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1. INTRODUCTION

Accelerated warming of Arctic and sub-Arctic eco-
systems (Rantanen et al. 2022) and associated large-
scale environmental changes (Fox-Kemper et al. 

2021) have already altered marine biodiversity 
through shifts in species abundances, distributions, 
and composition (Wassmann et al. 2011, Fossheim et 
al. 2015, Stevenson & Lauth 2019, Mueter et al. 2021). 
Coastal ecosystems within these northern environ-
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offer an accessible method for coastal communities to monitor change across habitats.
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ments are particularly vulnerable to changing ocean 
conditions (Harley et al. 2006, Hewitt et al. 2016), and 
continued environmental change can lead to shifts in 
the composition of nearshore assemblages (von Biela 
et al. 2023). Changes in species distributions and 
com position can impact ecosystem services (Pecl et 
al. 2017), including fisheries resources (Madin et al. 
2012, Pinsky & Fogarty 2012), and will heavily impact 
northern coastal communities that rely on nearshore 
species and habitats for subsistence activities (Ford 
2009, Wesche & Chan 2010, Dombrowski et al. 2013). 
Identifying changes in coastal assemblages through 
time requires dedicated monitoring efforts (Barceló 
et al. 2016, Morris & Green 2021) and an understand-
ing of environmental influences on species distri -
butions and composition. However, the structural 
complexity that typifies many northern nearshore 
habi tats can limit the efficacy of typical sampling gear 
(e.g. nets), hindering surveys of coastal assemblages. 

As an accessible and cost-effective sampling option 
(Watson & Huntington 2016, Bergshoeff et al. 2017) 
baited remote underwater video (BRUV) systems 
offer a versatile approach for studying demersal and 
benthic communities, including estimating species 
abundances and diversity and characterizing habitat 
associations (Mallet & Pelletier 2014, Whitmarsh et al. 
2017). BRUVs are particularly well-suited for study-
ing nearshore Arctic and sub-Arctic environments, as 
they can be deployed through sea ice (B. G. C. King 
pers. obs.) and in structurally complex coastal habi-
tats associated with sea ice (e.g. boulder barricades) 
that are inaccessible using other sampling methods. 
The non-destructive and non-extractive nature of 
BRUVs maintains the integrity of benthic environ-
ments, effectively eliminating mortality and minimiz-
ing disturbance, making cameras an ideal technology 
for sampling sensitive or vulnerable habitats and pro-
tected areas (Cappo et al. 2003, Kelaher et al. 2014, 
Morris et al. 2024). Collectively, these characteristics 
make BRUVs a practical option for sampling northern 
coastal habitats, including marine communities in 
boreal, sub-Arctic, and Arctic environments (Dalley 
et al. 2017, Devine et al. 2019, Rangeley et al. 2022). 

Newfoundland and Labrador, situated in eastern 
Canada, has ~30 000 km of coastline that includes 
boreal and sub-Arctic nearshore habitats. Structurally 
com plex substrates including rocky shorelines, un -
con solidated cliffs, and boulder flats characterize 
many of these habitats. These boreal and sub-Arctic 
coastal areas are exposed to cold Arctic water brought 
by the Labrador Current flowing south from the 
Canadian Arctic to the Grand Banks off Newfound-
land. Sea ice covers coastal environments in Labrador 

for 6–7 mo of the year, and while seasonal ice cover-
age typifies most of Newfoundland, nearshore areas 
of southern coastlines generally remain ice-free. 
Coastal communities, particularly along Labrador, 
rely on landfast ice and nearshore habitats as infra-
structure and as important sources of subsistence har-
vest (DFO 2021, McCarney et al. 2024). However, 
challenging sampling conditions (e.g. remoteness, 
large geographic area, structurally complex habitats, 
seasonal ice coverage) have limited research on 
species distributions in nearshore coastal habitats in 
many areas (DFO 2021). Studies on coastal marine 
assemblages in northern Labrador include historical 
presence–absence data from otter and beam trawl 
surveys (Backus 1957) as well as distributions of 
demersal fish (e.g. Gadidae, Cottidae, Pholidae, Sti-
chaeidae, and Cyclopteridae) from visual surveys 
(Friedlander et al. 2023) and benthic invertebrates 
(e.g. bryozoans, poriferans, cnidarians, annelids, mol-
luscs, echinoderms, and arthropods) from underwater 
video transects and drop deployments in deeper 
(>20–230 m) areas (Rangeley et al. 2022) across a few 
fjord environments. Ongoing environmental changes 
and the importance of these areas to coastal commu-
nities collectively add the need for a greater under-
standing of existing species distributions and com-
munity composition across this boreal–sub-Arctic 
environmental gradient. 

In this study, we used BRUV deployments to assess 
nearshore assemblages across a boreal–sub-Arctic 
gradient in coastal Newfoundland and Labrador. 
We  combine data from coastal study sites spanning 
>10°  latitude (48.5°–59.4°N) to investigate commu-
nity com position and habitat associations along this 
gradient. Our objectives were to (1) characterize 
assemblages in these nearshore locations, (2) assess 
how community composition varies across locations 
and habitats, and (3) evaluate how assemblages vary 
seasonally within nearshore environments. Charac-
terizing these assemblages both across and within 
coastal locations enables assessments of communities 
within a northern marine ecosystem experiencing 
environmental change. 

2.  MATERIALS AND METHODS 

2.1.  Study sites and BRUV deployments 

We assembled data from BRUV surveys to compare 
nearshore assemblages over a relatively large (>10° 
latitude) boreal–sub-Arctic gradient. Collectively, 
these surveys comprised 158 BRUV deployment sets 
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from 2016–2021 across 7 nearshore locations in 
coastal Newfoundland and Labrador, Ca nada (Fig. 1). 
In Newman Sound (Newfoundland), we deployed 
9 sets from 15–17 November 2016 and another 64 sets 
(8 repeat sets at 8 sites) from 29  July–11 December 
2019. Deployment depths in 2016 were either 2 or 
20 m, and in 2019 were ≤10 m. In Labrador, we de-
ployed 56 sets from 5–9 October 2017 in Kangalak-
siorvik, Nachvak, Saglek, and Okak; 11 sets from 11–
19 November 2019 near Nain, Labrador; and 18 sets 
from 1–6 August 2021 in and adjacent to the Gilbert 
Bay Marine Protected Area (MPA). Deployment 
depths in Kangalaksiorvik, Nachvak, Saglek, and 
Okak were ≤10 m; near Nain ranged from 6.5–10.5 m; 
and in Gilbert Bay ranged from 10–23 m. Sea ice had 
not yet set in these coastal locations during our de-
ployments. Table S1 in the Supplement at www.int-
res.com/articles/suppl/m755p029_supp.pdf summar-
izes deployment in for mation for each BRUV set. 

BRUV frame design differed across locations 
(Fig. S1), as separate research groups independently 
completed deployments across years. The 2016 New-
man Sound deployments included a GoPro Hero 3+ in 
a waterproof case mounted on a wooden dowel rod 
approximately 50 cm above the seafloor secured at 
the center of a 5-gallon bucket. An additional wooden 
dowel rod transecting the top of the bucket extended 
away from the camera as an approximately 1 m bait 

arm, baited with a mesh bag containing ~100 g of 
canned ‘sardines in water’. Two perpendicular dowel 
rods transected the base for added stability. Deploy-
ments in Kangalaksiorvik, Nachvak, Saglek, and 
Okak used the same setup as the 2016 Newman 
Sound sets but instead included polyvinyl chloride 
(PVC) pipes in place of wooden dowel rods, a GoPro 
Hero 4 in a waterproof case, and a 1 × 1 m square 
plastic mesh fastened to the base of the frame to dis-
courage aquatic vegetation from obstructing the field 
of view. For the 2019 Newman Sound deployments, 
we used a GoPro Hero 3+ in a waterproof case secured 
to a stainless-steel stand approximately 50 cm above 
the seafloor. A stainless-steel bait arm extending 
~50 cm away from the base of the stand and above the 
seafloor held a mesh bait bag baited with ~300 g of 
whole Atlantic herring. The baited camera deploy-
ments near Nain used the same setup as the 2019 
Newman Sound sets except that the bait was fastened 
to a plastic platform in place of a bait bag. The BRUV 
system for the 2021 deployments in Gilbert Bay 
included a Mobius Maxi ActionCam in waterproof 
housing affixed to the top of a modified crab pot (with 
mesh removed) approximately 50 cm above the sea-
floor. A PVC pipe secured to the bottom of the pot 
extended away from the camera as an approximately 
1 m bait arm baited with a mesh bag containing ~100 g 
of canned ‘sardines in water’. 
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Fig. 1. Baited remote underwater video deployment sites included in community comparisons (white circles) across 7 near- 
shore locations along coastal Newfoundland and Labrador, Canada

https://www.int-res.com/articles/suppl/m755p029_supp.pdf
https://www.int-res.com/articles/suppl/m755p029_supp.pdf
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2.2.  Video analysis 

We collected approximately 145 h of video footage 
with deployment times ranging from 16–188 min 
(Table S1). Deployments with an altered field of view 
(e.g. obstructed views of the seafloor, poor lighting or 
visibility, or where the camera was not deployed in an 
upright position) were removed, resulting in 138 of 
the 158 deployments being retained for further analy-
sis. We analyzed the videos from each deployment in 
full, identifying all demersal fishes and mobile deca-
pod crustaceans that entered the field of view to the 
lowest possible taxonomic classification (example 
images in Fig. S2), with gadid fishes further subdi-
vided into juveniles or adults. We recorded the pres-
ence of several benthic invertebrates, including sea 
urchins, sea stars, brittle stars, shrimps, whelks, 
bivalves, and anemones, but omitted them from our 
analysis because quantifying relatively stationary 
benthic invertebrate communities was beyond the 
fish and large mobile decapod crustacean focus of our 
study. We watched each video deployment in 1 min 
intervals and quantified relative abundances by 
recording the maximum number of individuals per 
species or taxon visible within a single image (MaxN) 
in each of the intervals through each deployment. 
This method ensured that individuals that entered, 
left, and re-entered the field of view did not artificially 
inflate our relative abundance estimates (Langlois 
et al. 2020). Recording MaxN for taxa in 1 min inter-
vals also allowed for tracking relative abundances 
throughout deployments and ensured that the largest 
MaxN was recorded and used for subsequent ana-
lyses. MaxN tends to underestimate fish abundance 
(Cappo et al. 2003), and as such, our counts were con-
servative estimates of relative abundance. To evalu-
ate how well BRUV deployments sampled species 
richness, we generated species accumulation curves 
as a function of BRUV deployment times as well as 
species richness rarefaction and extrapolation curves 
as a function of the number of deployments in each 
location, and compared how differences in these 
effort metrics may have influenced our results. 

We visually characterized benthic habitat in each 
de ployment following a semi-quantitative scale me -
thod derived from the medium scale approach (Clua 
et al. 2006). Specifically, we classified habitat based 
on types of biogenic cover (macroalgae, seagrass, 
rhodoliths) as well as fine- and coarse-grain sub-
strates (sensu Wentworth 1922) and estimated the 
percent composition that each habitat separately 
occupied in the field of view (example images in 
Fig.  S3). Differences between fine-grain soft sedi-

ments were not readily distinguishable in all our 
videos, so we use the term ‘soft sediments’ to en com -
pass mud, clay, silt, and/or sand. We use ‘coarse sub-
strates’ to denote the presence of gravel, cobble, and 
boulders. Percent composition for visible substrate 
coverage and biogenic cover included the following 
categories: 0 (none or not visible), 1 (>1 to <25%), 2 
(>25 to <50%), 3 (>50 to <75%), and 4 (>75 to 100%). 

2.3.  Community comparisons 

We calculated species richness and the Shannon 
diversity index for each of the deployments and 
used each metric as a response variable in a gene -
ralized linear model (GLM) to compare assemblages 
across locations and habitats. Species richness was 
modelled in a GLM with a Conway-Maxwell Poisson 
error distribution (with a log link function), which 
is  appropriate for count data with overdispersion 
(Sellers & Premeaux 2021), and Shannon diversity in 
a GLM with a Tweedie error distribution (with a log 
link function), which is appropriate for continuous 
response variables that include zeros (Kokonendji et 
al. 2021). Lo ca tion (categorical) and the categorial 
percent composition for each habitat component 
(soft sediments, coarse substrates, macroalgae, rho-
doliths, and eelgrass) were incorporated as expla -
natory variables in each of the GLMs, and the 
‘glmmTMB’ package (Brooks et al. 2017) was used 
to generate each model. Model suitability was 
evaluated using residual diagnostic plots available 
from the ‘DHARMa’ package (Hartig 2021). Likeli-
hood ratios (LRs) assessed the likelihood of each 
model as compared to a null model (Royall 1997), 
and analysis of deviance (ANODEV) quantified the 
contribution of the explanatory variable to each 
model. We omitted deployments in De cember from 
Newman Sound to improve temporal consistency 
across all our sites for this spatial comparison. 

We visualized community composition compari-
sons through a cluster analysis dendrogram and non-
metric multidimensional scaling (nMDS) ordinations. 
We generated these visualizations from zero-adjusted 
Bray-Curtis dissimilarity matrices (Clarke et al. 2006) 
of square-root transformed MaxN values from taxa 
observed in each BRUV deployment. Multivariate 
GLMs were used to compare communities across 
locations and habitats as well as species differences 
within community comparisons. Vectors on nMDS 
ordinations indicated species with significant abun-
dance differences among communities from each 
location or habitat. We again omitted deployments in 
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December from Newman Sound to improve temporal 
consistency across sites for this spatial comparison. 

Grouped locations represented different study 
areas for species and community comparisons as fol-
lows: northern Labrador (Kangalaksiorvik, Nachvak, 
Saglek, Okak, Nain), southern Labrador (Gilbert 
Bay), and Newfoundland (Newman Sound). Using the 
same approach described above, we compared com-
munities among locations and habitats in northern 
Labrador, among the deployment areas and habitats 
within Gilbert Bay, and between seasons (summer–
autumn) and among habitats in Newman Sound. For 
the seasonal comparison in Newman Sound, summer 
sets included deployments from July–September and 
autumn sets included deployments from November–
December. We omitted the deployments from 2016 
because these sets did not span the entirety of these 
seasonal time frames. We restricted multivariate GLM 
permutations by site to account for repeat sampling 
in  the Newman Sound analysis. All analyses were 
conducted in the R (v.4.1.2) statistical environment 
(R  Core Team 2021), specifically using the ‘vegan’ 
package (Oksanen et al. 2022) for nMDS ordinations 
and species accumulation calculations, the ‘iNEXT’ 
package (Chao et al. 2014, Hsieh et al. 2016) for 
species richness rarefaction and extrapolation curves, 
the ‘dendextend’ package (Galili 2015) for the cluster 
analysis dendrogram, the ‘mvabund’ package for 
multivariate GLMs (Wang et al. 2012, 2022, Warton 
et  al. 2012), and the suite of ‘tidyverse’ packages 
(Wickham et al. 2019) for all data cleaning and 
 visualization. 

3.  RESULTS 

3.1.  Baited camera observations 

We identified 14 taxa, including 11 fish species 
spanning 8 families as well as 3 decapod crustaceans 
(Table 1). Spatial distributions differed across taxa. 
Only Greenland cod Gadus macrocephalus ogac and 
large cottids Myoxocephalus spp. were observed in all 
locations. Small cottids (Family Cottidae) occurred 
at  most locations (except Newman Sound), and al -
though these cottids likely included multiple species, 
subtle species differences within this family were not 
apparent from our video imagery, precluding species-
level identification. We observed Atlantic cod G. mor-
hua and winter flounder Pseudopleuronectes america-
nus only in Gilbert Bay and Newman Sound, whereas 
cunner Tautogolabrus adspersus, white hake Urophy-
cis tenuis, rock gunnel Pholis gunnellus, Atlantic rock 

33

Ta
xa

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
 F

am
ily

   
   

 K
an

ga
la

ks
io

rv
ik

   
N

ac
hv

ak
   

   
 S

ag
le

k
   

   
   

  O
ka

k 
   

   
   

   
 N

ai
n 

   
   

  G
ilb

er
t B

ay
   

N
ew

m
an

 S
ou

nd
 

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

(n
 =

 1
0)

   
   

   
   

(n
 =

 1
2)

   
   

 (n
 =

 1
0)

   
   

  (
n 

=
 1

1)
   

   
  (

n 
=

 1
1)

   
   

   
(n

 =
 1

2)
   

   
   

   
  (

n 
=

 7
2)

 
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  M

ea
n 

M
ax

N
 (S

D
) 

 G
re

en
la

nd
 c

od
 G

ad
us

 m
ac

ro
ce

ph
al

us
 o

ga
c 

   
   

   
   

   
   

   
   

G
ad

id
ae

   
   

   
   

0.
4 

(0
.5

2)
   

   
   

7.
08

 (1
0.

7)
   

4.
2 

(3
.1

2)
   

  2
.1

8 
(1

.4
7)

   
 0

.8
2 

(1
.3

3)
   

   
4.

5 
(2

.9
1)

   
   

   
  0

.5
3 

(1
.1

5)
 

G
re

en
la

nd
 c

od
 (j

uv
en

ile
) 

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
 G

ad
id

ae
   

   
   

   
   

  0
 (0

) 
   

   
   

   
   

   
0 

(0
)  

   
   

   
   

0 
(0

) 
   

   
   

   
  0

 (0
)  

   
   

  1
.8

2 
(2

.3
6)

   
  1

.9
2 

(3
.4

2)
   

   
   

 0
.1

7 
(0

.7
3)

 
La

rg
e 

co
tt

id
s 

M
yo

xo
ce

ph
al

us
 s

pp
.  

   
   

   
   

   
   

   
   

   
   

   
   

   
 C

ot
tid

ae
   

   
   

   
 0

.6
 (0

.7
) 

   
   

   
   

1 
(1

.3
5)

   
   

1.
2 

(1
.1

4)
   

   
0.

82
 (0

.6
) 

   
 0

.8
2 

(0
.7

5)
   

   
  1

 (0
.7

4)
   

   
   

   
 0

.3
5 

(0
.6

7)
 

Sm
al

l c
ot

tid
s 

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
C

ot
tid

ae
   

   
   

   
0.

6 
(0

.8
4)

   
   

   
3.

83
 (4

.1
3)

   
2.

3 
(2

.5
8)

   
  3

.5
5 

(3
.3

3)
   

 2
.7

3 
(2

.1
5)

   
   

 0
.5

 (0
.9

)  
   

   
   

   
   

 0
 (0

) 
To

ad
 c

ra
b 

H
ya

s 
sp

p.
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

 O
re

go
ni

id
ae

   
   

   
   

 0
 (0

) 
   

   
   

   
   

   
0 

(0
)  

   
   

   
   

0 
(0

) 
   

   
  1

.3
6 

(1
.6

9)
   

 2
.3

6 
(2

.9
1)

   
  1

.4
2 

(1
.5

2)
   

   
   

   
   

0 
(0

) 
A

rc
tic

 s
ha

nn
y 

St
ic

ha
eu

s 
pu

nc
ta

tu
s 

   
   

   
   

   
   

   
   

   
   

   
   

 S
tic

ha
ei

da
e 

   
   

   
   

 0
 (0

) 
   

   
   

   
   

   
0 

(0
)  

   
   

   
   

0 
(0

) 
   

   
   

0.
18

 (0
.4

)  
   

   
   

0 
(0

) 
   

   
   

0.
25

 (0
.6

2)
   

   
   

   
   

0 
(0

) 
Ee

lp
ou

t L
yc

od
es

 s
p.

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

  Z
oa

rc
id

ae
   

   
   

   
   

0 
(0

) 
   

   
   

   
   

   
0 

(0
)  

   
   

   
   

0 
(0

) 
   

   
   

0.
09

 (0
.3

)  
   

   
   

0 
(0

) 
   

   
   

   
   

0 
(0

) 
   

   
   

   
   

   
  0

 (0
) 

Sk
at

e 
A

m
bl

yr
aj

a 
sp

. 
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

R
aj

id
ae

   
   

   
   

   
   

0 
(0

) 
   

   
   

   
   

   
0 

(0
)  

   
   

   
   

0 
(0

) 
   

   
   

   
  0

 (0
)  

   
   

   
0.

09
 (0

.3
) 

   
   

   
 0

 (0
) 

   
   

   
   

   
   

  0
 (0

) 
A

tla
nt

ic
 c

od
 G

ad
us

 m
or

hu
a 

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

G
ad

id
ae

   
   

   
   

   
  0

 (0
) 

   
   

   
   

   
   

0 
(0

)  
   

   
   

   
0 

(0
) 

   
   

   
   

  0
 (0

) 
   

   
   

   
  0

 (0
) 

   
   

   
4.

42
 (5

.9
2)

   
   

   
 1

.6
7 

(2
.5

6)
 

A
tla

nt
ic

 c
od

 (j
uv

en
ile

) 
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

G
ad

id
ae

   
   

   
   

   
  0

 (0
) 

   
   

   
   

   
   

0 
(0

)  
   

   
   

   
0 

(0
) 

   
   

   
   

  0
 (0

) 
   

   
   

   
  0

 (0
) 

   
   

   
1.

08
 (3

.4
5)

   
   

   
 1

.4
4 

(2
.1

7)
 

W
in

te
r f

lo
un

de
r P

se
ud

op
le

ur
on

ec
te

s 
am

er
ic

an
us

   
   

  P
le

ur
on

ec
tid

ae
   

   
   

 0
 (0

) 
   

   
   

   
   

   
0 

(0
)  

   
   

   
   

0 
(0

) 
   

   
   

   
  0

 (0
) 

   
   

   
   

  0
 (0

) 
   

   
   

0.
08

 (0
.2

9)
   

   
   

 0
.5

6 
(0

.8
5)

 
C

un
ne

r T
au

to
go

la
br

us
 a

ds
pe

rs
us

   
   

   
   

   
   

   
   

   
   

   
   

   
   

  L
ab

ri
da

e 
   

   
   

   
   

 0
 (0

) 
   

   
   

   
   

   
0 

(0
)  

   
   

   
   

0 
(0

) 
   

   
   

   
  0

 (0
) 

   
   

   
   

  0
 (0

) 
   

   
   

   
   

0 
(0

) 
   

   
   

   
  5

.2
2 

(7
.8

3)
 

W
hi

te
 h

ak
e 

U
ro

ph
yc

is
 te

nu
is

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
 G

ad
id

ae
   

   
   

   
   

  0
 (0

) 
   

   
   

   
   

   
0 

(0
)  

   
   

   
   

0 
(0

) 
   

   
   

   
  0

 (0
) 

   
   

   
   

  0
 (0

) 
   

   
   

   
   

0 
(0

) 
   

   
   

   
  0

.0
3 

(0
.1

7)
 

R
oc

k 
gu

nn
el

 P
ho

lis
 g

un
ne

llu
s 

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

 P
ho

lid
ae

   
   

   
   

   
  0

 (0
) 

   
   

   
   

   
   

0 
(0

)  
   

   
   

   
0 

(0
) 

   
   

   
   

  0
 (0

) 
   

   
   

   
  0

 (0
) 

   
   

   
   

   
0 

(0
) 

   
   

   
   

  0
.0

3 
(0

.1
7)

 
A

tla
nt

ic
 ro

ck
 c

ra
b 

C
an

ce
r i

rr
or

at
us

   
   

   
   

   
   

   
   

   
   

   
   

  C
an

cr
id

ae
   

   
   

   
   

0 
(0

) 
   

   
   

   
   

   
0 

(0
)  

   
   

   
   

0 
(0

) 
   

   
   

   
  0

 (0
) 

   
   

   
   

  0
 (0

) 
   

   
   

   
   

0 
(0

) 
   

   
   

   
  1

.0
3 

(1
.2

9)
 

A
m

er
ic

an
 lo

bs
te

r H
om

ar
us

 a
m

er
ic

an
us

   
   

   
   

   
   

   
   

   
 N

ep
hr

op
id

ae
   

   
   

   
0 

(0
) 

   
   

   
   

   
   

0 
(0

)  
   

   
   

   
0 

(0
) 

   
   

   
   

  0
 (0

) 
   

   
   

   
  0

 (0
) 

   
   

   
   

   
0 

(0
)  

   
   

   
   

   
0.

11
 (0

.4
)

Ta
bl

e 
1.

 S
um

m
ar

y 
of

 ta
xa

 o
bs

er
ve

d 
fr

om
 b

ai
te

d 
re

m
ot

e 
un

de
rw

at
er

 v
id

eo
 d

ep
lo

ym
en

ts
 w

ith
 m

ea
n 

m
ax

im
um

 n
um

be
r o

f i
nd

iv
id

ua
ls

 (M
ax

N
) a

nd
 a

ss
oc

ia
te

d 
SD

s a
lo

ng
 w

ith
  

nu
m

be
r o

f d
ep

lo
ym

en
ts

 (n
) r

ep
or

te
d 

fo
r e

ac
h 

lo
ca

tio
n



Mar Ecol Prog Ser 755: 29–44, 2025

crab Cancer irroratus, and American lobster Homarus 
americanus were only observed in Newman Sound. 
We observed toad crabs Hyas spp. in Gilbert Bay, 
Nain, and Okak, and Arctic shanny Stichaeus puncta-
tus in these same locations (except Nain). Single cam-
era sets captured solitary individuals of skate Ambly-
raja sp. and eelpout Lycodes sp. in the Nain and Okak 
deployments, respectively. Species accumulation 
curves plateaued across deployment times in each 
location (Fig. S4). Species richness rarefaction and 
extrapolation curves flattened across the number of 
deployments in Kangalaksiorvik, Nachvak, Saglek, 
and Newman Sound, and were nearly asymptotic for 
the number of deployments in Okak, Nain, and Gil-
bert Bay (Fig. S5). Collectively, these accumulation 
curves indicate that our deployment efforts sampled 
nearshore assemblages sufficiently to identify differ-
ences in species richness and community composi-
tion across this boreal–sub-Arctic environmental 
gradient. Biogenic cover in habitats included several 
macroalgal species (laminariaceaen kelps, colander 
kelp Agarum clathratum, Fucus spp., rockweed Asco-
phyllum nodosum, filamentous Desmarestia sp., sea 
lettuce in Family Ulvaceae, bootlace weed Chorda 
filum) as well as eelgrass Zostera marina, and encrust-
ing algae included rhodoliths (spherical aggregations 
of crustose red algae). Benthic habitat varied across 
study sites (Fig. S6), with eelgrass only observed in 
Newman Sound and rhodoliths only in the Nain and 
Okak deployments. 

3.2.  Community comparisons 

Species richness and Shannon diversity indices 
were generally higher in southern Labrador (Gilbert 
Bay) and Newfoundland (Newman Sound) relative to 
northern Labrador (Kangalaksiorvik, Nachvak, Sag-
lek, Okak, Nain; Fig. 2 & Fig. S5). The LRs for location 
in the GLMs of species richness and 
Shannon diversity (ANODEV, χ2 = 
32.8, LR = 1.35 × 107, and χ2 = 23, 
LR = 9.98 × 104, respectively; Table 2) 
were larger than for habitat composi-
tion, demonstrating that models in clu -
ding location were more effective in 
explaining variation in the response 
variables and supported differences 
among locations. The LRs for percent 
composition of fine-grain soft sedi-
ments in the field of view were higher 
than any other habitat component 
(Table 2). 

Cluster analysis primarily arranged communities 
into 3 groups: northern Labrador (Kangalaksiorvik, 
Nachvak, Saglek, Okak, Nain), southern Labrador 
(Gilbert Bay), and Newfoundland (Newman Sound), 
although some sites overlapped across this gradient 
(Fig. 3) and nMDS ordinations illustrated similar 
community clusters (Fig. 4A). Multivariate GLMs 
supported community differences across locations 
(ANODEV, deviance = 688, p < 0.001) and habitats 
composed of soft sediments, coarse substrates, mac-
roalgae, or rhodoliths (Table 3). Abundance differ-
ences across locations were evident for several taxa, 
including Greenland cod, Atlantic cod, sculpins, 
winter flounder, Arctic shanny, cunner, toad crabs, 
and Atlantic rock crabs (Fig. 4A, Table 3). Small cot-
tids were the only taxon with significant abundance 
differences across habitats, and were associated with 
areas primarily composed of soft sediments (Fig. 4B). 

Location-specific differences in communities were 
evident across the environmental gradient. In north-
ern Labrador, communities appeared to overlap 
among locations and habitats (Fig. 5), but multi -
variate GLMs supported community differences 
across locations (ANODEV, deviance = 129, p < 
0.001) as well as fine-grain soft sediment habitats 
(ANODEV, deviance = 68, p < 0.001; Table S2). The 
abundances of Greenland cod, small cottids, and toad 
crabs differed across locations (Fig. 5A, Table S2), and 
small cottids differed significantly in abundance in 
habitats composed of fine-grain soft sediments 
(Fig. 5B, Table S2). 

In Gilbert Bay (southern Labrador), communities 
from different deployment areas clustered together 
but largely overlapped when compared across habi-
tats (Fig. 6). Multivariate GLMs supported commu-
nity differences across deployment areas (ANODEV, 
deviance = 57.6, p = 0.006) and additionally across 
habitats composed of coarse-grain substrates (ANO-
DEV, deviance = 45.7, p < 0.001; Table S3). Greenland 
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Parameter                           Species richness                       Shannon diversity 
                                    df     χ2           p              LR            df     χ2           p              LR 
 
Location                    6   32.8    <0.001  1.35 × 107        6     23     <0.001   9.98 × 104 

Soft sediments         4     8.66    0.07            76             4    10.1      0.039         154 
Coarse substrates   4     5.11    0.277        12.8           4    3.25      0.517         5.08 
Macroalgae              4     1.12    0.892        1.75           4  0.608     0.962         1.36 
Rhodoliths                4     1.88    0.758        2.56           4    1.96      0.742         2.67 
Eelgrass                     4     4.6      0.331        9.97           4    1.76      0.78           2.41

Table 2. Analysis of deviance of the generalized linear models for species 
 richness and Shannon diversity as a function of location and different habitat 
composition each with an associated likelihood ratio (LR). Significant p-values  

(p ≤ 0.05) and LRs are shown in bold
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cod abundances differed across deployment areas 
(Fig. 6A, Table S3) inside and outside the MPA, and 
higher abundances of Atlantic cod were associated 
with habitats largely composed of coarse-grain sub-
strates (Fig. 6B, Table S3). 

In Newman Sound (Newfoundland), communities 
clustered between seasons but overlapped across 
habitats (Fig. 7). Multivariate GLMs supported sea-
sonal community differences (ANODEV, deviance = 
135, p < 0.001) and assemblage differences across 
habitats composed of soft sediments or macroalgae 
(Table S4). Abundance differences for Atlantic cod, 
winter flounder, and cunner differentiated commu-

nities between seasons (Fig. 7A, Table S4). Abun-
dances did not appear to differ significantly across 
contrasting habitats for any individual taxa. 

4.  DISCUSSION 

We identified differences in the composition of 
nearshore assemblages across a boreal–sub-Arctic 
gradient spanning >10° of latitude extending from 
Newfoundland to northern Labrador, as well as sea-
sonal changes in assemblages within coastal New-
foundland. Habitat composition contributed more to 
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Fig. 2. Average (A) species richness and (B) Shannon diversity values calculated from deployments across coastal locations. 
Distribution of (C) species richness and (D) Shannon diversity values from deployments across locations. Boxplots in (C) and 
(D) illustrate the median (centre line), interquartile range (IQR) (left end: lower quartile; right end: upper quartile), and 1.5 ×  

the IQR (whiskers)
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variation in community-level abundances than to 
relative abundances of most individual taxa. BRUVs 
provided a well-suited, non-extractive approach for 
assessing nearshore assemblages in structurally com-
plex habitats across northern environments. Our 
results contribute to characterizations of nearshore 
communities in a data-deficient northern ecosystem 
and show that assemblages in northern locations sup-
port subsets of species from communities farther 
south in our study area. 

The nearshore environments of northern Labrador 
(Kangalaksiorvik, Nachvak, Saglek, Okak, and Nain) 
generally supported fewer species relative to commu-
nities in southern Labrador (Gilbert Bay) and New-
foundland (Newman Sound). Greenland cod and 
large cottids (Myoxocephalus spp.) were common in 
northern areas and were the only taxa observed 
across all locations. Both Greenland cod (Morin & 
Dodson 1986, Morin et al. 1991) and Myoxocephalus 
cottids (Oikari 1978, Whoriskey et al. 1994) can toler-
ate variable temperatures and salinities, contributing 
to their ubiquity across nearshore coastal habitats of 
Newfoundland and Labrador, and indeed across their 
distribution ranges in the North Atlantic and Arctic 
Oceans (Scott & Scott 1988, Coad & Reist 2018). We 
observed these species across a transitional environ-
ment that included the current northern limits of bor-
eal species (e.g. Atlantic cod, winter flounder, and 
cunner; Scott & Scott 1988, Coad & Reist 2018) to the 
Arctic and sub-Arctic regions of Labrador; however, 
these ranges may shift with environmental change. 

In contrast, we observed Atlantic cod and winter 
flounder only in southern Labrador (Gilbert Bay) and 
Newfoundland (Newman Sound), and cunner were 
exclusive to Newman Sound. Our results suggest that 
the current northern range limits for winter flounder 
and cunner extend to southern Labrador and New-
foundland, respectively, which aligns with historical 
distribution records (Scott & Scott 1988). Atlantic cod 
populations previously attained relatively high abun-
dances off northern Labrador before subsequently 
declining in the 1980s (Murphy et al. 1992, DFO 
1996). These populations have not been regularly sur-
veyed for nearly 2 decades and the most recent esti-
mates indicate that abundances have remained low 
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Fig. 3. Cluster analysis dendrogram representing commu- 
nity assemblages from nearshore locations along coastal 
Newfoundland and Labrador. Blue, grey, and black colours 
correspond to baited remote underwater video deployments 
from northern Labrador (Kangalaksiorvik, Nachvak, Saglek, 
Okak, Nain), southern Labrador (Gilbert Bay), and New- 

foundland (Newman Sound), respectively
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(Smedbol et al. 2002, Worcester et al. 2009). Although 
we did not observe Atlantic cod in nearshore loca-
tions across northern Labrador, they likely occur in 
low abundance in deeper environments off the coast 
given that small numbers have been reported as inci-
dental bycatch in offshore shrimp fisheries (Orr et al. 
2010). BRUV deployments in coastal locations could 
help to identify distributional changes in fish (includ-
ing commercially and ecologically important species 
such as Atlantic cod) assemblages across these north-
ern environments. 

Implementation of protected areas in northern 
Labrador and increased interest in marine manage-
ment by the Nunatsiavut Government (representing 
the Inuit of northern Labrador) requires knowledge of 
coastal assemblages and accessible methods to moni-
tor change through time. In northern Labrador, we 
observed abundance differences for Greenland cod, 
small cottids, and toad crab among some locations; 
small cottids were the only taxon with abundance dif-
ferences associated with contrasting habitat composi-
tion (fine-grain soft sediments). As the small cottids 
identified likely included multiple species, the abun-
dance differences could be related to contrasting 
species distributions across fine-grain soft sediment 
habitats. Despite some variation in individual species 
abundances, Greenland cod, sculpins, and toad crabs 
comprised the bulk of the taxa observed in these 
deployments, consistent with observations within 
Nachvak Fjord in northern Labrador (Friedlander et 

al. 2023). Our observations, concurrent with other 
recent studies (Rangeley et al. 2022, Friedlander et al. 
2023), contribute to comparisons of community com-
position across coastal locations and habitats in near-
shore environments along the northern Labrador 
coast. Additional BRUV deployments could represent 
a practical method for coastal communities to moni-
tor changes in nearshore assemblages over longer 
time scales as well as surveying structurally complex 
habitats in data-deficient areas. 

Annual MPA monitoring data indicates changes in 
fish community composition in the Gilbert Bay MPA 
during the past 20 yr (Morris & Green 2021). Our 
BRUV data demonstrated community differences 
among areas inside and outside the MPA, and less so 
among habitats. A portion of the local Gilbert Bay 
Atlantic cod population resides within the MPA year-
round, while some individuals move seaward in 
summer to headlands outside MPA boundaries (Green 
& Wroblewski 2000, Morris et al. 2014, King et al. 
2024), and we indeed observed Atlantic cod across 
these areas, particularly in habitats with structurally 
complex coarse-grain substrates (e.g. cobbles, boul -
ders). Coincident with a decline in Gilbert Bay Atlan-
tic cod abundance, increases in catch rates of other 
demersal fish species (e.g. Greenland cod, winter 
flounder, and shorthorn sculpin Myoxocephalus scor-
pius) indicate changes in fish community composi-
tion (Morris & Green 2021). We also observed Green-
land cod in the inner MPA (Zone 1b) as well as in 
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outer seaward areas (MPA Zone 3 and out-
side the MPA), supporting observations of 
changing demersal fish community abun-
dances within Gilbert Bay. Our deploy-
ments also documented other spe cies (e.g. 
small cottids, Arctic shanny, toad crab) 
as well as small juvenile gadids in outer 
seaward areas (MPA Zone 3) that other 
sampling methods may not capture. BRUV 
deployments identified differences in near -
shore assemblages across the MPA and, 
concurrent with established MPA monitor-
ing efforts, could help track fish commu-
nity trends in the Gilbert Bay MPA moving 
forward. 

In Newman Sound, we identified sea-
sonal differences in communities charac-
terized by low abundances of Atlantic 
cod, winter flounder, and cunner in our 
autumn deployments. In Newfoundland 
and Labrador, adult Atlantic cod reside in 
coastal habitats in the summer but typi-
cally move out of these areas through 
autumn as water temperatures decline, 
migrating to dee per, warmer water over 
winter (Templeman 1979, Lear & Green 
1984, Brattey 2013). However, at least 
some juvenile Atlantic cod (ages 0–2) 
overwinter in Newman Sound (Cote et al. 
2004, Geissinger et al. 2022), despite their 
absence in our autumn deployments. 
Winter flounder complete seasonal move-
ments to avoid sub-zero water tem -
peratures (Hanson & Courtenay 1996, 
DeCelles & Cadrin 2010) and pack ice 
(Van Guelpen & Davis 1979). In contrast 
to seasonal movements, cunner over-
winter in rock crevices and enter a meta-
bolically depressed state of torpor (Green 
& Farwell 1971, Costa et al. 2013), re-
emerging when water temperatures warm 
in spring. Our results, consistent with pre-
vious studies (Cote et al. 2013, Dalley et 
al. 2017), support seasonal  variation in 
nearshore fish communities in coas tal 
Newfoundland. Environmental conditions 
along coastal Labrador presumably con-
tribute to seasonality in demersal fish 
communities in these northern areas 
(DFO 2021), and BRUV deployments 
through sea ice could be an effective 
approach to investigate these potential 
changes in nearshore assemblages. 
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Community differences were apparent among some 
habitats for northern Labrador, Gilbert Bay, and New-
man Sound, and habitat composition varied among 
locations. Despite observing eelgrass exclusively in 
Newman Sound (Newfoundland) and rhodoliths in 

Nain and Okak (northern Labrador), these habitats 
occur throughout our study area. Eelgrass occurs in 
Labrador but with far fewer observations compared to 
distributions in Newfoundland (Murphy et al. 2021). 
Rhodoliths occur in Newman Sound (Proudfoot et al. 
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2020, R. S. Gregory pers. obs.) and Gilbert Bay (Cope-
land et al. 2013, C. J. Morris pers. obs.) but were not 
recorded in our deployments in these locations. Our 
analyses demonstrated little variation in abundance 
differences among habitats for most species, except 
for small cottids associated with fine-grain soft sedi-
ments in northern Labrador, and Atlantic cod associ-
ated with coarse-grain substrates in Gilbert Bay. 
Overall, habitat composition contributed to commu-
nity-level abundance differences more so than most 
individual taxa-level abundances. Community varia-
bility across habitats may indicate differences in habi-
tat quality (Cote et al. 2013), but testing such differ-
ences requires community data over longer time 
periods than what is currently available for most parts 
of our study area. 

We acknowledge caveats to our conclusions based 
on data set limitations and BRUV deployment meth-
odology. Our deployments captured a variety of 
demersal and benthic taxa but are inherently biased 
towards species that respond to bait and particularly 
scavenging predators (Dalley et al. 2017). Indeed, 
bait differences can influence the taxa observed in 
BRUV deployments (for review see Whitmarsh et al. 
2017, Jones et al. 2021). However, bait in this study 
(sardines and herring) were both oily fishes (effec-
tive bait type for fish assemblage comparisons; Dor-
man et al. 2012, Wraith et al. 2013, Walsh et al. 
2017), and oily fish bait weight does not appear to 

influence the relative abundance, species richness, 
or assemblage composition estimated from baited 
camera footage (Hardinge et al. 2013, Jones et al. 
2020). We therefore infer that bait differences here 
did not contribute substantially to the variation we 
observed in nearshore assemblages. We identified 
and enumerated some cryptic species (e.g. Arctic 
shanny, rock gunnel) but could only complete 
family-level identification of small cottids, which 
limited community analysis. Ad ditionally, deploy-
ment depths were relatively homogeneous within 
each location, and our data set cannot definitively 
discount potential community differences across 
depths for locations included in the study. BRUV 
deployments over depth gradients in each location 
would provide a more comprehensive survey of 
assemblages across these northern environments. 
Changes in BRUV designs across locations resulted 
in some field-of-view differences impacting the 
backfields of some videos, and our findings therefore 
offer conservative estimates of relative abundances 
and species diversity. Our data set did not account 
for interannual variability among study sites, and 
the large geographic extent precluded temporal 
consistency across deployments. Fish assemblages 
in nearshore areas of coastal Newfoundland demon-
strate community variability on interannual scales 
(Methven et al. 2001), including in Newman Sound 
(Cote et al. 2013). However, data of similar temporal 
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resolution do not yet exist for nearshore habitats 
in  northern Labrador. Local and Indigenous knowl-
edge is extensive in many parts of this coastline 
(McCarney et al. 2024) and could support inter -
annual comparisons. 

Changing ocean conditions will lead to redistri -
butions of communities, particularly in northern 
environments, where shifts in species distributions 
have already occurred (Fossheim et al. 2015, Steven-
son & Lauth 2019, Mueter et al. 2021, von Biela et al. 
2023). The transport of cold Arctic water by the 
Labrador Current over coastal areas (DFO 2021) may 
currently deter the spatial expansion of boreal 
species further north along Newfoundland and 
Labrador. Accordingly, the Arctic and sub-Arctic 
communities in northern Labrador may be less vul-
nerable to changes in composition compared to bor-
eal and sub-Arctic communities further south in 
Newfoundland. Indeed, invasive species like green 
crab Carcinus maenas are present in some parts of 
Newfoundland but only in coastal areas that are not 
directly exposed to the Labrador Current (DFO 
2011, Matheson et al. 2016). However, incursions of 
boreal species including sea lamprey Petromyzon 
marinus and striped bass Morone saxatilis have oc -
curred in some parts of southern Labrador (Van 
Leeuwen et al. 2021). Projected increases in ocean 
warming in the Northwest Atlantic at rates faster 
than the global average (Saba et al. 2016) could 
enable additional incursions from boreal taxa. Gadid 
fishes respond behaviourally to changes in tempera-
ture, and Atlantic cod populations in the Northwest 
Atlantic have historically shifted distributions in 
response to warming and cooling ocean conditions 
(Rose et al. 1994, 2000). Habitat suitability modelling 
based on egg survival and juvenile growth rates pro-
jected poleward shifts in gadid distri butions consist-
ent with current temperature projections in the 
northwest (Cote et al. 2021) and northeast (Dahlke et 
al. 2018) Atlantic. Temperature changes are also pre-
dicted to influence the distributions of sculpins and 
cunner (Rose 2005) and have contri buted to distribu-
tional shifts for winter flounder (Nye et al. 2009). 
Fish and invertebrate assemblages in environments 
offshore from Newfoundland and La brador have pre-
viously undergone substantial compositional shifts 
in line with changes in environmental conditions 
(Gomes et al. 1995, Pedersen et al. 2017). Similar 
shifts may have occurred in nearshore areas, but 
were underreported as a result of sparse surveys in 
coastal areas. How distributions of nearshore assem-
blages may shift in the Northwest Atlantic with 
changing environmental conditions remains unclear 

and will require continued studies on communities 
in coastal habitats that incorporate environmental 
data over long time scales. 

The inability to characterize and track variation in 
nearshore assemblages in structurally complex habi-
tats limits the identification of areas with potentially 
high conservation value, and by association, weakens 
any capacity to implement management measures to 
protect vulnerable or ecologically important habitats. 
Unlike extractive approaches (net-based bottom 
 contact sampling, gillnets, benthic longlines, angling, 
etc.), BRUV deployments provide a non-invasive 
approach for surveying such habitats because they do 
not ensnare benthic structures or selectively remove 
taxa. These deployments currently require substan-
tial user time investment for video footage analysis, 
and software automation of video and image process-
ing (e.g. Ayyagari et al. 2023) will likely help to allevi-
ate these time-consuming efforts. 

Our study assessed nearshore assemblages in coas-
tal habitats and identified differences in commu -
nity  composition and species distributions across a 
 boreal–sub-Arctic environmental gradient in New-
foundland and Labrador. Seasonal differences in 
com munities were apparent in Newfoundland, and 
additional BRUV deployments may help to identify if 
similar seasonality exists for communities in Labra-
dor. Our results contribute to understanding differ-
ences in species distributions in data-deficient north-
ern areas, and provide an essential foundation from 
which future studies can monitor change. BRUV 
deployments were a well-suited approach to compare 
marine assemblages in structurally complex near-
shore habitats in a northern coastal ecosystem. 
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