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1. INTRODUCTION

The eastern oyster Crassostrea virginica is not only 
a commercially important species but also provides 
essential habitats for other marine organisms, along 
with numerous ecological services (Coen et al. 2007, 
Grabowski et al. 2012). However, due to climate and 
human perturbations, oyster reefs have experienced a 
nearly 85% decline globally (Jackson 2001, Beck et al. 
2011). To address this ongoing habitat loss, much at -
tention has been focused on oyster restoration and 
management. 

In the northern Gulf of Mexico (nGoM), oyster reef 
depletion has been exacerbated by natural disasters 
such as hurricanes (Buck 2005, Tunnell 2017, Martinez 
et al. 2022). For example, hurricane-driven wave dam-

age and sediment deposits can directly cause massive 
oyster die-offs (Du et al. 2021). While post-hurricane 
rainfall and freshwater discharge may further reduce 
oyster survival (Buzan et al. 2009, Pollack et al. 2011, 
Park et al. 2014), nutrient enrichment, reduced preda-
tion pressure, and lower disease prevalence following 
the hurricane may en hance oyster recovery (Living-
ston et al. 1999). Therefore, understanding the re-
sponse of oysters after hurricanes is of scientific inter-
est for supporting strategic conservation, restoration, 
and management of oyster fisheries. 

Hurricane Harvey in August 2017 greatly disturbed 
the Galveston Bay System (GBS), a major oyster har-
vesting area in Texas, USA, with record-breaking 
rainfall (Du & Park 2019). The resultant floods dis-
placed about 3 times the volume of the GBS, making 
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the bay a freshwater system for several days (Du & 
Park 2019). This extreme weather event and the asso-
ciated impacts on the GBS provide an ideal scenario 
to examine oyster resilience following hurricanes. 

The resilience of oysters can be directly linked to 
the recruitment of their planktonic larvae (Park et al. 
2014), but establishing this connection is challenging 
in practice due to limited field observations and diffi-
culties in species identification. To bridge this knowl-
edge gap, the present study focuses on the pelagic 
life stages of oysters and combines observations with 
modeling techniques to understand how oyster larvae 
are influenced by hurricane disturbance. 

The planktonic larval duration (PLD) for oysters is 
typically less than 30 d (Dekshenieks et al. 1993). Dur-
ing this period, recruitment to benthic settlement 
habitats is an integrated result of biological and phys-
ical processes (Narváez et al. 2012). While many 
studies have applied biophysical models to examine 
dynamics of oyster larvae over space and time (North 
et al. 2008, Kim et al. 2013), these models primarily 
focused on physical aspects, with less attention paid 
to the integration of physiology with physical pro-
cesses of planktonic larvae. 

Modeling population dynamics should be guided 
by species biology with careful considerations of the 
relationships between biological processes and time-
varying environmental conditions (Bi & Liu 2017, Li & 
Liu 2022). In the present study, our aim was to develop 
an individual-based model for eastern oyster larvae 
built upon a framework of the dynamic energy budget 
model (DEBM) (Kooijman 2000). The DEBM tracks 
the processes of energy flow of an organism from food 
intake to growth, development, metabolism, and re-
production, with environmental factors included as 
rate-controlling factors. We applied the DEBM, with 
incorporation of in situ observations, to simulate the 
spatio-temporal dynamics of oyster larvae in the GBS 
both in ‘post-hurricane’ (2018) and ‘normal’ (2021) 
scenarios during the oyster spawning season (May–
July). The study design for side-by-side comparisons 
aids in better understanding the mechanisms of oyster 
recruitment in response to hurricane disturbance. 

Evaluating habitat suitability is crucial for oyster 
restoration (Beseres Pollack et al. 2012, Soniat et al. 
2013). However, little attention has been paid to 
quantifying habitat suitability for oysters during their 
planktonic phase. Here, for the first time, we synthe-
size 3 biologically meaningful indices (larval produc-
tion, survival, and growth) to introduce and evaluate 
planktonic habitat suitability for oyster larvae. Our 
findings support future oyster management stra -
tegies, such as establishing sanctuaries as sources of 

larval supplies to enhance aquaculture, conservation, 
and restoration efforts. 

2.  MATERIALS AND METHODS 

2.1.  Study area 

The GBS, comprising Trinity Bay, Galveston Bay, 
East Bay, and West Bay (Fig. 1A), is one of the largest 
estuaries along the nGoM coast and serves as the 
dominant commercial oyster harvesting area in Texas 
(Buzan et al. 2009). Freshwater inflow into the GBS is 
mainly contributed by the Trinity River (55%), San 
Jacinto River (16%), and Buffalo Bayou (12%) (Guth-
rie et al. 2012). The GBS is a shallow micro-tidal estu-
ary, with an average depth of approximately 2 m and 
a tidal range of less than 0.5 m. The Lagrangian res-
idence time varies from 15 d (ship channel) to 45 d 
(upper bay) depending upon the location and time 
(Rayson et al. 2016). The hydrology of the GBS results 
in a wide range of salinity regime from the upper bay 
to the lower bay, with an average of 16 (Orlando et 
al. 1993). Additionally, the bay has low to moderate 
chlorophyll a (chl a) concentrations, ranging from 2 
to 45 μg l–1 (Roelke et al. 2013). 

2.2.  Data acquisition 

Oyster larvae were sampled at 5 long-term zoo-
plankton monitoring stations in the GBS (Fig. 1A; Liu 
et al. 2017, 2021) during May, June, and July of 2018 
and 2021. Additional stations were visited in 2021 to 
expand the spatial coverage of our study area (Fig. 1A). 
Details of the sampling dates, locations, and number of 
samples are provided in Table S1 in the Supplement 
at  www.int-res.com/articles/suppl/m756p031_supp.
pdf. Zooplankton sampling was conducted using hori-
zontal net tows in the upper water column (depth 
<1.5 m). Two plankton nets (mesh size: 100 and 
200 μm; dimensions: 30 cm diameter, 120 cm in length) 
were deployed and towed simultaneously with a speed 
of 1.5–2.0 knots for at least 5 min. Digital flowmeters 
were mounted in the center of the net mouth to record 
the volume of seawater filtered. Upon retrieval onto 
the deck, zooplankton samples were transferred into a 
500 ml jar with 10% buffered formalin and seawater 
 solution. 

Zooplankton collected from the 100 μm net were 
processed in the laboratory following the protocols 
outlined by Liu et al. (2021). Planktonic oyster larvae 
from each sample were enumerated and classified into 
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5 stages: 74, 138, 240, 276, and 330 μm, based on their 
size and morphology (see Fig. 1 in Dekshenieks et al. 
1993). Subsamples composed of at least ~10% of the 
total sample were processed. The density of oyster lar-
vae was calculated by dividing the number of oyster 
larvae from one sample by the total volume of water 
filtered. 

Surface water temperature and salinity data were 
ob tained from the Northern Gulf of Mexico Operational 
Forecast System (https://www.ncei.noaa.gov/data/), 
based on simulations from the Finite Volume Coastal 
Ocean Model (FVCOM) (Yang et al. 2016). The FVCOM 
simulation was generated every 6 h, and the daily aver-
age was calculated. Validation of the FVCOM simula-
tions was performed using observed data collected 
from 3 monitoring stations (https://waterdatafortexas.
org/coastal). Details of the validation results are pro-
vided in Fig. S1. 

Daily near-surface chl a concentrations, with a 
 spatial resolution of 750 m, were derived from the Vis-
ible Infrared Imaging Radiometer Suite on the Suomi 
National Polar-orbiting Partnership satellite (https://
coastwatch.noaa.gov/erddap/griddap/). Validation of 
the satellite data was conducted using field-observed 
chl a concentrations at 5 stations from May to July 
2018 (Liu et al. 2021). Details of the validation results 
can be found in Fig. S2. 

The conversion equation from chl a concentration 
(μg l–1) to phytoplankton biovolume (X, μm3 μl–1) 
was adopted from a study conducted in adjacent 
coastal waters (Schaeffer et al. 2012): 

               X = 165.23 × (Chl a)1.2504   R2 = 0.65          (1) 

The model domain in this study fully covers the 
oyster reefs in the GBS, with a spatial resolution of 
0.02° latitude/longitude (Fig. 1B). Missing data were 
filled in using inverse distance weighted interpola-

tion with a power of 2. Daily surface water tempera-
ture and salinity from the hydrodynamic model were 
aggregated to match the spatial resolution of the 
model domain. Daily chl a data were aggregated to 
provide monthly values. Additionally, water depth 
data collected from Texas Parks and Wildlife Depart-
ment (TPWD) surveys were interpolated to the model 
grid cells. 

2.3.  Model description 

In the DEBM, the energy uptake is assimilated and 
stored in an energy reserve (E), which is allocated to 3 
sectors: (1) somatic growth, (2) maintenance, and (3) 
maturity and reproduction (Kooijman 2000). For lar-
val stages, energy used for maturity and reproduction 
is directly re-allocated to development (e.g. increase 
in body complexity) (Kooijman 2000, Pouvreau et al. 
2006). As illustrated in Fig. 2, the energy in the re -
serve pool (E) is allocated to support somatic growth 
(PG), growth-related maintenance (PM1), development 
(PD), and development-related maintenance (PM2). 

While most species-specific parameters of eastern 
oyster larvae were gleaned from empirical studies, 
some were borrowed from their sibling species 
(Table 1). Notations and symbols used in the current 
DEBM are largely consistent with Kooijman (2000) 
and are described as follows: square brackets, [ ], and 
braces, { }, represent quantities per unit of struc-
tural biovolume and biosurface, respectively. Dots 
above letters are referred to as rates (i.e. change over 
time). 

In the DEBM, an individual oyster larva absorbs 
energy through the ingestion of phytoplankton in the 
water column. The assumption is that the gross 
energy ingested by an individual is proportional to 
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Fig. 2. Dynamic energy budget model (DEBM) for eastern oyster larvae. Chlorophyll a (chl a) concentration (μg l–1), tem-
perature (°C), and salinity are the 3 main drivers controlling the bioenergetics of oyster larvae. In the DEBM, the energy up-
take is assimilated and stored as energy reserves (E). A proportion κ of the assimilated energy is used for somatic growth (PG) 
and growth-related maintenance (PM1), and a proportion 1 – κ of the assimilated energy is used for development (PD) and  

development-related maintenance (PM2)
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the biosurface (or squared length) of an organism. 
The ingestion rate of an individual, which varies 
depending on environmental conditions, can be ex -
pressed as follows: 

                          P·X = {P·Xm} ∙ ƒ ∙ V 2/3 ∙ αT · αS                     (2) 

where P·X is the ingestion rate (J d–1) and V is the vol-
ume of the animal body (μm3). Coefficients αT and αS 
represent the effect of water temperature and salinity 
on species ingestion, respectively. {P·Xm} is the maxi-
mum surface-specific ingestion rate (J d–1 μm–2), 
which is calculated by: 

                                     {P·Xm} = CR ∙ μX                                (3) 

where CR is the maximum surface-specific clearance 
rate (μm3 d–1 μm–2), and μX is the estimated energy 
content of microalgae (J μm–3). 

The scaled functional response for feeding (ƒ), rang-
ing from 0 to 1, is assumed to follow a type III Holling’s 
(1959) equation according to Rico-Villa et al. (2010): 

                                                                                                     (4) 

where K is the half saturation coefficient (μm3 μl–1), 
and X is the chl a concentration from Eq. (1). 

The assimilation rate of an oyster larva, P·A (J d−1), is 
given as: 

                  P·A = κX · P·X = {P·Am} ∙ ƒ ∙ V 2/3 ∙ αT · αS             (5) 

where κX is the assimilation coefficient, and {P·Am} is 
the maximum surface-specific assimilation rate ex -
pressed in J d–1 μm–2. 

The dynamics of energy reserve (E ) is the differ-
ence between energy input from food assimilation 
(P·A) and the energy consumption (P·C) that fuels all 
metabolic processes: 

                                                                                           (6) 
According to Kooijman (2000), the temperature-

dependent catabolic rate is governed by: 

                                                                                         (7) 

X K
Xƒ 2 2

2
=

+

PPdt
dE = PA

o
A–PC
o
C

PPC
o
C = l· [E] + [EG]

vT · [E] · [EG] ·oo ·V 2/3 + [` P[PM
o
M]j
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Parameter definition                                                                           Symbol          Value                   Unit             Source 
 
Key parameters                                                                                                                                                                
Maximum surface-specific ingestion rate                                      {P·Xm}      6.165 × 10–7      J d–1 μm−2       Rico-Villa et al. (2010)a 
Maximum surface-specific clearance rate                                        CR                 137            μm3 d–1 μm−2    Rico-Villa et al. (2010)a 
Energy content of phytoplankton biovolume                                  μX           4.5 × 10–9                  J μm–3          Rico-Villa et al. (2010)a 
Half saturation coefficient                                                                      K                  600                 μm3 μl–1         Rico-Villa et al. (2010)a 
Assimilation efficiency                                                                           κX                  0.4                        –               Sprung (1984)b 
Volume-specific maintenance rate                                                    [PM]                 24                    J μm−3           Pouvreau et al. (2006)a 
Maximum surface-specific assimilation rate                                 {P·Am}      2.466 × 10–7      J d−1 μm−2       Pouvreau et al. (2006)a 
Energy density capacity                                                                       [EM]       2.295 × 10–9          J μm−3           Pouvreau et al. (2006)a 
Volume-specific energy expenditure for somatic growth          [EG]         1.9 × 10–9            J μm−3           Pouvreau et al. (2006)a 
Energy conductance                                                                                 ν·               107.451              μm d–1          Rico-Villa et al. (2010)a 
Allocation fraction to somatic growth and its maintenance         κ                  0.45                      –               Rico-Villa et al. (2010)a 
Shape coefficient                                                                                      δM                0.658                     –               Rico-Villa et al. (2010)a 
 
Temperature effect                                                                                                                                                         
Arrhenius temperature                                                                           TA                6700                       K                Lavaud et al. (2017)c 
Reference temperature                                                                           T1                  293                        K                Lavaud et al. (2017)c 
Lower boundary of the  tolerance range                                            TL                  283                        K                Galtsoff (1964)c 
Upper boundary of the  tolerance range                                           TH                 303                        K                Galtsoff (1964)c 
Arrhenius temperature for lower boundary                                     TAL              21820                     K                Lavaud et al. (2017)c 
Arrhenius temperature for upper boundary                                   TAH              45380                     K                Lavaud et al. (2017)c 
 
Salinity effect                                                                                                                                                                   
Lower limit of salinity tolerance                                                           SL                  7.5                      psu              Davis (1958)c 
Upper limit of salinity tolerance                                                          SH                  15                       psu              Davis (1958)c 
 
aParameters of the Pacific oyster Crassostrea gigas  
bParameters of the blue mussel Mytilus edulis  
cParameters of the eastern oyster Crassostrea virginica

Table 1. Parameters in the dynamic energy budget model (DEBM) for eastern oyster larvae. Notations and symbols used in the 
current DEBM are largely consistent with Kooijman (2000) and are described as follows: square brackets, [ ], and braces, { },  

represent quantities per unit of structural biovolume and biosurface, respectively
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where [E] = E/V is the reserve density (J μm–3); ν·  = 
{P·Am}/[EM] is the energy conductance (μm d–1), with 
[EM] being the energy density capacity (J μm–2); [P·M] 
is the volume-specific maintenance rate (J d–1 μm–3); 
[EG] is the volume-specific cost for somatic growth; 
and κ is a fixed allocation fraction of mobilized re -
serve flux for somatic growth and growth-related 
maintenance. 

Based on the ‘κ-rule’ of Kooijman (2000), the alloca-
tion rate of somatic growth (P·G, J d–1) is the rest of a 
proportion κ of mobilized reserve after deducting 
growth-related maintenance (P·M1, J d–1): 

                                                                                         (8) 

where P·M1 = [P·M] · V , with [P·M] being the volume-
 specific somatic maintenance rate. Note that energy 
used for growth-related maintenance has priority over 
that for structural growth. That is, when needed, the 
energy subdivided into somatic growth can be re -
voked to compensate for growth-related maintenance. 

The change in structural volume per unit time can 
be calculated by: 

                                                                                       (9) 

In the DEBM, physical length (Lω) is scaled to vol-
umetric length (L) by multiplying a shape coefficient 
(δM): L = δMLω. The change in physical length is for-
mulated according to Monaco et al. (2014): 

                                                          (10) 

A proportion of 1 –κ of energy is allocated to sup-
port development (P·D, J d–1) and its maintenance (P·M2, 
J d–1). An equation to calculate the remaining frac-
tion for development is: 

                                                            (11) 

where P·M2 = [P·M] · V · (1 –κ)/κ. Again, the energy 
needed for development is always secondary after 
development maintenance. 

Ingestion and maintenance are temperature depen-
dent. The present study applies a temperature correc-
tion factor for physiological rates based on the Arrhe-
nius relationship (Lavaud et al. 2017): 

                                                     

                                                                                               (12) 

where TA is the Arrhenius temperature (K), T1 is the 
reference temperature (K), TAH and TAL are the Arrhe-
nius temperature for the rate of decrease at upper and 
lower boundaries (K), TL and TH are the lower and 
upper boundaries of the tolerance range (K). The as -
sumption is that within the tolerance range, the phys-
iological rate increases/decreases exponentially as 
temperature increases/decreases, while outside the 
optimal range, the physiological rate reduces at both 
low and high temperatures (van der Veer et al. 2006). 

The salinity effect on ingestion is given below 
(Lavaud et al. 2017): 

                                                (13) 

2.4.  Model assumptions 

Oyster larvae tend to reduce or even cease their 
growth and development in unfavorable conditions. 
However, in some extreme conditions when energy 
investment to the ‘κ’ branch of assimilation cannot 
meet the somatic maintenance requirement (i.e. κ · P·C 
< P·M1), oyster larvae are assumed to enter ‘starva-
tion’ mode. Specifically, the energy deficit is directly 
paid from the ‘1 – κ’ branch of assimilation, and all 
development-related processes are completely sus-
pended (Jager & Ravagnan 2015). When the reserve 
mobilization is still not sufficient to meet the main-
tenance demand, starvation-induced body shrinkage 
is assumed to be initiated for survival (Pouvreau et 
al. 2006). This shrinkage during starvation is revers-
ible once the condition recovers. The shrinkage rate 
with respect to structural volume is given as: 

                                                       (14) 

PLD varies across seasons and geographic loca-
tions, ranging from 10 to 30 d (Dekshenieks et al. 
1993, Powell et al. 1995, Kennedy 1996, Narváez et al. 
2012). Hence, in the DEBM, each planktonic larva 
with delayed growth is forced to die when its PLD 
exceeds the maximum pelagic span of 30 d. 

Sources of larval oyster mortality consist of starva-
tion mortality (MS) and natural mortality (Mn). In the 
DEBM, starvation mortality occurs when the energy 
reserve (E) is ≤0 or when the body size shrinks to 
50 μm. Natural mortality is assumed to be 20% d–1 
(Quayle 1964) and remains constant across stages. 
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From the above, oyster larval abundance at the next 
time step N(t+1) can be described as: 

                                                   (15) 

where N(t), NMs(t), and NMn(t) denote oyster larval abun-
dance, starvation mortality, and natural mortality at 
time t, respectively. The time step in the model is 1 d. 

Substantial mortality of pre-settling oyster larvae that 
reach a size of 330 μm can occur during their meta -
morphosis and settlement (Haws et al. 1993, Klein et 
al. 2023). We assumed the daily settlement rate to be 
20% for the pre-settling larvae (Jones & Jones 1983). The 
energy demand for metamorphosis varies between 5.4 
and 7.7 mJ ind.–1 (García-Esquivel et al. 2001). Our pre-
liminary results showed that most (>95%) pre-settling 
larvae in Galveston Bay had energy reserves over 5.4 mJ. 
For simplicity, metamorphic success is not modeled 
here. In the model, the settled larvae are ideally as-
sumed to instantly become spat and disappear from 
the planktonic cohorts (Rico-Villa et al. 2010). 

Individual variations in life-history traits play an 
important role in shaping oyster populations (Smee et 
al. 2013, Hanley et al. 2016). In the present study, 
stages 1–5 refer to planktonic stages and stage 6 
refers to the spat stage. The initial sizes of planktonic 
oyster larvae from stage 1 to 5 are assumed to follow a 
normal distribution with means of 74, 138, 240, 276, 
and 330 μm, respectively, with no individuals as -
sumed to have reached stage 6. To represent individ-
ual variability in natural oyster larvae, the initial size 
was randomly selected from a normal distribution 
with mean (μ) and standard deviation (SD = 10% × μ) 
representing the corresponding size class (Bi & Liu 
2017, Li & Liu 2022). In addition, a general coefficient 
of variation (CV) of 10% (SD = 10% × μ) is assigned to 
the half-saturation coefficient (K) and shape coeffi-
cient (δM). The range of these parameters falls within 
μ ± 2SD. All model equations used in the present 
study are summarized in Table 2. 

2.5.  Sensitivity analysis 

A Monte Carlo sensitivity analysis was conducted to 
test the sensitivity of simulated spat abundance to en-
vironmental factors (i.e. salinity, water temperature, 
and chl a concentration) and the variability of demo-
graphic parameters (i.e. shape coefficient and half sat-
uration coefficient). The analysis of model sensitivity 
was performed by varying 2 environmental variables, 
with the third variable being held constant at 3 levels. 
We defined 3 levels for each environmental variable 
as: salinity (low: 10; medium: 20; high: 30), water tem-

perature (low: 10°C; medium: 20°C; high: 30°C), and 
chl a concentration (low: 2 μg l–1; medium: 10 μg l–1; 
high: 40 μg l–1). These values encompass the range ex-
perienced by oyster larvae in the GBS. The initial 
larval abundance was assumed to be 100 ind. m–2 at 
stages 1–5. The simulation was run 10 000 times in 
which the values of the first 2 environmental variables 
were randomly drawn from uniform distributions 
based on the maximum range potentially encountered 
by oysters in the GBS. Specifically, salinity (0–40), 
water temperature (0–40°C), and chl a concentration 
(0–40 μg l–1) were assumed to follow uniform distribu-
tions. For each realization, the simulation was run over 
a 30 d period. 

Additionally, we tested the sensitivity of spat abun-
dance to the 2 demographic parameters (i.e. shape co-
efficient and half saturation coefficient) under favorable 
environmental conditions (salinity: 20, water tem-
perature: 25°C, and chl a: 20 μg l–1). We permuted 1 
demographic parameter at various levels (mean + CV, 
with CV = 0, ±10%, ±20%, ±30%, ±40%, and ±50%), 
while keeping the other parameter constant at litera-
ture values (Table 1). Sensitivity analysis for each pa-
rameter at each level of perturbation was conducted 
1000 times. 

2.6.  Model validation and simulation 

The model simulation for each grid, month, and 
year began on the day when oyster larvae were sam-
pled and continued for a 30 d period with a daily 
time step. Larvae are assumed to remain in a given 
grid for their entire PLD. Daily water temperature, 
salinity, and chl a concentration were incorporated 
to regulate the bioenergetics of each individual in 
the model. The initial condition in the model was set 
as stage-specific oyster larval concentration (ind. 
m–3) observed in our oyster samples. Oyster spawn-
ing rate or production rate (ind. m–3) was assumed to 
be the number of stage-1 larvae (~24–48 h after fer-
tilization) observed in our monthly zooplankton 
samples. That is, a constant number of new stage-1 
recruits was added to the model every day during 
the simulation. Because bi valve larvae are small and 
share similar morphology (Garland & Zimmer 2002), 
approximately 20% of our observed bivalve larvae 
(H. Liu unpubl. data) were estimated as eastern oys -
ter larvae in our model simulation. We noted that 
demographic parameters for every individual (e.g. ini-
tial size, shape coefficient, half saturation coefficient) 
varied between realizations, with values randomly 
drawn from the mean and SD of each parameter. 

NNNNN_t + 1_ i= N_t_ i–NMMs t_ i–NMMn t_ i
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Ad ditionally, daily natural mortality in the individ-
ual-based modeling framework introduced further 
stochasticity. To ensure robust results, the simulation 
was run independently 10 times. The density of spat 
(ind. m–3) at the end of the 30 d period was collected 
and converted to the abundance (ind. m–2) on the 
oyster bed by multiplying the water depth (m). 

We defined oyster larval recruitment as the larvae 
that successfully survived through the pelagic period 
and settled on the hard substrate as spat. To validate 
model performance, the observed abundance of 
newly settled spat (5–25 mm, 1–3 mo old) from 

oyster dredge surveys conducted by TPWD was used 
to compare with our simulated spat abundance. Spe-
cifically, we performed a simulation for May 2018 
using our larval observations to simulate spat abun-
dance after a 30 d period. We then compared the sim-
ulated spat with the average abundance of newly set-
tled spat observed from the TPWD survey in June and 
July 2018. Details about the TPWD survey method-
ology are available in Pollack et al. (2012). Our study 
assumed that the newly settled spat observed by 
TPWD in June and July predominantly originated 
from cohorts spawned in May. 
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Description                                                                                                          Equation 
 
Physiological rates 
Estimated food density from biomass                                                          X = 165.23 × (chl a)1.2504 

Feeding functional response                                                                           

Maximum volume-specific ingestion rate                                                  {P·Xm} = CR ·μX 

Ingestion rate                                                                                                      P·X = {P·Xm} · ƒ · V 2/3 ·αT ·αS 

Assimilation rate                                                                                                P·A = κX · P·C = {P·Am} · ƒ · V 2/3 ·αT ·αS 

Reserve mobilization rate                                                                                 

Energy flux to somatic maintenance                                                           P·M1 = [P·M] · V ·αT  

Energy flux to somatic growth                                                                       P·G = κ · P·C – P·M1 

Energy flux to development                                                                           P·D = (1 – κ) · P·C – P·M1 

Energy flux to development maintenance                                                 P·M2 = [P·M] · V · (1 –κ)/κ ·αT  
 
Coefficients of environmental forcing 

Temperature correction factor                                                                        

Salinity correction factor                                                                                  
 
 
State variables 
Energy reserve                                                                                                     

Volume growth rate                                                                                            

Length growth rate                                                                                             

Volume shrinkage under starvation                                                              

Length shrinkage under starvation                                                               
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Number of individuals at time t + 1                                                             
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Table 2. Functional relationships for calculation of model parameters and energy fluxes in the DEBM for eastern oyster larvae
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Model validation was conducted using the Pearson 
correlation coefficient (r) and the index of agreement 
(skill) with the formula given below: 

                                                   

                                                                                               (16) 
where yi is the observation, ŷi is the model simulation,  
ӯ is the overall mean of observations, and n is the 
sample size. Note that the skill ranges from 0 (no 
agreement) to 1 (perfect match). After validation, 
model simulation was performed, and the results were 
summarized for the later analysis. 

2.7.  Planktonic habitat suitability 

The successful recruitment of oyster larvae largely 
depends on suitable planktonic habitats that can support 
optimal reproduction, growth, and survival (Narváez 
et al. 2012). We summarized the results of ob served 
monthly larval production (ind. m–2), cumulative sur-
vival rate (%), and growth rate (μm d–1) to evaluate the 
planktonic habitat suitability for oyster larvae. These 3 
variables (VBi) were normalized from 0 to 1 using the 
following equation: 

                                    (17) 

where VBi(min) and VBi(max)  represent the global 
minimum and maximum values for variable i, respec-
tively. Note that values of 1 are optimal, and values of 
0 are least suitable. Here, the value of 0 was replaced 
by 0.001 to avoid zero values. 

The normalized variables were combined to calcu-
late planktonic habitat suitability index (PHSI) using 
a weighted geometric mean function: 

                                 (18) 

where w(i) is the weight-normalized variable i, and n is 
the number of variables. We assumed an equal weight 
(w = 1) for each variable, and PHSI was normalized to 
a range of 0 to 1. 

To mitigate potential biased results due to not ac-
counting for larval transport, the biological indices and 
PHSI of each grid were aggregated into 5 spatial areas 
that are largely matched with the management areas 
by TPWD. We assumed a relatively high larval reten-
tion rate within each area. In the simulation, we also 
calculated the demographic traits of oyster larvae such 
as the PLD and survival rate from stage 1 to stage 6. 

2.8.  Importance of predictor variables 

A generalized additive model (GAM; Wood 2003) 
was developed to examine the effects of predictor vari-
ables on oyster larval recruitment. The full GAM was 
fitted including nonlinear effects of larval production, 
water temperature, salinity, and chl a concentration. 
Backward elimination of predictor variables was used 
for the model selection, based on Akaike’s information 
criterion (AIC). A model with a minimized AIC value 
indicates a better model fit. The relative importance of 
each predictor variable was assessed by comparing the 
change in AIC (ΔAIC) and the change in percent devi-
ance explained (ΔDE, %) between the full model and 
the reduced model with 1 predictor variable removed. 
Model development and simulation were performed 
using MatLab, and statistical analysis was conducted 
using the RStudio 1.1.463 software. 

3.  RESULTS 

3.1.  Sensitivity analysis 

The model output showed strong sensitivity to low 
levels of salinity (10), water temperature (10°C), and 
chl a concentration (2 μg l–1), with recruitment being 
significantly lower compared to medium and high 
levels of these factors (Fig. 3). Moreover, re cruitment 
showed little difference between medium and high 
levels of salinity, water temperature, and chl a con-
centration (Fig. 3). Specifically, recruitment peaked 
under salinity >10, temperatures of 20–30°C, and 
chl a concentration >2 μg l–1 (Fig. 3). We found that 
changes in demographic parameters significantly 
affected the model output. Specifically, recruitment 
decreased linearly with the shape coefficient (R2 = 
0.82, Fig. 4A) and in creased linearly with the half sat-
uration coefficient (R2 = 0.93, Fig. 4B). 

3.2.  Model validation 

Model validation for May 2018 identified recruit-
ment ‘hotspots’ in the lower Galveston Bay and West 
Bay (Fig. 5A,B), with simulated spat abundance signif-
icantly correlated with observed abundance from TPWD 
surveys (r = 0.72, p < 0.0001; Fig. 5C). However, the 
relationship between simulated and ob served values 
appeared nonlinear, with slight underestimation at 
low observed values and overestimation at high ob-
served values (Fig. 5C). Despite these deviations, the 
model simulation demonstrated relatively good agree-

VV
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ment with spat observations (skill = 0.82), indicating 
that the model effectively captured both the spatial 
patterns and the overall scale of observed abundance. 

3.3.  Larval recruitment 

Model simulation depicted the spatio-temporal 
variations of larval recruitment in the GBS (Fig. 6). In 
2018, larval recruitment was elevated in the middle to 
lower regions of Galveston Bay and throughout most 
of West Bay, with peak recruitment (up to 25 spat m–2) 
occurring in June (Fig. 6B). This peak was about an 
order of magnitude higher than the recruitment levels 

observed in May and July (Fig. 6A,C). In May 2021, 
areas of high recruitment (up to 9 spat m–2) extended 
from West Bay to lower Galveston Bay (Fig. 6D,F). 
After that, high recruitment (up to 18 spat m–2) was 
only maintained in West Bay (Fig. 6E,F). 

3.4.  Larval production, survival, growth, and 
habitat suitability 

Highest larval production (i.e. abundance of new 
planktonic larvae) was found in upper Galveston Bay 
in June 2018 and in middle Galveston Bay in July 
2021, respectively (Fig. 7A). In addition, very limited 

40

Fig. 3. Sensitivity analysis of environmental factors for oyster spat recruitment (ind. m–2). (A) Salinity (low: 10, medium: 20; 
high: 30); (B) temperature (low: 10°C, medium: 20°C, high: 30°C); (C) chlorophyll a (chl a) concentration (low: 2 μg l–1; medium:  

10 μg l–1, high: 40 μg l–1) 
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larval production was found in May in both years 
(Fig. 7A). Oyster survival rates appeared typically 
high in West Bay and lower Galveston Bay but were 
sharply reduced in East Bay and in middle–upper 
Galveston Bay (Fig. 7B). This pattern was consistent 
across months in both years (Fig. 7B). Optimal growth 
conditions were observed in West Bay and in middle–
upper Galveston Bay, despite temporal variations. 
Overall, West Bay and lower Galveston Bay appeared 
to be high-quality habitats, while East Bay (with ex-
ceptions in June and July 2018) and upper Galveston 
Bay (with exceptions in May 2021) generally had 
lower habitat quality (Fig. 7D). Notably, some areas in 
middle Galveston Bay could become favorable hab-
itats for oyster recruitment in June 2018 (Fig. 7D). 

3.5.  Demographic traits 

PLD calculated from stage 1 to stage 6 (spat stage) 
ranged from 19.1 to 24.4 d, and no distinct difference 
was found across months and years (Table 3). The sur-
vival rate of planktonic oyster larvae calculated from 
stage 1 to stage 6 ranged from 1 to 2.7%, with the max-

imum occurring in May 2018 and the 
minimum occurring in June and July, 
respectively (Table 3). 

3.6.  Environmental drivers 

Results of the GAM indicated that 
larval production and chl a concentra-
tion had threshold effects on larval re-
cruitment (Fig. 8A,D). Increasing salin -
ity or temperature within the lower 
range (5–20 and 25–27°C) positively 
affected larval recruitment, followed 
by a negative effect at the upper range 
(20–30 and 27–31°C) (Fig. 8B,C). Lar-
val recruitment was strongly affected 
by salinity (ΔAIC = 626.1, ΔDE = 
32.3%), followed by larval production 
(ΔAIC = 221.5, ΔDE = 9.3%), water 
temperature (ΔAIC = 97, ΔDE = 3.9%), 
and chl a concentration (ΔAIC = 12.9, 
ΔDE = 0.6%) (Table 4). 

4.  DISCUSSION 

In response to hurricane-induced 
disturbance, the per-capita reproduc-
tive potential of remaining oysters may 

increase due to reduced competition and predation 
pressure (Livingston et al. 1999). This is supported by 
our ob servations of high larval production in the GBS 
in June 2018, 1 yr after Hurricane Harvey (Fig. 7B). In 
addition, our findings of high post-hurricane spat 
recruitment imply that oysters are relatively resilient 
to the external disturbance. Likewise, a substantial 
spatfall was reported in Apalachicola Bay, Florida, 
after Hurricane Elena as a compensating response to 
massive hurricane-induced oyster die-offs (Living-
ston et al. 1999). A rapid recovery of oysters was also 
reported in a south Texas estuary after episodic flood 
events in 2007 (Pollack et al. 2011). A recent study by 
Pruett et al. (2021) re ported that oyster larvae were 
tolerant to flood-associated stressors, despite some 
reduction in oyster growth and survival. 

Oyster recovery processes vary at different space–
time scales. We found that recovery from successful 
larval recruitment was likely restricted in middle–
upper Galveston Bay and West Bay, where oysters are 
perennially abundant (Powell et al. 2003). Despite 
high larval production, recruitment of oyster larvae 
remained low in upper Galveston Bay, mainly caused 
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Fig. 4. Sensitivity analysis of spat recruitment (ind. m–2) to demographic para -
meters of oyster larvae: (A) shape coefficient; (B) half saturation coefficient. Dif-
ferent levels of perturbation were included: mean + CV, with CV = 0, ±10%, 
±20%, ±30%, ±40%, and ±50%. Boxplots — bar: median; box: interquartile range 
(IQR); whiskers: max./min. values ≤1.5 x IQR above/below box; dots: outliers
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by unfavorable environmental conditions (i.e. low 
salinity). For example, oyster larvae in this area (near 
the mouth of the San Jacinto River) may experience 
frequent freshwater soaking-related physiological 
stresses, resulting in relatively slow recovery. A pre-
vious model simulation of oyster recovery in Dela-
ware Bay after Hurricane Irene and Tropical Storm 
Lee resulted in a similar finding that oyster popula-
tions in the upper bay may take over 10 yr to recover 
(Munroe et al. 2013). Unlike upper Galveston Bay, 
recovery in East Bay tends to be inhibited by limited 

larval production from our model simulation, which 
is  likely due to post-hurricane mass mortality of 
spawners (Du et al. 2021). Therefore, a longer recov-
ery period is expected in upper Galveston Bay and 
East Bay. Successful recruitment in these 2 regions 
may largely depend on opportunistic colonization 
during low-flow periods. 

Despite low larval survival following Hurricane 
Harvey, increased larval production, likely driven by 
density-dependent effects, may help support oyster 
recovery. This compensating feedback is evident in 
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Fig. 5. Spat abundance (spat m–2) and distribution in the 
Galveston Bay System from (A) model simulations and (B) 
observations. (C) Model validation by the Pearson correla-
tion coefficient (r) and the index of agreement (skill). Error  

bars indicate standard error (SE)
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the sizeable swarm of larvae in June 2018. During nor-
mal years, successful recruitment is a result of oyster 
larval production, survival, and growth. For example, 
extensive larval recruitment found in May 2021 likely 
benefits from high rates of survival and growth. A rich 
larval supply may not guarantee ultimate larval re -
cruitment when survival rate is low. For example, 
oyster larval recruitment in middle Galveston Bay in 
June and July 2021 was suppressed by extremely low 
survival rates, despite the high larval production in 
this area (Fig. 7). The low survival rate found in June 
and July 2021 was perhaps caused by prolonged 
freshwater soaking (Fig. S3). Physiologically, oyster 
feeding rate decreases as salinity decreases and even 
ceases when salinity drops below a critical threshold 
(Casas et al. 2018). Once salinity is low, oyster larvae 
tend to use reserved energy for somatic maintenance, 
yet this mechanism may not support oyster survival 
for a prolonged period due to a tremendous amount of 
energy deficit (La Peyre et al. 2013). 

Planktonic habitat suitability for oyster larvae is 
synthetically determined by oyster larval production, 

survival, and growth. Spatial heterogeneity in plank-
tonic habitat suitability occurred in the GBS (Fig. 7). 
Lower Galveston Bay and West Bay were categorized 
as high-quality habitats, and habitat quality degraded 
toward upper Galveston Bay and East Bay. We note 
that some areas in upper Galveston Bay and East Bay 
might become moderately suitable for larval recruit-
ment (Fig. 7) during low freshwater inflow months 
(Fig. S3). In addition, nutrient levels are relatively 
high year-round in upper Galveston Bay. Low fresh-
water discharge, combined with up-stream advected 
saline water, may lessen low-salinity stress for oyster 
larvae, which can boost phytoplankton and zooplank-
ton production (Liu et al. 2017, 2021). Hydrodynamics 
in East Bay and West Bay tend to be relatively stable 
but driven by different processes (Powell et al. 1995, 
Rayson et al. 2016). Circulation in East Bay is pri-
marily affected by the inflow from the Trinity River, 
whereas flow into West Bay can withstand the flood-
ing of freshwater discharge (Powell et al. 1995). His-
torical records showed that oyster reefs in West Bay 
were rarely flooded with freshwater (Soniat & Brody 
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Fig. 6. Simulated oyster larval recruitment (spat m–2) in the Galveston Bay System during the spawning season (May–July:  
months 5–7) in (A–C) 2018 and (D–F) 2021. The bay-wide mean value is given in each subplot
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1988). However, seasonal pulses of 
freshwater inflow from the Trinity 
River (Fig. S3) may disturb the rel-
atively static conditions in East Bay, 
leading to prolonged unfavorable 
conditions for planktonic oyster lar-
vae. Hence, the hydrodynamic pro-
cesses in East Bay and West Bay 
largely elucidate distinct planktonic 
habitat quality for oyster larvae 
even within the similar salinity regime. 

Although criteria used to define optimal habitats 
for settled oysters are well established (Cake 1983, 
Soniat & Brody 1988, Barnes et al. 2007), limited at -
tention has been paid to planktonic habitat suitabil-
ity. Here, we attempted to fill the knowledge gap by 

quantifying planktonic habitat suitability using 3 
biologically meaningful indices to exemplify the inte-
grated effects of environmental factors on pelagic 
habitats. While traditional habitat suitability models 
for settled oysters typically give equal weights to all 
candidate variables (Cake 1983, Soniat & Brody 1988) 
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Fig. 7. Results of (A) observed larval abundance, (B) survival rate, (C) growth rate, and (D) planktonic habitat suitability of 
oyster larvae in the Galveston Bay System during spawning season (May–July) in 2018 and 2021. Blue dots (2018) and red dots 
(2021) represent the value of each index across different grids (see Fig. 1B for more details). The aggregate mean value of each 
sub-area (EB: East Bay; LGB: lower Galveston Bay; MGB: middle Galveston Bay; WB: West Bay; UGB: upper Galveston Bay) is  

also provided (horizontal bars)

Demographic                                 2018                                                       2021 
trait                                May           June           July               May            June         July 
 
PLD (d)                     21.4 (1.8)   22.6 (2.3)  23.6 (2.7)      19.1 (1.8)   24.4 (3.1)  23.3 (2) 
Survival rate (%)     2.7 (1.7)     1.6 (1.2)    1.9 (0.9)          2 (1.6)           1 (1)        1 (0.8) 

Table 3. Mean (SD) planktonic larval duration (PLD) and survival rate of oyster 
larvae from stage 1 to stage 6 (spat stage) in the Galveston Bay System summarized  

from model simulation
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in Pollack et al. (2012), a higher weight was given to 
salinity when calculating habitat suitability for 
oysters. Our simulation results also highlight the 

strong impacts of salinity on oyster 
recruitment and then on the plank-
tonic habitat suitability. 

Statistical analyses further quanti-
fied salinity as the primary driver of 
oyster recruitment. The optimal salin-
ity range found in our study generally 
agrees with previous observations of 
maximum reproductive potential at 
10–20 (Shumway 1996) and maximum 
growth at 10–20 (Wang et al. 2008). 
The effect of temperature was rel-
atively small compared to the signifi-

cant impact of salinity in the present study. This is 
likely attributable to the narrow thermal range (25–
31°C) of seasonal (May to July) water temperature in 
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Fig. 8. Response curves for best-fit generalized additive model with 95% confidence bands (shaded areas) for smooth terms of 
(A) monthly larval production (ind. m–2), (B) temperature (°C), (C) salinity, and (D) chlorophyll a (chl a) concentration (μg l–1).  

The y-axis represents the effect of the predictor

Predictor variable                    ΔAIC                  ΔDE (%)             edf              p  
 
Initial larval abundance         221.5                        9.3                    3          <0.0001 
Water temperature                     97                          3.9                    3          <0.0001 
Salinity                                        626.1                      32.3                   3          <0.0001 
Chl a concentration                  12.9                         0.6                  2.1        <0.0001

Table 4. Predictor variables retained in the best-fit generalized additive model 
for oyster larval recruitment (full model baseline values: AIC = 4648.6, DE = 
63.3%). Note that a predictor with higher values of changes in Akaike’s informa-
tion criterion (ΔAIC) and changes in percent deviance explained (ΔDE) is of 
higher importance. The effective degrees of freedom (edf) indicate the degree  

of nonlinearity 
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the GBS (Fig. 8). Extremely low (15 and 17.5°C) and 
high (35°C) water temperatures can cause a drastic re -
duction in the growth of eastern oyster larvae (Davis 
& Calabrese 1964), which is echoed in our sensitivity 
analysis (Fig. 3). In the nGoM estuaries, eastern oysters 
may experience a wider temperature range over the 
entire spawning season from April to November 
(Hopkins 1954); thus, one would anticipate a substan-
tial effect of water temperature on oyster recruitment. 
In general, bivalve recruitment dyna mics may depend 
not solely on static water temperature per se, but also 
on the abrupt change in water temperature or thermal 
shock (Barber & Blake 2006). A previous modeling 
study suggested that the timing of temperature change 
is an important factor driving inter-annual variations 
in oyster reproduction (Hofmann et al. 1992). For ex -
ample, increased temperature occurring earlier in 
spring may result in higher reproductive effort (Hof-
mann et al. 1992). Food concentration acts as a limit-
ing factor for oyster larval growth (Robert et al. 1988). 
When food conditions are optimal during the spring 
bloom, chl a concentration exerts a lesser impact on 
larval recruitment. In addition, nutrient loading in the 
GBS is mainly through seasonal river runoff and is 
highly variable from year to year (Örnólfsdóttir et al. 
2004), which may escalate bottom-up trophic effects 
that override the temperature effect on oyster larvae. 

A few caveats should be noted. First, the boundaries 
of larval dispersal defined by management areas may 
affect the accuracy of the predictions. While these 
boundaries are practical for management purposes, 
they may not fully capture natural larval dispersal 
processes. In addition, the utility of the DEBM is not 
inherently tied to the specific hydrodynamic model 
used in this study, as we only utilized salinity and tem-
perature simulated from the physical model. The 
DEBM framework is adaptable and could be inte-
grated with a hydrodynamic model incorporating 
water circulation in the future to refine predictions of 
larval dispersal and connectivity. Estuarine water cir-
culation plays a critical role in influencing larval ag-
gregations and settlement patterns (Narváez et al. 
2012, Kim et al. 2013). The success of larval settlement 
is inevitably linked to water circulation processes that 
transport larvae to suitable habitats with hard sub-
strates. Given the spatial heterogeneity in hydrody-
namic processes within the GBS, coupling the current 
DEBM with a physical circulation model is recom-
mended to better capture the dynamics of oyster lar-
vae in this region. We note that our spat estimates do 
not perfectly align with observations during model 
validation, which may be partially attributed to the 
lack of consideration of post-settlement mortality in 

planktonic larvae of marine invertebrates (Lipcius et 
al. 2007). Post-settlement mortality is not only driven 
by species bioenergetics but also a variety of biotic 
and abiotic factors, such as intra- and inter-specific 
competition. Additionally, spat abundance estimates 
derived from dredge surveys are subject to bias and 
spatial variability in dredging efficiency. Dredge effi-
ciency can vary due to gear selectivity, habitat type, 
and environmental conditions, potentially leading to 
under- or overestimation of true spat abundance. 
Further refinements to the model could benefit from 
incorporating adjustments for dredge efficiency, as 
highlighted in studies on oyster dredge efficiency 
(Powell et al. 2007, Marenghi et al. 2017) to better link 
planktonic oyster larvae to oyster recruitment. 
Salinity data near the deep channel obtained from 
FVCOM may be underestimated (Fig. S1) due to the 
complex hydrodynamic conditions. The underesti-
mated salinity could lead to an underestimation of lar-
val recruitment; therefore, estimates of oyster recruit-
ment near the deep channel could be conservative. 
Given the relatively short PLD of pelagic larvae, high-
frequency field sampling is advised for tracking 
cohort dynamics, prey items, and pelagic habitat con-
ditions. This comprehensive approach combined with 
continued modeling efforts supports the refinement 
of the current DEBM. While prolonged low salinity 
can cause physiological stresses to oysters (Shumway 
1996), high salinity tends to indirectly increase oyster 
mortality by predation and disease (Pollack et al. 
2011). In upper Galveston Bay, with high freshwater 
input, risks of disease and predation may be negligi-
ble; however, negative impacts of predation and infec-
tion were observed in the moderate–high salinity 
areas, particularly in West Bay (Soniat & Brody 1988). 
Last, the model do main in the present study was de-
signed based on existing reef habitats in the GBS, 
while additional habitats can be generated from dead 
oyster shells following a significant die-off event, 
which could aid in oyster recovery after external dis-
turbances (e.g. hurricanes). 

Climate-related tropical storms and hurricanes, fol-
lowed by storm surges and flash flooding, are major 
disturbances to coastal ecosystems (Patrick et al. 
2020, Liu et al. 2021). Ecosystem consequences of 
large-scale events are often complex because ecologi-
cal processes often operate at various scales in time 
and space (Hastings 2010, Li & Liu 2023). Hydrological 
and biogeochemical variables are sensitive sentinels 
of hurricane disturbance, and these variables may re-
cover moderately quickly to pre-hurricane levels in 
days (Patrick et al. 2020) to months (Du & Park 2019). 
However, post-hurricane pulses of nutrients tend to 
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boost the pelagic communities through bottom-up 
regulation, which can cause long-lasting effects on es-
tuarine ecosystems (Liu et al. 2021). 

Evidence indicates an increasing prevalence of 
tropical cyclones in a changing climate (Emanuel 
2005). How coastal ecosystems respond to and re -
cover from hurricane disturbance has drawn atten-
tion to mitigating the ecological and economic after-
math on ecosystem functioning (Greening et al. 
2006). Nevertheless, research on ecosystem-level 
meaningful responses to hurricanes remains inade-
quate because it needs to consider the effects from 
environments to lower and upper trophic levels 
through an integrated approach with long-term ob -
servations and appropriate modeling. Focusing on 
sensitive ecological indicators to study the ecosys-
tem dynamics is promising (Li & Liu 2023), even 
though it only provides a snapshot of ecosystem 
resilience and recovery from natural disasters (Liu et 
al. 2021). Evaluation of oyster response to hurricanes 
provides insights into resilience and function of 
estuarine ecosystems in the face of climate change, 
which is highly relevant to understanding the adap-
tation of oyster populations for better management 
and strategies of the valuable shellfish fisheries to 
ever-changing climate impacts. 
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