
1.  INTRODUCTION 

Human-induced ocean warming is causing alter-
ations in species distributions according to their ther-
mal tolerance and ability to adapt (Harley et al. 2006, 
Poloczanska et al. 2013, Bernardi et al. 2024). More 
suitable conditions created by ocean warming have 
enabled many species to successfully disperse pole-
ward and establish populations beyond their histori-
cal range limits (Vergés et al. 2014, Spies et al. 2020). 
Coupled with ocean warming, changes in major 

ocean currents and increased frequency of extreme 
oceanographic events, such as marine heatwaves and 
El Niño–Southern Oscillation (ENSO) events (Yeh et 
al. 2009, Cai et al. 2015), are increasing the frequency 
and magnitude of poleward transport of larvae of 
many marine organisms. A range expansion occurs 
when larvae are able to settle, proliferate, and estab-
lish a new population outside the historical species 
distribution range (Poloczanska et al. 2013, Pinsky et 
al. 2020). This phenomenon is causing a reorganiza-
tion of marine biota (Bindoff et al. 2007, Lonhart et al. 
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2019, Sanford et al. 2019), altering the structure and 
dynamics of community interactions among resident 
species (Gilman et al. 2010, Gehrels et al. 2016, 
Marzloff et al. 2016, Wainright et al. 2021). As global 
temperatures continue to warm and natural commu-
nities change, understanding when and how range 
expansions of marine populations occur is crucial to 
help in future management and conservation of natu-
ral resources. 

By the end of the 20th century, the temperature of 
the northeast Pacific Ocean had risen 0.8°C above 
pre-1950 historical levels (Roemmich 1992). In the 
past 2 decades, this region has experienced the com-
bined effects of increasing temperatures and fre -
quencies of anomalous oceanographic events, with 
2022 being the warmest year on record (Chao et al. 
2017, Harvey et al. 2023). Consequently, many species 
across different taxa are undergoing shifts in their 
population distribution and abundance, with a general 
trend of poleward displacement (Cavole et al. 2016, 
Molinos et al. 2018, Osland et al. 2021). Some of these 
population expansions are associated with episodic 
anomalously warm oceanographic events (Sorte 2001, 
Lluch-Belda et al. 2005, Yamada et al. 2021). One ex-
ample is the subtropical red crab Pleuroncodes pla-
nipes, where adults are sporadically found in central 
locations of California due to ano malous advection 
but without evidence of reproduction (Cimino et al. 
2021). In contrast, several species have been able to 
establish stable populations that are reproducing be -
yond their historical distribution range (Goddard et 
al. 2016, Spies et al. 2020), which could then act as a 
source of larvae for future expansions. Such alter-
ations in population dynamics are leading to wide-
spread concern about the future of ecosystem struc-
ture and function, and the indirect impacts on regional 
economies when these variations involve commer-
cially fished species (Gilman et al. 2010, Pinsky et al. 
2018, Young et al. 2019, Spies et al. 2020). 

Kellet’s whelk Kelletia kelletii (Buccinoidea) is a 
subtidal gastropod whose populations have under-
gone a considerable poleward range expansion along 
the west coast of North America (Herrlinger 1981, 
Zacherl et al. 2003). The historical northern range 
limit of Kellet’s whelk was Point Conception, a widely 
recognized oceanographic and biogeographic border 
between warm-temperate and cool-temperate species 
(Ricketts et al. 1985, Hohenlohe 2004, Broitman et al. 
2008, Pelc et al. 2009). However, in 1980, 5 adult Kel-
let’s whelks (≥60 mm shell length) were found in cen-
tral California, USA (3 in Monterey Bay and 2 in Big 
Creek), far north of their historical range, presumably 
due to ocean warming (Herrlinger 1981). 

Kellet’s whelk is an ideal candidate for exploring 
the mechanism of poleward range expansion because 
it has high dispersal potential, with pelagic larval 
durations of up to 60 d (Romero et al. 2012). The first 
detections of range expansions were ~300 km beyond 
the historical northern range limit of the species 
(Herrlinger 1981), and subsequent population sur-
veys found irregular size-frequency distributions that 
suggest only occasionally successful recruitment 
(Zacherl et al. 2003, Palmer 2016). These observations 
beg the question of whether the range expansion was 
the result of periodic long-distance dispersal events 
rather than a consistent march northward by an 
expanding population. Additionally, are these mar-
ginal populations maintained by long-distance larval 
recruitment, perhaps during unusual or periodic 
(ENSO) oceanographic events, or are they main-
tained by local recruitment of larvae spawned from 
within the species’ expanded range (Zacherl et al. 
2003, Lluch-Belda et al. 2005, Cimino et al. 2021)? 
However, genetic analyses revealed minimal popula-
tion structure within the species’ historical range 
using microsatellite loci (White et al. 2010, Selkoe 
et al. 2010), challenging population genetic inference 
to address those questions. 

Examining the range expansion in Kellet’s whelk 
not only presents an intriguing scientific question on 
the origin of novel populations but also carries 
broader ecological and economic implications. Kel-
let’s whelk is a subtidal predator and scavenger with 
top-down food web effects in kelp forests and also 
supports the second-largest commercial molluscan 
fishery in California (Rosenthal 1971, Schmitt 1987, 
Aseltine-Neilson et al. 2006, Halpern et al. 2006, 
CDFW 2024). Kellet’s whelk is also prey to numerous 
species (Limbaugh 1955, Rosenthal 1971, Rosenthal 
et al. 1974), such as sea otters (Lonhart 2001), which 
are more abundant in central California than in its 
historical range to the south. Recently, fisheries har-
vest rates of Kellet’s whelk have started to rise in the 
species’ expanded range in central California (CDFW 
2024). These studies suggest that the species plays a 
functional role in kelp forest ecosystems and that its 
range expansion affects ecological and socioeco-
nomic community dynamics in central California. For 
all of these reasons, understanding how the newly 
expanded and historical populations are structured is 
essential for establishing effective and sustainable 
management strategies for Kellet’s whelk and associ-
ated communities in the face of climate change. Fur-
thermore, because Kellet’s whelk shares habitat and 
several key life history traits with many other coastal 
marine species in California (Allen et al. 2006, Froese 
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& Pauly 2011), the results of this study may help pre-
dict future expansion by other ecologically and eco-
nomically important species in the region. 

Previous population genetic studies of Kellet’s 
whelk have been focused primarily on populations 
within the Southern California Bight (SCB), within the 
species’ historical range (Selkoe et al. 2010, White et 
al. 2010). The SCB presents a unique marine environ-
ment shaped by complex oceanographic conditions, 
including fluctuating currents, seasonal upwelling, 
and temperature gradients, which create a dynamic 
marine environment that influences larval dispersal 
and population connectivity (Hyde & Vetter 2009, Mi-
tarai et al. 2009, Alberto et al. 2011). These oceano-
graphic conditions provided a better explanation for 
the low levels of population structure ob served using 
a handful of microsatellite markers, than the geo-
graphic distance between populations (Selkoe et al. 
2010, White et al. 2010). Here, we enhanced the 
 resolution and coverage by adopting a genomic ap-
proach and expanded the study area to include loca-
tions from both within the SCB, south of the SCB (his-
torical range), as well as locations 
north of the SCB (newly expanded 
range). By analyzing reduced-repre-
sentation genomic sequencing libra -
ries (ezRAD; Toonen et al. 2013) with 
an equimolar pooled ap proach (Pool-
seq; Schlötterer et al. 2014), we were 
able to assess thousands of variable nu-
cleotides (single-nucleotide polymor-
phism [SNP] loci) from 598 individuals 
sampled across 13 sites spanning ap-
proximately 800 km. This population 
genomic approach provides a much 
higher-resolution assessment to quan-
tify population genetic structure and 
relationships among geographic sites 
to test hypotheses regarding the pole-
ward dispersal of K. kelletii into the 
newly expanded regions. 

2.  MATERIALS AND METHODS 

2.1.  Sample collection, DNA 
extraction, and pooling 

Foot tissue from 46 Kelletia kelletii 
adults (>60 mm shell length; Rosen-
thal 1970) – 23 individuals in 2015 and 
23 individuals in 2016 – were sampled 
non-lethally from each of 13 subtidal 

locations (~15 m depth) across the species’ historical 
and expanded range (Fig. 1). By only including 
adults, we aimed to represent the local, established 
population and avoid the bias in population structure 
that could arise from recent recruitment if juveniles 
were included. Collected tissue samples were then 
frozen on dry ice or liquid nitrogen for transport to 
the California Polytechnic State University (San Luis 
Obispo, CA) and stored at –80°C until processed for 
DNA extraction. 

DNA extraction was performed using an optimized 
version of the ‘salting-out’ protocol developed by Li 
et al. (2011) and modified by Daniels et al. (2023a); the 
full extraction protocol is detailed in the latter study. 
Briefly, 30 mg of tissue were lysed with Proteinase K 
and RNase A in a warm water bath. Subsequently, 
DNA was separated from proteins, which precipitated 
in the presence of ammonium acetate by centrifuga-
tion, and was then purified from the supernatant via 
ethanol washes. Finally, precipitated DNA was re -
suspended in Tris-EDTA (1×TE) buffer and stored at 
–20°C until further analyses. 
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Fig. 1. Locations in California, USA, where tissue samples of Kelletia kelletii 
were collected in 2015 and 2016. Expanded range populations: Monterey 
(MON), Big Creek (BIC), and Jalama (JAL). Historical range populations 
within the Southern California Bight (SCB): Cojo (COJ), Naples (NAP), Isla 
Vista (ISV), Yellow Banks (YEL), Anacapa (ANN), Point Dume (POD), Palos 
Verdes (PAV), and Dana Point (DAP). Historical range populations south of the 
SCB: Point Loma (POL) and Isla de Todos Santos (ITS). Main ocean currents  

within the SCB are also shown
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DNA quality was assessed visually using a 1% 
 agarose gel in Tris–acetic acid–EDTA buffer, Gel
Red (Biotium) gel stain, and referenced to the 200–
10 000 bp Hyperladder I (Bioline, Meridian Bio-
science). Because 91.3% of all extractions produced 
high molecular weight bands (>10 kb) with faint 
smears from degraded DNA, all specimens were 
included in the study. Extractions were quantified 
using the AccuClear Ultra High Sensitivity dsDNA 
quantification kit (Biotium) with 3 standards and mea-
sured using a SpectraMax M2 microplate reader 
(Molecular Devices). Finally, an equimolar amount of 
DNA from each of the 46 individuals collected at each 
location was pooled by collection site (population), 
ensuring that each library had the same number of 
individuals. In total, 598 individuals belonging to 13 
populations spanning approximately 800 km were 
included in the analysis. 

2.2.  Library preparation and sequencing 

Equimolar pooled ezRAD (Toonen et al. 2013) li -
braries were generated following the detailed proto-
col of Knapp et al. (2016) for all 13 sites. Briefly, 
genomic DNA was digested using the isoschizomer 
restriction enzymes MboI and Sau3AI (New England 
Biolabs). Digestions were performed in a total volume 
of 50 μl, containing 25 μl of dsDNA (~1 μg), 5 μl of NEB 
Cutsmart Buffer (provided with restriction enzymes), 
18 μl of HPLC-grade water, 1 μl MboI (10 units), and 
1  μl Sau3AI (10 units) under the following thermo-
cycler profile: 37°C for 18 h, then deactivation at 65°C 
for 20 min. After digestion, samples were cleaned 
using Mag-Bind TotalPure NGS (Omega Bio-Tek) 
beads at a ratio of 1:1.18 (DNA:beads) to remove frag-
ments <200 bp (Norcross). Libraries were prepared 
for sequencing using the KAPA Hyper Prep DNA kit 
(Roche Sequencing and Life Science) following a 
modified version of the manufacturer’s protocol (see 
Knapp et al. 2016). Quality control by a Bioanalyzer 
and sequencing of the libraries on one lane of an Illu-
mina HiSeq2500 were performed in the DNA Tech-
nologies and Expression Analysis Core Laboratory at 
the University of California (Davis, CA). 

2.3.  Data filtering and SNPs calling 

Libraries were initially trimmed to remove low-
quality bases and adapters using dDocent v.2.9.4 
(Puritz et al. 2014), obtaining an average of 16 640 463 
reads per sample. All raw data generated for this 

project are stored in the NCBI BioProject under pro-
ject PRJNA1131457 (https://www.ncbi.nlm.nih.gov/
bioproject/PRJNA1131457) The population of Mon-
terey had the lowest number of reads, with 4 439 406, 
while Yellow Banks had the highest number, with 
45 795 618 reads. The same pipeline was used to align 
the reads using BWA (Burrows-Wheeler Alignment 
Tool, mem algorithm; https://bio-bwa.sourceforge.net/
bwa.shtml) to the K. kelletii reference genome, which 
contains 2 107 417 620 base pairs (2.1 Gb) in 46 654 
contigs and a complete Benchmarking Universal 
Single-Copy Orthologs (BUSCO) score of 84.1 % 
(Daniels et al. 2023b). 

SNPs were identified using FreeBayes (E. Garrison 
& G. Marth preprint doi:10.48550/arXiv.1207.3907) 
implemented in dDocent, by calling va riants from 
merged bam files produced by the pipeline. The 
TotalRawSNPs.vcf file contained 18 327 457 shared 
SNPs with a mean depth distribution of 5.04 (Fig. S1 
in the Supplement at www.int-res.com/articles/suppl/
m753p073_supp.pdf), which was filtered through 
VCFtools v 0.1.16 (Danecek et al. 2011) using the fol-
lowing parameters: maf 0.05, minQ30, and min-
meanDP20. To address the potential effect of missing 
data in our results, we generated a series of files using 
the filter –max-missing as implemented in vcftools, 
from the most restrictive option (no missing data, max-
missing 1) to a very relaxed one (50% missing data, 
max-missing 0.50). Further filters were ex plored in 
AssessPool (https://github.com/ToBoDev/assessPool), 
a bioinformatic program designed to filter, analyze, 
and visualize pool-seq data (Freel 2024). Downstream 
analyses only included loci with max-missing 0.75 
and 30× coverage, which kept reliable SNPs calling 
with RADseq data while avoiding overrepresented 
loci with higher quality scores (Bentley et al. 2008, Li 
2014, Rivera-Colón & Catchen 2021). 

2.4.  Population genetic analyses 

The final vcf filtered file produced was imported to 
TASSEL v. 5 (Bradbury et al. 2007) to explore popula-
tion similarities via principal component analysis 
(PCA). Population genetic differentiation between 
sites was calculated based on pairwise estimates of 
FST using PoPoolation2, implemented in AssessPool, 
which also calculates pairwise significance (p-values) 
using Fisher’s exact test (Kofler et al. 2011). We also 
compared the matrix of our pairwise estimates of 
genetic differentiation to those obtained by White 
et al. (2010), where the authors analyzed between 50 
and 92 individuals per population from the SCB 

https://www.int-res.com/articles/suppl/m753p073_supp.pdf
https://www.int-res.com/articles/suppl/m753p073_supp.pdf
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using 9 microsatellite DNA loci. For the collection 
sites shared between both studies (ANN, COJ, ISV, 
JAL, and YEL, see Fig. 1), we compared FST values 
using a Mantel test in the ‘vegan’ R package with 
9999 permutations to test for significantly correlated 
results (v. 2.5–7; Oksanen et al. 2020). 

3.  RESULTS 

Our ezRAD libraries captured an average of 19% of 
the Kellet’s whelk reference genome after mapping 
with BWA, with Yellow Banks (40.13%) and Monterey 
(8.9%) being the populations with the highest and 
lowest genomic coverage, respectively. After our con-
servative filtering approach to focus on loci with high 
coverage and minimized missing data, a total of 
40 747 shared SNPs were retained of the 18 327 457 
initial shared SNPs, of which 40 339 were biallelic and 
408 were multiallelic SNPs. Due to the low number of 
multiallelic SNPs (1%) and the insensitivity of these 
findings to their inclusion or exclusion, they were 
retained for all analyses. 

Genetic structure (FST) between pairwise sampling 
sites ranged from 0.013 between Anacapa and Isla 
Vista to 0.028 between Naples and Point Loma 

(Fig. 2). The 8 sites from the SCB (Fig. 1) had consis-
tently lower values of FST for all comparisons, ranging 
from 0.013 to 0.017 (Fig. 2), while populations within 
the expanded range showed higher levels of differen-
tiation (i.e. FST MON vs. BIC = 0.020, BIC vs. JAL = 
0.014, and MON vs. JAL = 0.017). Despite the moder-
ately low values, all pairwise comparisons of FST were 
significant (p < 0.01), showing low but significant 
population genetic structure in Kellet’s whelk. Com-
paring the population genetic structure recovered 
here to the same 5 sampling sites from the SCB pre-
viously reported by White et al. (2010), we found a 
positive and significant correlation (r = 0.55, p = 0.05) 
between the pool-seq SNP and individual-based 
microsatellite results, which demonstrated isolation 
by oceanographic distance. 

We found moderately high genetic diversity 
(Table S1), but comparing the 40 747 SNPs via PCA in 
TASSEL, which accounted for 27% of the total vari-
ance of the data, we found low genetic differentiation 
among Kellet’s whelk populations, with half of the 
sampling sites clustering within the same group. Al -
though not statistically significant (p = 1.0), sites 
located in the SCB were genetically most similar to 
each other and distinct from the rest of the range-
wide samples (Fig. 3), including the population from 
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Fig. 2. Heat map representing and including FST values generated by PoPoolation2. All pairwise p-values from Fisher’s exact  
test were <0.01 and thus significant (*). Site abbreviations as in Fig. 1
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Jalama (JAL), which is geographically closest to the 
SCB, but on the other side of Pt. Conception (Fig. 1). 
Notably, the 2 populations that are geographically 
highly proximate (~15 km) but on either side of Pt. 
Conception, namely Jalama (JAL) and Cojo (COJ), 
were highly differentiated, whereas the 2 most geneti-
cally similar populations among all 13 analyzed were 
Big Creek (BIC), in the expanded range, and Point 
Loma (POL), located ~550 km apart, in the historical 
range. Overall, the PCA showed significant popula-
tion structure throughout the range of Kellet’s whelk, 
with slightly greater differentiation among the pop-
ulations in the expanded range than among popula-
tions within the historical range. 

4.  DISCUSSION 

The results of our study show the low population 
structure of Kellet’s whelks along the geographical 
distribution range of the species, with genetic diver-
gence among the newly settled populations higher 

than among the ones within the historical range. Spe-
cifically, sampling sites within the SCB showed the 
lowest levels of genetic differentiation, clustering 
together and separated from the 2 other populations 
within the historical range, POL and ITS. Compli-
cated geography and oceanographic features of the 
SCB lead to complex current patterns, with internal 
eddies limiting exchange or promoting high dispersal 
between distant sites (Hyde & Vetter 2009, Mitarai et 
al. 2009, Alberto et al. 2011). In fact, there is no corre-
lation between pairwise genetic differentiation or 
frequency of larval exchange of the Kellet’s whelk 
populations and the Euclidean distances among sites 
in the SCB (White et al. 2010). For example, the FST 
value between DAP (within the SCB) and POL (out-
side of the SCB) — only 108 km south of the channel 
(Figs. 1 & 2, FST = 0.018) — was higher than the FST 
values of more distant locations within the channel 
(Fig. 2). Instead, nearly 50% of the observed variation 
in population genetic structure was explained by the 
frequency of larval exchange predicted by ocean cur-
rents (White et al. 2010). Dispersal into and out of the 
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SCB is limited relative to the open coastline. The 
open coastline is influenced by an offshore California 
current towards the south and inshore countercurrent 
to the north (Fig. 1), with considerable seasonal and 
inter-annual (ENSO) variability (Hobday 2000, Mi tarai 
et al. 2009, Watson et al. 2010). In addition to oceano-
graphic patterns, coastal pollution was found to be a 
significant barrier to larval dispersal both within and 
across the SCB for the bat star Patiria miniata (Puritz 
& Toonen 2011). On the other hand, kelp bed cover, 
used as a proxy for Kellet’s whelk population size, was 
a significant predictor of genetic diversity and pop-
ulation differentiation of Kellet’s whelk (Selkoe et al. 
2010), probably because large kelp areas provide more 
habitat and food for incoming recruits. These studies 
highlight factors other than geographic distance driv-
ing population genetic structure in Kellet’s whelk. 

Analysis of Kellet’s whelk population genetic struc-
ture across both the historical and expanded range 
using genomic loci allows us to test hypotheses about 
the observed range expansion. For example, among 
the expanded range sampling sites, Jalama (JAL) is 
located closest to the historical northern range boun -
dary, only ~15 km north of Cojo (COJ) in the SCB. 
Despite their geographical proximity, these 2 sites 
straddle the well-known physiological and biogeo-
graphic barrier of Point Conception (Broitman et al. 
2008, Hyde & Vetter 2009, Selkoe et al. 2010, Alberto 
et al. 2011), and are among the most genetically diver-
gent of our comparisons (FST = 0.021). Limited gene 
flow between these sites is also consistent with ob -
served dramatic differences in abundance and size 
frequency distributions of individuals in the recently 
expanded population (JAL), compared to individuals 
from the historical range across Point Conception 
(COJ) (Zacherl et al. 2003). This study and our data 
collectively indicate that Kellet’s whelk range expan-
sion was not a gradual march northward from the 
leading edge of the historical range (COJ) into the 
expanded range, progressively colonizing JAL and 
stepping northward up to Monterey. 

Decreased genetic diversity and increased pairwise 
differentiation of expanded range populations due 
to multiple successive founder events are consistent 
with climate-driven range expansion (Robalo et al. 
2020). We saw mixed support for this prediction in 
terms of increased differentiation among each of the 3 
sites in the expanded range relative to the historical 
range, and no evidence of reduced genetic diversity 
among samples of 46 adults from each of these sam-
pling sites (Table S1). Instead, we found relatively low 
population differentiation (FST = 0.013) between Big 
Creek (BIC, one of the northernmost expanded range 

sites) and Point Loma (POL, one of the southernmost 
historical range sites in our study) compared to the 
values observed among the rest of the populations, 
consistent with migration between these geographi-
cally distant locations. Furthermore, these 2 geo-
graphically isolated populations are genetically most 
similar in terms of shared SNPs in the PCA analysis, 
and are highly divergent from other sampled sites 
(Fig. 3). With thousands of polymorphic SNPs shared 
by 46 adults per population, it is unlikely that a 
founder event from the introduction of just a few indi-
viduals from POL to BIC, for example by human-
mediated transport, could explain the genetic similar-
ity. Given that these locations are ~660 km apart and 
separated by many other sampled populations, this 
similarity is most consistent with range expansion 
through larval transport, possibly associated with an 
ENSO event (Zacherl et al. 2003). During these ENSO 
events, reduced thermal barriers to larval dispersal, 
combined with alterations in the main ocean currents, 
facilitate dispersal further north beyond the signifi-
cant biogeographic barrier at Point Conception 
(Sorte 2001, Lluch-Belda et al. 2005, Yamada et al. 
2021, Miller 2023, Ferrera-Rodríguez et al. 2024). 

Based on oceanographic models, larval dispersal 
in the region ranges up to about 400 km, with longer 
distances occurring during ENSO events (Siegel et 
al. 2003, 2008, Mitarai et al. 2008). Turbulent near-
shore eddies most frequently disperse larvae in this 
region throughout an area of up to roughly 150 km 
from the site of release (Mitarai et al. 2009, Berkley et 
al. 2010, Harrison et al. 2013), which should homoge-
nize nearby sites through time. The fact that Kellet’s 
whelks from POL/BIC are divergent from multiple 
sites throughout the intervening area suggests that 
this genetic similarity is more consistent with unusual 
episodic long-distance dispersal events seen during 
ENSO than with consistent local exchange among 
sites in non-ENSO years. In fact, field data identify 
increased recruitment of whelks in the expanded 
range following ENSO events (Zacherl et al. 2003, 
Palmer et al. 2017). The ENSO dispersal hypothesis is 
also supported by the results of a length–age model 
for Kellet’s whelk, which suggests that the individuals 
first found in Monterey (Herrlinger 1981) were 
spawned between 1969 and 1974 (White et al. 2022), 
coincident with the 1972–73 ENSO event (NOAA 
2018). Previous work along the California coast 
showed evidence of differential larval transport dur-
ing El Niño years, in which frequent relaxation events 
transport larvae long distances up the coast from the 
south (Diehl et al. 2007, Toonen & Grosberg 2011). 
Although we could not test directionality with these 
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data, this mechanism provides a plausible hypothesis 
for the northward range expansion and genetic simi-
larity of distant sites seen here. However, it is also 
worth noting that strong, consistent upwelling during 
La Niña years tends to bring larvae down the coast 
from the north (Diehl et al. 2007, Toonen & Grosberg 
2011), so it is possible for the expanded populations to 
return larvae to the historical range; thus, directional-
ity in this system is worthy of future study. 

Both empirical and theoretical studies have shown 
that PCA plots provide inference about biological pro -
cesses affecting populations. For example, changes in 
SNP frequencies caused by migration, isolation, or 
admixture of populations can be detected and inter-
preted through visualization in PCA graphs (e.g. Pas-
chou et al. 2007, McVean 2009, Zheng & Weir 2016). 
Others have used PCA to reveal genetic signatures 
caused by natural or artificial selection (e.g. Chen et 
al. 2016, Caldu-Primo et al. 2017), and many have 
used PCA to understand how geographic separation 
and genetic differentiation are related, because the 
distance between points is related to the proportion 
of shared SNPs among populations (e.g. Novembre et 
al. 2008, Omberg et al. 2012, Wang et al. 2012, Yang et 
al. 2017). In our study, MON and ITS populations are 
not closely positioned together in the PCA plot, in -
dicating genetic differentiation between them. How -
ever, their equal divergence from other populations 
suggests they may have shared historical dispersal 
patterns, leading to comparable levels of differentia-
tion relative to the other populations. Yet it is note-
worthy that these 2 populations also showed the high-
est amount of missing data (Fig. S2), which may 
confound RAD-seq results (Arnold et al. 2013, Huang 
& Knowles 2016, Shafer et al. 2017, Hemstrom et al. 
2024). To test whether our results were sensitive to 
such effects, we looked for a correlation between the 
amount of missing data per comparison and the cor-
responding pairwise FST value, and did not find any 
(Fig. S1). Furthermore, performing the analyses with 
varying cutoffs for missing data ranging from 0 to 
50% does change the relative position of these pop-
ulations in the PCA but does not alter our inferences 
about the overall population structure (Fig. S3). The 
only 2 populations greatly affected by the amount of 
missing data were Monterey (MON) and Isla de 
Todos Santos (ITS); while the relative amount of 
divergence between these 2 varies, they generally 
remain genetically distinct from all other sampled 
populations (Fig. S1). Thus, our geographically prox-
imate samples from within the expanded range show 
moderate population differentiation, and are each 
genetically more similar to some sites within the 

 historical range than they are to one another. These 
results are more consistent with multiple long-
 distance colonization events of these newly range-
expanded populations than a slow poleward march of 
an expanding population. 

Alternatively, selection could drive population dif-
ferentiation irrespective of dispersal, similar to pat-
terns identified for the intertidal crab Petrolisthes 
cinctipes along the northern California coastline 
(Toonen & Grosberg 2011). Previous work showed 
that Kellet’s whelk may be capable of adapting to the 
colder environment by altering its metabolic rates 
(Vasquez et al. 2019, Lee et al. 2024) and increasing 
the concentration of proteins involved in energy 
metabolism and oxidative stress (Vasquez et al. 2019, 
Daniels et al. 2023b, Lee et al. 2024). Adaptation to 
cold temperatures may help explain the persistence 
of individuals in the extended range, but the mech-
anism by which whelks colonized these northern 
range expanded sites remains unknown. One hypo -
thesis is that MON is divergent from all other loca-
tions in the PCA as a result of long-distance dispersal, 
followed by selection among recruits to survive in 
colder environments, which results in a unique pop-
ulation signal. In support of this hypothesis, Lee et al. 
(2024) found Kellet’s whelk in the expanded range to 
be upregulating triosephosphate isomerase (TPI), an 
essential enzyme for cold stress response. Neverthe-
less, whether these divergence patterns are driven by 
a response to selection, genetic drift, or a combina-
tion of both mechanisms requires additional studies. 

5.  CONCLUSIONS AND IMPLICATIONS 

Most marine animal species have a biphasic life 
cycle in which dispersal occurs primarily through the 
pelagic larval phase (Thorson 1950, Kinlan & Gaines 
2003, Weersing & Toonen 2009, Burgess et al. 2016). 
Larval dispersal kernels are generally leptokurtic, in 
which most successful recruits remain relatively close 
(10s to ~100 km) to the spawning site but with a long 
tail of some individuals that can be transported much 
longer distances (Kot et al. 1996, Strathmann et al. 
2002, Siegel et al. 2008, D’Aloia et al. 2015). Poleward 
range expansions have been studied for decades in 
terrestrial organisms, with many following a stepping-
stone pattern, in which most dispersal occurs relatively 
near the parents to form reproductive populations that 
seed further expansions (Ibrahim et al. 1996, Morales 
2002, Thomas 2010, Saura et al. 2014, Robalo et al. 
2020). This process would result in a continuous slow-
and-steady population range expansion through mul-
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tiple successive founder events, because long-distance 
dispersers are unlikely to find mates, even if they sur-
vive and grow to reproductive maturity. The predict-
able consequences of such a process include reduced 
genetic diversity and high differentiation of popula-
tions in the expanded portions of the range relative to 
those in the historical range (Robalo et al. 2020).  

Contrary to such predictions, the first observations 
of Kellet’s whelk in the species’ expanded range was 
~300 km beyond its historical northern range limit 
(Herrlinger 1981). Further, observations of irregular 
size-frequency distributions in the expanded range 
suggest that recruitment has been episodic (Zacherl 
et al. 2003, Palmer et al. 2017). In support of these 
early observations, our results here show both high 
genetic diversity and minimal population genetic 
structure (FST ≈ 0.01–0.03) of Kellet’s whelk along its 
entire geographical distribution range. The greatest 
genetic divergences are seen among the newly ex -
panded populations and some portions of the histori-
cal range, but those differences are roughly equiv-
alent to the full range of population differentiation 
observed among sites within the historical range 
(Fig. 2). Further, each of these divergent expanded-
range samples is more similar to a site within the his-
torical range than to any geographically proximate 
location. In particular, the genetic similarity of Point 
Loma (POL), deep in the historical range, to Big 
Creek (BIC) in the recently expanded range provides 
compelling evidence of long-distance larval dis-
persal. Overall, the observed patterns are more con-
sistent with long-distance dispersal from central 
range origins, likely associated with an ENSO event, 
than with progressive northward population expan-
sion due to ocean warming. 

Our findings have implications not only for Kellet’s 
whelk but likely for many other ecologically and eco-
nomically co-distributed species in California that 
share similar dispersal characteristics and life history 
traits, such as the spiny lobster Palinurus interruptus 
and California sheephead Semicossuphus pulcher 
(Allen et al. 2006, Selkoe et al. 2010, Froese & Pauly 
2011). The frequency and amplitude of ENSO events 
are predicted to increase under climate change (Power 
et al. 2013, Cai et al. 2015), which will likely result in 
more frequent northward expansions and changes in 
biogeographic species ranges similar to Kellet’s whelk. 
Studies such as this one, focused on understanding 
and identifying the factors altering marine population 
dynamics, are essential to establishing effective man-
agement and conservation measures that ensure the 
health of marine eco systems and the services they pro-
vide to human populations. 
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