Virus genes in Arctic marine bacteria identified by metagenomic analysis

Matthew T. Cottrell, David L. Kirchman*

School of Marine Science and Policy, University of Delaware, 700 Pilottown Rd., Lewes, Delaware 19958, USA

*Corresponding author. Email: kirchman@udel.edu

Aquatic Microbial Ecology 66: 107–116 (2012)

Supplement. Additional information about the fosmid sequence data, including the similarity of 16S rRNA genes to previously identified sequences (Table S1), BLAST hits for sequences identified by Prophage Finder (Table S2), the frequency of sequences identified by Prophage Finder (Table S3), and metabolic pathways identified in the Arctic fosmid end sequences (Table S4)

Table S1. Percent similarity of 16S rRNA genes in the Arctic fosmids to their closest matching sequences in the Greengenes database

Fosmid	Classification	Closest match	Similarity (%)
EU795101	Actinobacteria	Microsphaeraceae	92.4
EU795092	Alphaproteobacteria	Clone pLW-38	89.5
EU795087	Alphaproteobacteria	Rhodobacter	96.7
EU795106	Alphaproteobacteria	Rhodobacter	96.7
EU795084	Alphaproteobacteria	Rhodobacter	97.8
EU795102	Alphaproteobacteria	Rhodobacter	97.8
EU795100	Alphaproteobacteria	Rhodobacter	97.9
EU795094	Bacteroidetes	Unclassified	87.3
EU795252	Bacteroidetes	Polaribacter	91.9
EU795086	Bacteroidetes	Psychroserpens burtonensis	92.8
EU795244	Bacteroidetes	Psychroserpens burtonensis	93.3
EU795237	Bacteroidetes	Cytophaga	93.7
EU795097	Bacteroidetes	Psychroserpens burtonensis	94.1
EU795239	Bacteroidetes	Cytophaga	94.6
EU795245	Bacteroidetes	Cytophaga	94.6
EU795246	Bacteroidetes	Algoriphagus	95.5
EU795242	Bacteroidetes	Polaribacter	98.2
EU795085	Bacteroidetes	Polaribacter	98.2
EU795091	Bacteroidetes	Polaribacter	98.7
EU795104	Bacteroidetes	Polaribacter	98.9
EU795249	Betaproteobacteria	Methylotenera	94.8
EU795088	Betaproteobacteria	Clone OM43	95.6

EU795251	Gammaproteobacteria	Cobetia	86.5
EU795250	Gammaproteobacteria	Marinomonas	88.1
EU795253	Gammaproteobacteria	Marinomonas	88.1
EU795103	Gammaproteobacteria	Marinobacterium	90.0
EU795090	Gammaproteobacteria	Clone SUP05	95.6
EU795096	Gammaproteobacteria	Clone SUP05	95.9
EU795247	Gammaproteobacteria	Colwelliaceae	97.7
EU795093	Gammaproteobacteria	Strain HTCC2207	98.1
EU795095	Gammaproteobacteria	Strain HTCC2207	98.6
EU795083	Eukaryote	Mantoniella	98.0
EU795098	Eukaryote	Mantoniella	98.0
EU795254	Eukaryote	Clone DYF25	98.8

Table S2. Frequency of prophages estimated using Prophage Finder in bacterial genomic DNA from Antarctic waters (Grzymski et al. 2006), Monterey Bay (McCarren & DeLong 2007) and the Arctic Ocean (the present study). n: number of fosmids or BACs

Propha	age frequency	(per Mbp)		Best	BLAST hits	
Location	Mean	<u>SD</u>	<u>n</u>	Description	Virus	<u>e-value</u>
Antarctic	27	9.9	6	Hypothetical protein MdSGHV066	<i>Musca domestica</i> salivary gland hypertrophy virus	4.00E-11
				Hypothetical protein AR158_C785L	<i>Paramecium bursaria Chlorella</i> virus AR158	2.00E-18
				Tmp	Listeria phage B054	4.00E-16
				Hypothetical protein AR158_C788L	<i>Paramecium bursaria Chlorella</i> virus AR158	4.00E-17
				Putative GroEL-like chaperonine protein	Pseudomonas phage EL	9.00E-18
				Hypothetical protein OTV1_036	Ostreococcus tauri virus 1	5.00E-10
				Hypothetical protein	<i>Paramecium bursaria Chlorella</i> virus 1	6.00E-13
				Putative dUTPase	Xanthomonas phage OP2	3.00E-47
Monterey Bay	22	13	18	Hypothetical protein TNAV2c_gp071	Trichoplusia ni ascovirus 2c	0.006
				Prenyltransferase	African swine fever virus	3.00E-05
				Putative serine palmitoyltransferase	<i>Emiliania huxleyi</i> virus 86	2.00E-32
				HSP70	Acanthamoeba polyphaga mimivirus	1.00E–154
				Putative helicase	Escherichia phage rv5	4.00E-42
				MazG	Prochlorococcus phage P-SSM2	1.00E-28
				Putative DNA-dependent RNA polymerase II largest subunit	<i>Emiliania huxleyi</i> virus 86	3.00E-33

Tmp	Listeria phage B054	1.00E-18
Ban	Enterobacteria phage P1	1.00E-109
Hypothetical protein ATCV1_Z679L	Acanthocystis turfacea Chlorella virus 1	9.00E-09
Hypothetical protein TNAV2c_gp071	Trichoplusia ni ascovirus 2c	5.00E–24
Hypothetical protein TNAV2c_gp071	Trichoplusia ni ascovirus 2c	4.00E–07
Hypothetical protein MIMI_L532	Acanthamoeba polyphaga mimivirus	5.00E-17
IMPB/MUCB/SAMB family protein	Bacillus phage SPBc2	1.00E-07
Hypothetical protein MIMI_L532	Acanthamoeba polyphaga mimivirus	1.00E-14
Hypothetical protein RB43ORF157c	Enterobacteria phage RB43	1.00E-44
HSP70	Acanthamoeba polyphaga mimivirus	1.00E-138
Putative cysteine synthase	Lactococcus phage P087	4.00E-38
Putative DNA-dependent RNA polymerase II largest subunit	Emiliania huxleyi virus 86	3.00E-33
Hypothetical protein AR158_C785L	<i>Paramecium bursaria Chlorella</i> virus AR158	5.00E-32
Putative DNA methylase	Streptococcus phage 5093	2.00E-19
Hypothetical protein FR483_N670L	Paramecium bursaria Chlorella virus FR483	4.00E–18
Envelope glycoprotein J	Equid herpesvirus 9	0.94
S-adenosylmethionine decarboxylase	Synechococcus phage S-PM2	1.00E–15
HSP70	Acanthamoeba polyphaga mimivirus	1.00E-138

29

Hypothetical protein MIMI_R290	Acanthamoeba polyphaga mimivirus	3.00E-77
N-acetylglucosamine-1-phosphate uridyltransferase	Acanthamoeba polyphaga mimivirus	3.00E-26
Putative N-acetylmuramoyl-L-alanine amidase	Clostridium phage c-st	6.00E–20
Hypothetical protein OTV1_038	Ostreococcus tauri virus 1	1.00E–27
Hypothetical protein TNAV2c_gp071	Trichoplusia ni ascovirus 2c	4.00E-15
Lon domain protease	Acanthamoeba polyphaga mimivirus	4.00E–20
Integrase	Salmonella phage c341	2.00E-29
Fiber protein	Cyanophage PSS2	1.00E-33
DNA polymerase III alpha subunit	Bacillus phage 0305phi8-36	4.00E-95
gp58	Burkholderia phage phi1026b	2.00E-05
Hypothetical protein AR158_C785L	Paramecium bursaria Chlorella virus AR158	1.00E-17
Putative ATP-binding cassette transporter	Amsacta moorei entomopoxvirus 'L'	2.00E-06
Putative transglycosylase	Bacillus phage SPBc2	2.00E-16
Putative acetyl transferase	Pseudomonas phage PAJU2	3.00E-73
p081	Rhizobium phage 16-3	3.00E-72
DNA primase	Cyanophage PSS2	1.00E-30
Putative thymidylate synthase	Enterobacteria phage T5	1.00E-72
Putative HD phosphohydrolase	Acanthamoeba polyphaga mimivirus	8.00E-19

NudE nudix hydrolase	Enterobacteria phage RB69	0.007
Hypothetical protein	Paramecium bursaria Chlorella virus 1	3.00E-14
Hypothetical protein	<i>Paramecium bursaria Chlorella</i> virus 1	1.00E-04
Putative phosphoribosyl formylglycinamidine (FGAM) synthase II	Microbacterium phage Min1	1.00E-142
Glutamine synthetase (glutamate-amonia ligase)	Acanthamoeba polyphaga mimivirus	1.00E-71
Putative triacylglycerol lipase	Acanthamoeba polyphaga mimivirus	5.00E-23
Hypothetical protein OsV5_037f	Ostreococcus virus OsV5	1.00E-40
ORF MSV152 putative core protein P4a homolog (vaccinia A10L), similar to SW:P33817	Melanoplus sanguinipes entomopoxvirus	1.9
Putative fatty acid desaturase	<i>Emiliania huxleyi</i> virus 86	0.002
DNA polymerase I	Thermus phage P74-26	8.00E-49
tRNA (Uracil-5-)-methyltransferase	Acanthamoeba polyphaga mimivirus	3.00E-25
Putative HD phosphohydrolase	Acanthamoeba polyphaga mimivirus	4.00E-18
Acetylcholinesterase	Acanthamoeba polyphaga mimivirus	1.00E-30
Csp	Lactococcus phage bIL312	5.00E-10
Putative membrane protein	Emiliania huxleyi virus 86	0.024
Hypothetical protein NY2A_B018L	Paramecium bursaria Chlorella virus NY2A	1.00E-29
Putative ribonuclease	Emiliania huxleyi virus 86	1.00E-22

RNA polymerase beta subunit	Lymphocystis disease virus - isolate China	3.00E-28
Translation elongation factor EF-1alpha	Marseillevirus	1.00E-12
Putative HD phosphohydrolase	Acanthamoeba polyphaga mimivirus	1.00E-20
Dihydrofolate reductase	Pseudomonas phage 201phi2-1	7.00E–20
Nuclear protein UL24	Papiine herpesvirus 2	1.2
T87	Tupaiid herpesvirus 1	0.15
HSP70	Acanthamoeba polyphaga mimivirus	1.00E-134
Hypothetical protein ATCV1_Z077L	<i>Acanthocystis turfacea Chlorella</i> virus 1	3.00E-07
gp58	Burkholderia phage phi1026b	8.00E-06
gp183	Mycobacterium phage Myrna	5.00E-07
Hypothetical protein ATCV1_Z544R	<i>Acanthocystis turfacea Chlorella</i> virus 1	4.00E-53
DNA directed RNA polymerase subunit 1	Acanthamoeba polyphaga mimivirus	3.00E-22
Putative DNA gyrase A subunit	Clostridium phage c-st	2.00E-71
Putative ATP-binding cassette transporter	Amsacta moorei entomopoxvirus 'L'	4.00E-10
Hypothetical protein ATCV1_Z804L	<i>Acanthocystis turfacea Chlorella</i> virus 1	1.00E-122
Putative cysteine synthase	Lactococcus phage P087	3.00E-62
Large tegument protein	Cercopithecine herpesvirus 2	1.1
gp118	Mycobacterium phage Kostya	3.00E-90

tRNA (Uracil-5-)-methyltransferase	Acanthamoeba polyphaga mimivirus	2.00E-24
GtrB; bactoprenol glucosyl transferase	Salmonella phage epsilon34	2.00E-21
Hypothetical protein ATCV1_Z169R	<i>Acanthocystis turfacea Chlorella</i> virus 1	5.00E-09
Putative plasmid partitioning protein Soj	Natrialba phage PhiCh1	7.00E-18
RNAse III (dsRNA binding motif)	Acanthamoeba polyphaga mimivirus	1.00E-15
Putative 2-component sensor protein YehU	Enterobacteria phage YYZ-2008	4.00E-19
Glutamine synthetase (glutamate-ammonia ligase)	Acanthamoeba polyphaga mimivirus	1.00E-71
Hypothetical protein FR483_N733R	Paramecium bursaria Chlorella virus FR483	1.00E–16
PurH	Prochlorococcus phage P-SSM2	5.00E-64

Table S3. Frequency of prophages estimated using Prophage Finder in bacterial genomic DNA from Antarctic waters (Grzymski et al. 2006), Monterey Bay (McCarren & DeLong 2007) and the Arctic Ocean (the present study). SD: standard deviation

	Prophage frequency (per Mbp)		BLAST e-value			
Location	Mean	<u>SD</u>	Mean	<u>SD</u>	<u>n</u>	
Antarctic	27	0.99	2.2×10^{-16}	$1.8 imes 10^{-10}$	6	
Monterey Bay	22	1.3	5.0×10^{-24}	1.9×10^{-2}	18	
Arctic Ocean	29	1.7	2.0×10^{-21}	3.1×10^{-1}	61	

Table S4. Metabolic pathways (as defined in the COG database) identified in the Arctic fosmid end sequences. There was no statistically significant difference in the metabolic pathways present in the Arctic versus Cape May and Arctic versus HOT metagenomes based on the gene categories test of the ShotgunFunctionalizeR package. A total of 33% of the fosmid end sequences could be assigned to a metabolic pathway

Metabolic pathway	% of end sequences
Amino acid transport and metabolism	11.5
Energy production and conversion	11.3
Carbohydrate transport and metabolism	8.9
General function prediction only	8.5
Translation, ribosomal structure and biogenesis	8.5
Replication, recombination and repair	7.7
Cell wall, membrane and envelope biogenesis	5.5
Lipid transport and metabolism	5.5
Inorganic ion transport and metabolism	5.1
Transcription	4.9
Posttranslational modification and protein turnover	4.7
Nucleotide transport and metabolism	4.5
Coenzyme transport and metabolism	4.2
Secondary metabolites biosynthesis and transport	2.2
Defense mechanisms	2.2
Signal transduction mechanisms	1.4
Intracellular trafficking and secretion	1.4
Cell cycle control and cell division	0.6
Cell motility	0.6
Function unknown	0.6
Cytoskeleton	0.2
Total end sequences =	1265

LITERATURE CITED

Grzymski JJ, Carter BJ, DeLong EF, Feldman RA, Ghadiri A, Murray AE (2006) Comparative genomics of DNA fragments from six Antarctic marine planktonic bacteria. Appl Environ Microbiol 72:1532–1541

McCarren J, DeLong EF (2007) Proteorhodopsin photosystem gene clusters exhibit co-evolutionary trends and shared ancestry among diverse marine microbial phyla. Environ Microbiol 9:846–858