Table S1. The basic sampling information and environment variables of surface seawater at three stations. T: temperature; S: salinity; Chl a: chlorophyll a; DO: dissolved oxygen; TOC: total organic carbon; DOC: dissolved organic carbon; NO_3^- : nitrate nitrogen; NO_2^- : nitrite nitrogen; NH_4^+ : ammonia nitrogen; PO_4^{3-} : phosphorus; SiO_3^{2-} : silicate; *P. g* colony: *Phaeocystis globosa* colony abundance; *P. g* cells: *Phaeocystis globosa* colony cell abundance. Standard deviation of replicated measurements is shown in parentheses.

Station	ZN2-2			ZN4-2			ZN4-5			
Station		offshore station	l	i	nshore station		C	oastal station		
Longitude		108.62°E			108.62°E		109.60°E			
Latitude		20.50°N			21.17°N		21.17°N			
Depth (m)		48			20			11		
Data	11 Dec	18 Jan	27 Feb	11 Dec	17 Jan	27 Feb	13 Dec	16 Jan	23 Feb	
Date	2016	2017	2017	2016	2017	2017	2016	2017	2017	
Time	6:36	10:56	17:35	13:00	22:31	13:25	6:13	11:23	0:35	
T (°C)	23.29	21.45	20.42	21.42	19.45	18.85	21.00	19.08	21.09	
S (‰)	32.50	32.35	32.4	32.34	32.05	31.61	30.29	31.16	31.24	
pH	8.19	8.17	8.27	8.11	8.27	8.29	8.22	8.21	8.21	
Chl a (μ g l ⁻¹)	0.50	0.30	0.48	1.15	1.78	2.00	2.27	1.75	1.73	
DO (mg l^{-1})	6.83	7.81	7.65	6.93	7.99	8.48	7.07	8.18	8.52	
TOC (mg l^{-1})	1.71	1.00	1.14	1.53	1.41	1.40	2.28	1.39	1.42	
DOC (mg l^{-1})	1.17	0.84	1.16	1.46	0.92	1.27	1.70	1.07	0.99	
NO_{3}^{-} (µmol l ⁻¹)	2.90	4.91	2.93	4.16	2.50	1.05	0.11	0.48	0.96	
$NO_2^{-}(\mu mol l^{-1})$	0.30	0.89	0.73	1.41	0.46	0.12	0.09	0.10	0.23	
$\mathrm{NH_4}^+$ (µmol l ⁻¹)	1.49	1.73	2.26	1.53	3.38	2.73	1.81	3.33	1.90	
PO_4^{3-} (µmol l ⁻¹)	0.58	0.68	0.70	0.59	0.57	0.50	0.51	0.55	0.41	
SiO_3^{2-} (µmol l ⁻¹)	10.22	11.47	8.73	13.96	8.95	2.92	2.52	6.85	10.61	
<i>P. g</i> colony (×10 ³ col m ⁻³)	0.44	0.55	0	0.11	6.17	10.81	8.12	0	0	
Diameter mean (mm)	1.54 (0.35)	1.25 (0.25)	0	3.55 (1.30)	2.60 (1.29)	3.14 (0.24)	1.37 (0.67)	0	0	
<i>P</i> . <i>g</i> cells (×10 ⁷ cells m ⁻³)	1.89	1.54	0	2.9	81.98	213.64	27.5	0	0	

1

Table S2. Sequencing information and alpha diversity estimates (at 97%
similarity) for samples collected from the Beibu Gulf. Prefix: D, December; J,
January; F, February. Suffix: A, Particle-attached prokaryotes; F, Free-living
prokaryotes.

Sample	Effective	Observed	Shannon	Chaol	Good's
name	tags	species	Shannon	Cliaol	coverage
DZ2.2A1	66,298	244	1.75	357.16	0.997
DZ2.2A2	58,324	321	2.22	391.53	0.997
DZ2.2A3	59,945	164	1.43	206.89	0.998
DZ4.2A1	65,805	537	3.60	663.75	0.996
DZ4.2A2	54,870	620	5.05	725.01	0.996
DZ4.2A3	69,425	570	4.84	714.72	0.996
DZ4.5A1	56,890	638	2.71	755.27	0.995
DZ4.5A2	63,041	736	3.55	833.01	0.995
DZ4.5A3	63,205	613	2.78	726.41	0.995
JZ2.2A1	60,591	1364	6.45	1472.13	0.994
JZ2.2A2	62,291	1111	6.79	1239.59	0.994
JZ2.2A3	48,969	1513	6.15	1678.12	0.992
JZ4.2A1	44,150	1242	5.61	1401.09	0.993
JZ4.2A2	61,426	884	6.06	1007.38	0.995
JZ4.2A3	54,650	1336	6.22	1474.97	0.993
JZ4.5A1	51,620	1130	6.04	1320.93	0.992
JZ4.5A2	54,550	1312	6.33	1498.51	0.992
JZ4.5A3	52,773	1253	6.30	1395.12	0.993
FZ2.2A1	59,172	1112	6.47	1263.81	0.994
FZ2.2A2	67,105	1438	6.20	1720.65	0.990
FZ2.2A3	56,572	1933	6.57	2292.43	0.985
FZ4.2A1	52,071	1655	6.60	1960.28	0.989
FZ4.2A2	43,869	1110	6.18	1272.38	0.993
FZ4.2A3	56,316	811	5.63	886.11	0.996
FZ4.5A1	64,276	882	5.83	1058.54	0.994
FZ4.5A2	53,779	1045	5.92	1209.02	0.993
FZ4.5A3	67,091	1107	6.00	1379.27	0.992
DZ2.2F1	61,809	259	1.87	287.10	0.999
DZ2.2F2	46,703	400	4.46	433.76	0.998
DZ2.2F3	56,208	366	3.88	416.89	0.998
DZ4.2F1	43,709	398	4.38	437.51	0.998
DZ4.2F2	62,597	504	3.91	581.60	0.997
DZ4.2F3	60,647	556	4.62	648.29	0.996
DZ4.5F1	53,257	771	5.78	894.44	0.995
DZ4.5F2	50,505	680	5.94	792.99	0.996
DZ4.5F3	48,991	679	5.89	761.78	0.996
JZ2.2F1	61,556	836	5.41	981.58	0.994

JZ2.2F2	61,022	762	5.46	896.22	0.995
JZ2.2F3	57,481	1202	6.16	1381.81	0.992
JZ4.2F1	54,647	1037	6.18	1207.35	0.993
JZ4.2F2	52,904	1085	6.42	1246.09	0.993
JZ4.2F3	52,440	1021	6.54	1131.00	0.995
JZ4.5F1	61,494	926	5.61	1143.87	0.993
JZ4.5F2	60,440	857	5.79	1039.42	0.994
JZ4.5F3	58,600	878	5.79	998.54	0.994
FZ2.2F1	66,956	817	6.47	1018.76	0.994
FZ2.2F2	65,666	815	6.37	1071.89	0.993
FZ2.2F3	54,003	921	6.37	1071.99	0.994
FZ4.2F1	64,236	897	5.26	1103.36	0.993
FZ4.2F2	61,148	993	5.53	1184.31	0.993
FZ4.2F3	66,154	865	5.39	1126.44	0.993
FZ4.5F1	61,028	497	5.17	571.08	0.997
FZ4.5F2	57,130	548	4.76	629.56	0.997
FZ4.5F3	61,923	702	5.11	862.36	0.994

Table S3. The differences in α -diversity between pairs of two groups were tested by the Wilcoxon test. PA, particle-attached; FL, free-living. Prefix: D, December; J, January; F, February. Suffix: A, particle-attached prokaryotes; F, free-living prokaryotes. Significant differences (p < 0.05) are denoted in bold

	Observed	species	Shannon		Chao1	
Group-Pair	difformance		1:00		differenc	
	difference	р	difference	р	e	р
DecPA VS. FebPA	-30.89	0	-32.56	0	-30.78	0
DecPA VS. JanPA	-34.89	0	-33.33	0	-33.56	0
JanPA VS. FebPA	4	0.2946	0.78	0.8741	2.78	0.4934
DZ2.2A VS. JZ2.2A	-45.67	0	-44.00	0	-43.67	0
DZ2.2A VS. FZ2.2A	-47.00	0	-45.33	0	-46.33	0
JZ2.2A VS. FZ2.2A	-1.33	0.7944	-1.33	0.7772	-2.67	0.6369
DZ4.2A VS. JZ4.2A	-29.33	0	-21.33	0.0001	-26.67	0
DZ4.2A VS. FZ4.2A	-26.33	0	-26.33	0	-25.00	0.0001
JZ4.2A VS. FZ4.2A	3.00	0.5584	-5.00	0.2922	1.67	0.7677
DZ4.5A VS. JZ4.5A	-29.67	0	-34.67	0	-30.33	0
DZ4.5A VS. FZ4.5A	-19.33	0.0005	-26.00	0	-21.00	0.0006
JZ4.5A VS. FZ4.5A	10.33	0.0493	8.67	0.0721	9.33	0.1043
DecFL VS. FebFL	-12.89	0.0013	-11.33	0.0246	-14.44	0.0008
DecFL VS. JanFL	-21.67	0	-16.78	0.0012	-21.56	0
JanFL VS. FebFL	8.78	0.0243	5.44	0.2704	7.11	0.0836
DZ2.2F VS. JZ2.2F	-25.67	0	-19.00	0.0003	-26.33	0
DZ2.2F VS. FZ2.2F	-22.33	0.0001	-38.67	0	-25.00	0.0001
JZ2.2F VS. FZ2.2F	3.33	0.5158	-19.67	0.0002	1.33	0.8132
DZ4.2F VS. JZ4.2F	-28.33	0	-34.67	0	-28.00	0
DZ4.2F VS. FZ4.2F	-22.67	0.0001	-9.33	0.0536	-24.67	0.0001
JZ4.2F VS. FZ4.2F	5.67	0.2719	25.33	0	3.33	0.5555
DZ4.5F VS. FZ4.5F	6.33	0.2204	14.00	0.0050	6.33	0.2656
DZ4.5F VS. JZ4.5F	-11.00	0.0370	3.33	0.4806	-10.33	0.0733
JZ4.5F VS. FZ4.5F	17.33	0.0016	10.67	0.0286	16.67	0.0052
DZ2.2A VS. DZ4.2A	-10.33	0.0493	-10.67	0.0286	-11.00	0.0573
DZ2.2A VS. DZ4.5A	-14.33	0.0077	-3.67	0.4382	-13.33	0.0227
DZ4.2A VS. DZ4.5A	-4.00	0.4361	7.00	0.1432	-2.33	0.6794
JZ2.2A VS. JZ4.2A	6.00	0.2452	12.00	0.0146	6.00	0.2912
JZ2.2A VS. JZ4.5A	1.67	0.7447	5.67	0.2336	0.00	1.0000
JZ4.2A VS. JZ4.5A	-4.33	0.3991	-6.33	0.1842	-6.00	0.2912
FZ2.2A VS. FZ4.2A	10.33	0.0493	8.33	0.0832	10.33	0.0733
FZ2.2A VS. FZ4.5A	13.33	0.0126	15.67	0.0019	12.00	0.0390
FZ4.2A VS. FZ4.5A	3.00	0.5584	7.33	0.1257	1.67	0.7677
DZ2.2F VS. DZ4.2F	-4.00	0.4361	-3.33	0.4806	-4.67	0.4102
DZ2.2F VS. DZ4.5F	-14.00	0.0091	-22.33	0	-14.67	0.0128
DZ4.2F VS. DZ4.5F	-10.00	0.0567	-19.00	0.0003	-10.00	0.0826

JZ2.2F VS. JZ4.2F	-6.67	0.1976	-19.00	0.0003	-6.33	0.2656
JZ2.2F VS. JZ4.5F	0.67	0.8963	0.00	1.0000	1.33	0.8132
JZ4.2F VS. JZ4.5F	7.33	0.1574	19.00	0.0003	7.67	0.1795
FZ2.2F VS. FZ4.2F	-4.33	0.3991	26.00	0	-4.33	0.4442
FZ2.2F VS. FZ4.5F	14.67	0.0065	30.33	0	16.67	0.0052
FZ4.2F VS. FZ4.5F	19.00	0.0006	4.33	0.3604	21.00	0.0006
DecPA VS. DecFL	-0.44	0.9068	-9.44	0.0590	0	1.0000
JanPA VS. JanFL	12.78	0.0014	7.11	0.1518	12	0.0045
FebPA VS. FebFL	17.56	0	11.78	0.0197	16.33	0.0002
DZ2.2A VS. DZ2.2F	-2.67	0.6027	-5.67	0.2336	-1.67	0.7677
DZ4.2A VS. DZ4.2F	3.67	0.4750	1.67	0.7237	4.67	0.4102
DZ4.5A VS. DZ4.5F	-2.33	0.6487	-24.33	0	-3.00	0.5955
JZ2.2A VS. JZ2.2F	17.33	0.0016	19.33	0.0002	15.67	0.0082
JZ4.2A VS. JZ4.2F	4.67	0.3643	-11.67	0.0173	3.33	0.5555
JZ4.5A VS. JZ4.5F	16.33	0.0027	13.67	0.0060	17.00	0.0044
FZ2.2A VS. FZ2.2F	22.00	0.0001	1.00	0.8319	19.67	0.0012
FZ4.2A VS. FZ4.2F	7.33	0.1574	18.67	0.0003	5.00	0.3779
FZ4.5A VS. FZ4.5F	23.33	0.0001	15.67	0.0019	24.33	0.0001

Group	Group Pair	r	р
	DecFL VS. FebFL	0.5806	0.001
	JanFL VS. DecFL	0.5147	0.002
Months	JanFL VS. FebFL	0.4518	0.001
wontins	JanPA VS. DecPA	0.9911	0.001
	JanPA VS. FebPA	0.2942	0.011
	FebPA VS. DecPA	0.9726	0.001
	Z2.2F VS. Z4.5F	0.4232	0.001
	Z4.2F VS. Z4.5F	0.2365	0.006
Stations	Z4.2F VS. Z2.2F	-0.0532	0.698
Stations	Z2.2A VS. Z4.5A	0.1027	0.126
	Z4.2A VS. Z4.5A	0.0264	0.263
	Z4.2A VS. Z2.2A	0.0580	0.184
	DecFL VS. DecPA	0.3237	0.004
	JanPA VS. JanFL	0.5703	0.001
	FebPA VS. FebFL	0.5178	0.001
Fractions	Z4.5A VS. Z4.5F	0.4647	0.001
	Z4.2A VS. Z4.2F	0.1289	0.082
	Z2.2A VS. Z2.2F	0.2870	0.013
	FL VS. PA	0.2872	0.001

Table S4. The results of ANOSIM analysis based on Bray-Curtis distances of the PA and FL fractions. Significant differences (p < 0.05) are denoted in bold

Table S5. The average relative abundance of the 17 identified OTUs serving as indicator taxa for the FL and PA prokaryotic communities, with their contributions to community dissimilarities. The "indicative" OTUs were identified by the SIMPER analysis and only OTUs that contributed $\geq 1\%$ of dissimilarities (Bray-Curtis dissimilarity) between PA and FL communities were displayed. Contrib.: Contributions of taxonmy to the similarity within cluster. Cum.: Cumulate contribution

OUT ID	Classification	Average abundance (PA) %	Average abundance (FL) %	Contrib. %	Cum. %
OTU_1	p_Proteobacteria; g_Phyllobacterium	15.28	9.60	13.24	13.24
OTU_2	p_Proteobacteria; g_Delftia	6.29	1.95	9.55	22.78
OTU_3	pThaumarchaeota; fNitrosopumilaceae	2.11	3.54	6.23	29.02
OTU_4	p_Cyanobacteria; g_unidentified Cyanobacteria	10.09	1.58	4.79	33.81
OTU_5	p_Proteobacteria; g_Sphingomonas	2.97	0.78	3.18	36.98
OTU_6	p_Proteobacteria; g_unidentified Alphaproteobacteria	4.73	17.20	3.11	40.10
OTU_7	p_Proteobacteria; g_Pseudoalteromonas	2.56	2.01	2.26	42.35
OTU_8	p_Cyanobacteria; o_Synechococcales	2.69	1.35	2.11	44.46
OTU_9	p_Cyanobacteria; g_unidentified Cyanobacteria	2.14	0.28	1.85	46.30
OTU_10	p_Proteobacteria; f_Rhodobacteraceae	0.90	1.80	1.62	47.92
OTU_11	p_Proteobacteria; g_ Candidatus Pelagibacter	0.81	2.53	1.45	49.37
OTU_12	p_Euryarchaeota; c_Thermoplasmata	0.27	1.51	1.39	50.76
OTU_13	p_Actinobacteria; g_Candidatus Actinomarina	1.52	5.77	1.38	52.14
OTU_14	p_Cyanobacteria; g_unidentified Cyanobacteria	1.35	2.24	1.12	53.26
OTU_15	p_Proteobacteria; g_unidentified Rhodospirillales	0.47	1.34	1.12	54.38
OTU_16	p_Euryarchaeota; g_unidentified Thermoplasmata	0.42	1.51	1.11	55.48
OTU_17	p_Proteobacteria; g_SUP05 cluster	0.48	1.20	1.06	56.55

Environmental variables	Р	A	FL		
	r^2	р	r^2	р	
P.g cells	0.0606	0.4988	0.1528	0.1209	
S	0.2149	0.0530	0.5937	0.0005	
DO	0.8680	0.0005	0.6753	0.0005	
pН	0.2264	0.0535	0.5633	0.0005	
DOC	0.5064	0.0010	0.1181	0.2159	
NO_2^-	0.1076	0.2559	0.5913	0.0005	
$\mathrm{NH_4}^+$	0.4175	0.0025	0.5286	0.0005	
PO ₄ ³⁻	0.6662	0.0005	0.6701	0.0005	

Table S6. The significance analysis of environmental variables based on ENVFIT functions. Highly significant correlation coefficients (p < 0.01) are denoted in bold

Fig. S1. (A) The Venn diagram of effective tags distribution between PA and FL fractions. (B) The Venn diagram of all operational taxonomic unit (OTU) distribution between particle-attached (PA) and free-living (FL) prokaryotic communities. The size of the circles is proportional to the number of tags in (A) and the number of OTUs in (B).

Fig. S2. Rarefaction curves of OTUs clustered at the 97% sequence similarity level from 18 groups of samples.

Fig. S3. The distribution histogram in LDA value showed the differentially abundant prokaryotes of different fractions and different months at Stns ZN4-5 (A), ZN4-2 (B), and ZN2-2 (C), respectively. Taxa in this graph were both statistically significant (P < 0.05) and had an LDA Score > 4, considered a significant effect size.

Fig. S4. Spearman correlation coefficients between the environmental variables and the alpha diversity of the prokaryotic communities. The left and right panel represented the particle-attached (PA) and free-living (FL) prokaryotic communities, respectively. The values of Spearman correlation coefficients were indicated according to the scale bar. Significance codes for p-values are as follows: ** p < 0.01, * p < 0.05.

Fig. S5. Spearman correlation coefficients between the environmental variables and major phyla (A), classes (B), orders (C), families (D), and genera (E) (relative abundance > 1.0% in at least one sample) of the prokaryotic communities, respectively. The left and right panel represented the particle-attached (PA) and free-living (FL) prokaryotic communities, respectively. The values of Spearman correlation coefficients were indicated according to the scale bar. Significance codes for p-values are as follows: ** p < 0.01, * p < 0.05.