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Text S1. Supplemental Methods 

The V4 region of the 16S rRNA gene was targeted for microbial community profiling 
using the primer pair 515F-Y (5′-GTGYCAGCMGCCGCGGTAA-3′, Parada et al. 2016) and 
806RB (5′-GGACTACNVGGGTWTCTAAT-3′, Apprill et al. 2015), using a fusion primer-
based approach (Kozich et al. 2013). Triplicate 25µl PCR reactions were performed using the 
following recipe: 5.5µl nuclease free water, 12.5µl 2X FroggaBio Master Mix, 1µl Bovine 
Serum Albumin (BSA), 2µl each of forward and reverse fusion primers (515F/816R, 2.5µM) and 
2µl of normalized DNA (2.5ng/µl). Fusion primers sequences contained not only the primer but 
also Illumina adapters and indexes as detailed by Comeau et al. 2017. Thermocycler conditions 
were as follows: 3 minutes at 94℃, 45 seconds at 94℃, 60 seconds at 50℃, 90 seconds at 72℃, 
repeating steps 2-4 29 times, followed by 10 min at 72℃, and a hold at 10℃. Successful 
amplification was verified by gel electrophoresis.  

If a visible band was present, PCR triplicates were pooled. If no band was visible, a series 
of troubleshooting steps were carried out, including increasing DNA volume in the reaction, 
diluting samples 1:10 and/or using a Zymo Research OneStep PCR Inhibitor Removal Kit to 
remove potential PCR inhibitors. When at least a faint band was detected, two additional PCR 
reactions were run with the successful troubleshooting method. Successful triplicate PCR 
reactions were pooled, purified using SPRI paramagnetic beads (Beckman Coulter, Inc.) and 
quantified using a Quant-iT™ dsDNA Assay Kit. Samples were pooled in equimolar 
concentration (7.5ng of DNA per sample) and sequenced, along with the five extraction 
negatives and one PCR negative, using an Illumina MiSeq using V3 600-cycle kit. 

Sequences were quality controlled and denoised using QIIME2 (Bolyen et al. 2019). 
Briefly, primers were trimmed using cutadapt (Martin 2011) and denoised using dada2 (Callahan 
et al. 2016; trim-left-r 5, trunc-len-f 230, trunc-len-r 210, max-ee-f 3, and max-ee-r 5). Rare 
amplicon sequence variants (ASVs), with a frequency of less than 0.1% of the mean sample 
depth after denoising, were filtered out of the ASV table and representative sequences were then 
classified using the QIIME2 naive Bayes Classifier (Bokulich et al. 2018) trained to the Silva 
database v 138 (Quast et al. 2013). Eukaryotic, mitochondrial, and chloroplast sequences were 
removed prior to further analysis. 

Due to several abundant ASVs being not being classified beyond domain, all sequences 
were then classified with two additional classifiers: (1) SINA classifier, available on the Silva 
Database website (https://www.arb-silva.de/aligner/, Pruesse et al. 2012) and (2) QIIME2’s 
implementation of consensus BLAST, using a percent ID of 0.7. We then selected the sequences 
classified only to Bacteria using the QIIME2 naive Bayes Classifier (n=31) and compared the 
new taxonomy assignments from SINA and BLAST. SINA provided many more assignments, 
but not always with a high percent ID. If these additional taxonomic assignments had a percent 
ID below 0.7, assignments were not updated (and in 50% of these cases were ID’d as being 
mitochondrial) and ASVs were subsequently removed (n = 14) from the dataset. Several ASVs 
with SINA taxonomic assignments with percent identities greater than 70% but less than 75% (n 
=5) still remained unclassified with BLAST (2/5), had conflicting BLAST assignments (2/5), or 
were classified as mitochondrial (1/5) and were also removed. For several ASVs with a SINA 
taxonomic assignment with a percent ID of 75% or greater (n = 12), a consensus taxonomic 
assignment was also available from BLAST but did not agree at the Phylum level in 25% of the 
cases and thus we could not confidently assign these ASVs beyond Bacteria. These ASVs were 
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therefore removed from the dataset (3/12). For the remaining 75% of these hard-to-classify 
ASVs (9/12) the SINA and BLAST classifications agreed to at least the Phylum level. An 
updated lowest-common ancestor (LCA) classification was used for these ASVs. Additionally, 
unclassified ASVs were removed from the dataset before further analysis. 

We controlled for potential contamination in the dataset using the decontam package in R 
(Davis et al. 2018). This process identified 72 of 2993 ASV’s as contaminants, and these ASVs 
were removed from the dataset. Further, some samples had low read counts (similar to the 
extraction and PCR negatives), and thus we pruned the dataset to remove samples with <9000 
read counts, which resulted in removal of eight swabs, five extraction negatives and one PCR 
negative, leaving 46 samples containing 2921 ASVs, with a mean read count of 287,362 per 
sample (ranging from 18,425 to 550,473 reads). All subsequent analyses were performed on this 
decontaminated and pruned dataset. The 16S rRNA gene sequence data are available in the 
NCBI Sequence Read Archive under BioProject number PRJNA839850. Details of 
bioinformatic processing of the data and the code and associated input files for data visualization 
and statistical analysis are available at https://github.com/hakaigenomics/seastar-swab-
extmethods. 

All visualizations and statistical tests were conducted in R version 4.2.2 (R Core Team 
2022). A significance value of 0.05 was used for all statistical tests. Richness was calculated 
using the breakaway package in R (Willis & Bunge 2015), while alpha diversity (Shannon 
Index) was calculated using the DivNet package (Willis & Martin 2022). Both packages were 
developed to make more robust estimates of species richness in microbiome datasets by 
accounting for species interactions (Willis & Bunge 2015). The effect of extraction kit on 
estimates of richness and diversity was determined by fitting repeated measures analysis of 
variance (ANOVA) models (anova_test in the rstatix package, Kassambara 2022) to account for 
the same specimens being used in each of the five extraction kits. Further, because two sea star 
species were included in our dataset and microbiomes are often host-specific, we tested for 
differences in richness and diversity among kits within leather star (D. imbricata) and ochre star 
(P. ochraceous) specimens separately. We also tested for differences in richness and diversity 
between the two sea star species using t-tests, temporarily excluding the effect of extraction kit. 
Within each subset of the data, we tested homogeneity of variances using the bartlett.test in the 
stats R package and used ggqqplot in the ggpubr package (Kassambara 2022) to visually 
examined if the data were normally distributed. If these assumptions were not met, we used the 
Skillings-Mack test in the PMCMRplus package (Pohlert 2022) as a non-parametric alternative to 
the repeated measures ANOVA with an unbalanced block design, and the Wilcoxon test as an 
alternative to the t-test in the rstatix package (Kassambara 2022).  

A Principal Coordinates Analysis (PCoA), using the Bray-Curtis dissimilarity index 
based on ASV abundances normalized to the total reads per sample (i.e. proportions), was used 
to test for differences in community composition among extraction kits. Homogeneity of 
dispersions was also tested among the five kits using the betadisper function and Permutational 
multivariate analysis of variance (PERMANOVA, using the adonis2 function) was used to test 
for differences in beta diversity (community composition) among extraction kits and between sea 
star species – both analyses were conducted in the vegan R package (Oksanen et al. 2022). To 
further examine differences in prokaryotic community composition among the five extraction 
kits and between the two sea star species we created heat maps showing % read abundance at the 
Phylum level using the ampvis2 package (Anderson et al. 2018).  
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Table S1. Results from statistical analyses examining the effect of extraction kit and sea star 
species on microbial richness and diversity 

A. Repeated measures ANOVA results 

Dataset Fixed 
Effect  

Repeated 
Measure Response 

Degrees of 
Freedom 
(dfn, dfd) 

F-value p-value 

All data 
Extraction 

Kit Specimen Richness 
estimate 

4, 16 1.13 0.38 

P. ochraceus 4, 8 0.926 0.50 

D. imbricata 4, 4 0.816 0.58 

D. imbricata Extraction 
Kit Specimen Shannon 

diversity 4, 4 0.703 0.63 

 

B. Skillings-Mack test results 

Dataset Group Block Response 
Degrees 

of 
Freedom 

Skillings-
Mack chi-
squared 

p-value 

All data Extraction 
Kit Specimen Shannon 

diversity 

4 3.68 0.45 

P. ochraceus 4 1.34 0.85 

 

C. T-test and Wilcoxon test results 

Dataset Group Response Statistical 
Test Used 

Degrees of 
Freedom 

Test 
statistic 

p-
value 

All data Species 

Richness 
estimate T-test 24.8 -2.61 0.015 

Shannon 
diversity 

Wilcoxon 
Test NA 95 0.003 
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Figure S1: Estimates of (A) richness and (B) Shannon diversity for the two sea star species, with 
extraction kit indicated by color 


