the largest king penguin populations in 
the world, collectively containing over 45 % of the 
total population (Bost et al. 2013, Barbraud et al. 
2020). 

Breeding phenology at both colonies is similar: 
king penguins provision their chick frequently in the 
austral summer (end of January to March) but leave 
their chick in creche at the colony in winter (May to 
August) and spend most of their time foraging at sea 
(Saraux et al. 2012, Bost et al. 2013). Chick provision-
ing resumes in spring (late September) and fledging 
occurs from November to January. 

2.2.  Biologging equipment 

Biologging studies took place during the winters of 
2021 and 2022, at Crozet and Kerguelen, respectively. 
We equipped breeding adults in April, before their 
winter departure, and retrieved the loggers in spring, 
when they returned to the colony. 

Penguins were captured using a pole with a large 
crook, allowing us to trap the chest area. Birds were 
then equipped by gluing the biologger to the back 
feathers using Loctite 401 glue, secured by 2 cable-
ties. Two types of loggers were used in the study. 
The first type was SPLASH10-283 tags (99 g; Wild-
life Computers). These tags transmitted 1 data 
point daily via the ARGOS satellite network. Eight 
penguins were equipped with these loggers at Cro-
zet and 4 at Kerguelen. The second type of loggers 
were Intigeo C330 light-recorders (3.2 g, 17 × 19 × 
8 mm; Migrate Technology). These solar geolocator 
(GLS) units collect light intensity data every 60 s 
and maximum light values every 5 min. These tags 
need to be retrieved to download the data. 
Equipped penguins can be undetected when they 
return to the colony in spring, even when feeding 
their chick, and can molt their feathers on land 
before the biologgers are retrieved. To avoid losing 
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loggers during molting, we glued these tags to V2G 
154C VHF tags (42 g, 65 × 28 × 13 mm excluding 
antenna) from Lotek. These VHF tags can be re -
motely detected with a radio antenna, increasing 
the likelihood of detections of adults when return-
ing to the colony, but also greatly facilitating the 
search for loggers that fell on the ground during 
molting if birds were undetected. To limit interfer-
ing with the birds’ hydrodynamics, we glued the 
VHF tags on the side of the GLS, rather than on 
top. All loggers were centrally placed on the back 
of the birds. Fifteen penguins were equipped with 
these GLS/VHF loggers, all at Kerguelen, as we did 
not have these loggers available when deploying in 
Crozet. All equipment types weighed less than 2% 
of each penguin’s body weight. 

2.3.  Data processing 

Only datapoints from June and July (hereafter 
‘winter’) were retained in the analysis of winter distri-
butions, as May and August typically include long 
inward/outward trips to the colony. 

For Splash tags, class B ARGOS localization were 
discarded due to their poor precision. For GLS data, 
we used the light sensor data to determine sunrise 
and sunset and combined the output with the internal 
clock of the logger to estimate latitude and longitude 
(Afanasyev 2004). Individual locations were esti-
mated following Lisovski et al. (2020) to obtain 2 posi-
tions per day, with an average accuracy of ~180 km 
(Phillips et al. 2004). The first step of this analysis was 
to detect the twilight periods using the R package 
‘BAStag’ (Wotherspoon et al. 2013). We chose a light 
threshold value of 1.5 to automatically demarcate all 
sunrises and sunsets (Rakhimberdiev et al. 2016). This 
step was followed by a visual inspection of each in -
dividual sunrise and sunset identified by ‘BAStag’. 
The annotated light data were then analyzed with 
the ‘GeoLight’ package to estimate location data 
(Lisovski et al. 2015). 

2.4.  Oceanographic variables 

June and July averages of sea ice and sea surface 
temperature (SST) over the 2 winters were extracted 
from Copernicus Marine Environment Monitoring 
Service (CMEMS) at 0.083° resolution (https://doi.
org/10.48670/moi-00016). The climatological posi-
tion of the Polar Front was extracted from Pauthenet 
et al. (2018). 

2.5.  Analysis 

The kernels for the winter foraging distribution of 
both colonies were calculated using a 90% quartic 
kernel function (Silverman 2018). Headings of forag-
ing trips for all individuals were calculated by averag-
ing the angle between foraging coordinates of regular 
intervals with the coordinates of the colony. The dif-
ferences in latitude and SST between the zones tar-
geted by the 2 colonies were assessed using linear 
mixed effect models (LMM), with colony as the fixed 
effect, individual as the random effect, and the 2 vari-
ables of interest (latitude and SST) successively as the 
response variable. 

The position of the kernels relative to the Polar 
Front and the sea ice limit was overlaid on the kernel 
maps for visual assessment. All statistical analyses 
were conducted in R (R Core Team 2021). The La -
grangian model was performed in Python. Maps were 
created using ArcGIS Pro 3.1 (Environmental Systems 
Research Institute 2010). 

2.6.  Post hoc analysis 

After examining the results on the winter distri-
bution, it was suspected that king penguins might 
target zones of post-bloom waters, i.e. prey-rich 
waters initially originating from the phytoplankton 
bloom in spring, but that continue to sustain or 
attract the higher-level consumers long after the 
phytoplankton has been consumed. Because these 
waters are ad vected between the peak season of 
primary production (spring) and the period of in -
terest (winter), we used a Lagrangian approach 
(Lehahn et al. 2018) to assess where these post-
blooms would be located in winter. This model 
mimics redistribution effects by the surface cur-
rents. We first mapped the location of chlorophyll 
blooms around both colonies by selecting the 90th 
chlorophyll a (chl a) percentile in spring and then 
advected them as in Cotté et al. (2015) and Sergi et 
al. (2020). Monthly surface chl a concentrations 
during the spring bloom period (November of the 
previous calendar year to January) were extracted 
from CMEMS at 16 km2 resolution (https://doi.
org/10.48670/moi-00283; see Figs. S1 & S2 in the 
Supplement at www.int-res.com/articles/suppl/m752
p187_supp.pdf). The position shift of the water 
from spring to winter was computed using the 
Lagrangian Manifolds and Trajectories Analysis 
(LAMTA; Rousselet et al. unpubl.). Surface geos -
trophic velocity fields data at 0.25° resolution from 
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CMEMS (https://doi.org/10.48670/moi-00145) were 
used to model water particle movement in the 
LAMTA Lagrangian code. 

To test whether penguins from each colony could 
target zones that were associated with post-bloom 
water masses, we calculated the distance between 
each penguin’s tracking coordinates and the closest 
post-bloom water. We then averaged the values 
among individuals and ranked each average with 
the averages computed similarly using a data set of 
100 simulations. These simulations were built by 
randomly redistributing the penguin’s coordinates 
within the available habitat, defined as the ice-free 
area within the maximum foraging distance and 
south of the 45° latitude line, i.e. approximate loca-
tion of the sub-Antarctic front (Kostianoy et al. 
2004) and theoretical northern limit of the king 
penguin range. 

3.  RESULTS 

Of the 12 ARGOS tags, 3 stopped emitting data 
before June and could not be used for analysis. Only 
1 of the remaining 9 ARGOS tags was not recovered, 
although the remotely downloaded satellite data 
could still be used for the analysis. 

Of the 15 GLS deployed, 4 were retrieved the next 
spring. The GLS seemed to have been holding well on 
the feathers, but the retrieved VHF were often about 
to fall off, likely explaining our low recapture rate for 
GLS-equipped birds. As king penguins do not have 
defined nest locations, recapturing birds after the 
winter is difficult without a VHF. 

The total sample size of recovered 
devices was 7 birds at Crozet (all with 
ARGOS tags) and 6 at Kerguelen 
(2 equipped with ARGOS tags and 
4 equipped with GLS). Deployment 
details for retrieved biologgers can be 
found in Table S1. 

All 7 birds at Crozet headed south or 
south-west of the Island after depar-
ture. At Kerguelen, 5 birds headed east 
and only 1 headed south (Fig. 1). There 
was a clear dichotomy in the wintering 
water of the 2 colonies (Fig. 2). 

Crozet birds foraged at a higher lati-
tude (mean ± SD = 55.5 ± 2.6°S, n = 7) 
than the Kerguelen birds (53.3 ± 3.2°S, 
n = 6, LMM: p < 0.0001; Table S2). 
Consequently, the mean SST experi-
enced by the birds was lower for Cro-

zet (0.7 ± 0.9°C, n = 7) than Kerguelen (3.1 ± 2.5°C, 
n = 6, LMM: p = 0.02; Table S2). 

All birds at Crozet foraged well below (>800 km) the 
Polar Front, close to or at the sea ice limit and towards 
the post-bloom waters as defined by the Lagrangian 
model (Figs. 2 & 3). The average distance to the post-
bloom waters was lower than 95% of random simula-
tions, although visual assessment shows that pen-
guins did not always forage in the post-bloom water 
itself (Fig. 3). 

At Kerguelen, most birds foraged at or above the 
Polar Front (Fig. 2), closer to the post-bloom water 
than what was predicted by chance (>95% of simula-
tions; Fig. 4). In fact, most of the foraging locations 
overlapped with the post-bloom waters, except for the 
single individual who went south, far from post-
bloom waters. 
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Fig. 1. Average direction of the wintering location for each 
tracked king penguin, from the perspective of the colonies. 
The red arrow represents the average direction across all  

penguins from a given colony

Fig. 2. Kernel densities of the wintering location of Crozet (red) and Kerguelen 
(blue) king penguins. Locations from all equipped penguins in a colony are 
pooled. The average Polar Front position and sea ice limit are displayed with a 

 solid and a dashed line, respectively
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4.  DISCUSSION 

Wintering locations of breeding king penguins in 
the Southern Indian Ocean were only known from a 
handful of studies at Crozet (Charrassin & Bost 2001, 
Bost et al. 2004). We provide additional support that 
king penguins at Crozet head south in winter. In 
addition, we show for the first time — albeit with a 
small sample size — that a portion of Kerguelen’s 
population heads east in the winter, foraging at simi-
lar latitudes as their breeding site. Similar patterns of 
wintering movements (southerly in Crozet, easterly in 
Kerguelen) have been recorded in other sympatric 
diving predators, namely macaroni penguins Eudyp-
tes chrysolophus and southern rockhopper penguins 
E. chrysocome, breeding on those 2 islands (Thiebot 
et al. 2011, 2012). These 2 distinct waters used might 
indicate different wintering strategies driven by the 
oceanographic features surrounding the 2 archipela-
gos. While a larger sample size across multiple years 

is essential to definitively assess the strategies of the 
2 colonies, we offer an initial explanation for the ob -
served patterns. 

At Kerguelen, the Polar Front interacts with the 
extensive archipelago’s plateau and enhances circu-
lation of minerals such as iron (Blain et al. 2001, Mon-
gin et al. 2008). These nutrients enhance primary pro-
duction and favor phytoplankton blooms around the 
archipelago in spring, when light and temperature are 
optimal. Such blooms typically also sustain a higher 
biomass of zooplankton, the main consumer of phyto-
plankton (Razouls et al. 1998). The aftermath of these 
blooms, composed of zooplankton as well as the 
remaining phytoplankton, is then moved east by the 
southeastward flow of the Antarctic Circumpolar 
Current and; by the next winter, it is located further 
east and southeast of the archipelago (see Fig. 4 and 
Lehahn et al. 2018). Such post-bloom waters might 
attract a high abundance of mesopelagic fish such as 
myctophids, which feed on macrozooplankton (Pak-
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Fig. 3. (A) Position of the initial bloom waters around Crozet during late spring, i.e. the 90th percentile of chlorophyll concen-
tration. (B) Extrapolation of the bloom water position 90 d later (i.e. fall), as determined using the Lagrangian approach. (C) Ex-
trapolation of the bloom water position 180 d later (i.e. winter), as determined using the Lagrangian approach. This last period  

corresponds to the winter foraging of king penguins, as shown with the overlaid kernel densities

Fig. 4. As in Fig. 3, but for Kerguelen
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homov et al. 1996). This potential enhancement of 
marine resources southeast of Kerguelen might ex -
plain why the local population of penguins targeted 
this region. Similar processes of advection of post-
bloom waters have been shown to explain the spatial 
mismatch between predators and areas of high pri-
mary production in the Southern Ocean (Cotté et al. 
2015, Sergi et al. 2020). 

At the meso- or submeso-scale, features like eddies 
and current filaments are omnipresent east of Ker-
guelen (Rosso et al. 2014) and might further benefit 
king penguins. These processes interact with the 
post-bloom water and can enhance prey availability 
through mechanisms including upwelling or eddy 
trapping (Schmid et al. 2020, Receveur et al. 2024). 
Examples of species that have been shown to use 
these features include seals, whales, and various pen-
guin species (Bailleul et al. 2010, Cotté et al. 2011, 
Bon et al. 2015, Scheffer et al. 2016). 

At Crozet, the smaller size of the shelf limits the iron 
input in the nearby waters. Furthermore, the Polar 
Front is located hundreds of kilometers south, in deep 
waters, with limited interactions with nutrients of ter-
restrial origin (Ardyna et al. 2017, Sergi et al. 2020). 
The result is a much more homogeneous, generally 
low-chlorophyll landscape (Fig. 3; Figs. S1 & S2). This 
could explain why penguins at Crozet headed south 
up to the limit of the sea ice, where blooms supported 
by the Antarctic continent might offer better condi -
tions in the winter. As shown in Fig. 3, these blooms 
(and post-bloom waters) are found year-round at 
southern latitudes, likely because strong currents 
passing through the Southwest Indian Ridge (located 
just north of these blooms) prevent the plankton from 
any significant northward movement (Orsi et al. 
1995). Southern latitudes might thus create a good 
alternative when prey around the colony is scarce, i.e. 
during the winter. However, any preference of the 
Crozet population for post-bloom waters in winter 
would likely be less strong than at Kerguelen, as the 
movement of penguins did not exactly coincide with 
post-bloom waters (Fig. 3). As such, other marine pro-
cesses might also influence prey availability at these 
latitudes. 

Prey depth might be another factor driving the 
distribution of penguins in winter. King penguins 
forage near the thermocline, where prey aggregates. 
At Kerguelen, the area targeted by the wintering 
penguins was very close to the Polar Front, where 
the particularly shallow thermocline brings prey 
closer to the surface (Charrassin & Bost 2001). Pen-
guins at Crozet might also partly benefit from shal-
lower prey, as the thermocline near the sea ice is 

also particularly shallow (Charrassin & Bost 2001, 
Bost et al. 2004). Diving data are needed to confirm 
the importance of prey depth in winter habitat 
choice. 

Naturally, there is potentially much variability 
within king penguin populations, and the observed 
tendencies might not reflect strategies for all individ-
uals. At Crozet, non-breeding individuals target other 
areas in the winter than breeders, with tracks heading 
west rather than south (Orgeret et al. 2019). Non-
breeders are less time constrained compared to 
breeders, as the latter must return early in spring to 
resume chick provisioning. This release of breeding 
constraints may allow non-breeding individuals to 
target prolific areas outside the reach of breeding 
individuals. At Kerguelen, no tracking data on non-
breeders are available. However, we did observe some 
variability among breeders, with 1 individual heading 
south and feeding near the ice limit, similarly to the 
Crozet population. It is also possible that factors other 
than prey availability could influence king penguin 
movements in the winter, such as current-induced 
impacts on swimming direction or water visibility 
(e.g. Ballard et al. 2010, Jongsomjit et al. 2024). More 
research is needed to understand wintering variabil-
ity in these 2 populations. 

5.  CONCLUSION 

We explored the winter distribution of king pen-
guins from 2 neighboring colonies in the South Indian 
Ocean and found contrasting habitat use and forag-
ing strategies. More research is needed to further val-
idate winter habitat selection by king penguins, as it 
might have implications regarding the resilience of 
these populations to climate change. For instance, a 
decrease of sea ice might affect populations, like that 
in Crozet, which seem to use the ice-edge for forag-
ing. Similarly, changes in bloom occurrence could 
affect populations like the one in Kerguelen that use 
post-bloom water in the winter. These results indicate 
that the ability of penguin colonies to adapt to a 
changing environment is likely shaped by the specific 
oceanographic features of their foraging grounds. 
Further research is essential to better understand 
these dynamics and their long-term implications. 
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