The decline of Norwegian kittiwake populations: modelling the role of ocean warming

Hanno Sandvik^{1,*}, Tone K. Reiertsen^{2,3}, Kjell Einar Erikstad^{1,3}, Tycho Anker-Nilssen⁴, Robert T. Barrett², Svein-Håkon Lorentsen⁴, Geir Helge Systad³, Mari S. Myksvoll⁵

¹Centre for Biodiversity Dynamics (CBD), Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway

²Tromsø Museum, University of Tromsø, PO Box 6050 Langnes, 9037 Tromsø, Norway

³Norwegian Institute for Nature Research (NINA), FRAM - High North Research Centre for Climate and the Environment, 9296 Tromsø, Norway

⁴Norwegian Institute for Nature Research (NINA), PO Box 5685 Sluppen, 7485 Trondheim, Norway

⁵Institute for Marine Research, PO Box 1870 Nordnes, 5817 Bergen, Norway

*Corresponding author: hanno@evol.no

Climate Research 60: 91-102 (2014)

Supplement. Density-dependent models

All models in Tables 1 and 2 were re-run under the assumption of density dependence. These logistic population models had the form:

$$\ln N_{t+1} = \ln N_t + r_0 \left(1 - N_t / K \right) - \frac{1}{2} \sigma_d^2 N_t^{-1} + \sum \beta_i X_{i,t} + \varepsilon_t , \qquad (S1)$$

with *K* as the carrying capacity; r_0 is the intrinsic population growth rate at infinitesimal population size (see Eqn. 1 in the main article for explanations of the remaining variables). Maximum likelihood estimation of the parameters (cf. Eqn. 2, main article) was constrained to positive values because non-positive estimates of *K*, r_0 and σ_a^2 are not biologically meaningful.

In the case of common models for all 5 colonies (cf. Table 1, main article), all density-dependent models obtained poorer support than the corresponding density-independent models (all $\Delta AICc > 3.5$; cf. Table S1). When analysing colonies separately (cf. Table 2), Sklinna was the only colony where density-dependent and density-independent models obtained a comparable fit (i.e. within 2 AICc units; Table S2). This was true only when the Sklinna population time series was truncated in 2001 (see main text, Section 2.1). In this case, growth rate r_0 and carrying capacity *K* were estimated as 0.143 [95% confidence intervals: 0.371; 0.907] and 56 [34; 76], respectively. In all other colonies (and in Sklinna, when all years were included), density-dependent models estimated r_0 to be close to 0 (all $r_0 \ll 10^{-9}$).

Based on these results, PVAs were run assuming density-independent population dynamics. (The only exception might have been Sklinna. However, because this colony went extinct, it was neither possible nor necessary to run PVAs for it.)

Table S1. Population models for 5 Norwegian black-legged kittiwake populations, fitted to all populations simultaneously. The table includes all models from Table 1 in the main article, and adds the corresponding logistic models. Model structure depends on the covariate and its time lag, whether the covariate had been detrended (detr.), whether 1 common or 5 separate values were estimated for growth rates (\bar{r}) and environmental variances (σ_e^2) for the 5 colonies, and on whether the model was density-dependent (DD, i.e. logistic) or density-independent (i.e. Brownian). See Table 1 (main article) for an explanation of the remaining columns. **Bold**: best-supported models

	Model structure					Estimate			Model performance		
Covariate	lag	detr.	\overline{r}	σ_{e}^{2}	DD	mean CI		Κ	ΔAIC_{C}	ML	
Grand Banks	3		1	5		<i>b</i> = -0.079	-0.132, -0.027	7	0.00	1.000	
Svalbard	1		1	5		<i>b</i> = -0.244	-0.404, -0.081	7	0.12	0.942	
Grand Banks	3		1	5	DD	<i>b</i> = -0.078	-0.136, -0.020	12	3.52	0.172	
Svalbard	1	detr.	1	5		<i>b</i> = -0.240	-0.450, -0.035	7	3.60	0.165	
Grand Banks	1		1	5		<i>b</i> = -0.059	-0.113, -0.004	7	4.07	0.131	
Grand Banks	3	detr.	1	5		<i>b</i> = -0.088	-0.174, -0.004	7	4.40	0.111	
Colonies	1		1	5		<i>b</i> = -0.065	$-0.133, \pm 0.003$	7	5.12	0.077	
Svalbard	1		1	5	DD	<i>b</i> = -0.254	-0.425, -0.082	12	5.51	0.064	
None			1	5		$\bar{r} = -0.055$	-0.081, -0.030	6	6.42	0.040	
Grand Banks	1	detr.	1	5		<i>b</i> = -0.031	-0.116, +0.052	7	8.09	0.018	
Colonies	1	detr.	1	5		<i>b</i> = -0.027	-0.142, +0.085	7	8.44	0.015	
Grand Banks	1		1	5	DD	<i>b</i> = -0.069	-0.130, -0.011	12	9.72	0.008	
Colonies	1		1	5	DD	<i>b</i> = -0.073	-0.150, +0.001	12	11.43	0.003	
None			5	5				10	12.21	0.002	
Svalbard	1	detr.	1	5	DD	<i>b</i> = -0.239	-0.459, -0.009	12	14.31	0.001	
Grand Banks	3	detr.	1	5	DD	<i>b</i> = -0.081	-0.172, +0.011	12	15.74	0.000	
None			1	5	DD	$r_0 = 2.4 \times 10^{-10}$	$9.5 \times 10^{-11}, 2.1 \times 10^{-8}$	11	17.67	0.000	
Grand Banks	1	detr.	1	5	DD	<i>b</i> = -0.044	-0.136, +0.047	12	19.50	0.000	
Colonies	1	detr.	1	5	DD	<i>b</i> = -0.032	-0.158, +0.091	12	19.94	0.000	
None			5	5	DD			15	27.43	0.000	
None			1	1		$\bar{r} = -0.070$	-0.106, -0.035	2	45.64	0.000	
None			5	1		$\sigma_e^2 = 0.038$	0.027, 0.046	6	51.89	0.000	
None			1	1	DD	$r_0 = 2.3 \times 10^{-10}$	2.0×10^{-11} , 1.5×10^{-8}	7	66.70	0.000	
None			5	1	DD	$\sigma_e^2 = 0.042$	0.031, 0.052	11	75.37	0.000	

Table S2. Separate population models for 5 Norwegian black-legged kittiwake populations. The table includes all models from Table 2 and adds the corresponding density-dependent (DD, i.e. logistic) models plus models with detrended (detr.) covariates. (Because Table 2 in the main article is used as the reference, negative Δ AICc values can occur)

Colony	Model: covariate (time lag)	Detr.	DD	Estimate	CI	Κ	$\Delta AIC_{\rm C}$	\mathbb{R}^2
Runde	Grand Banks (3)	detr.		-0.226	-0.447, -0.008	3	-0.26	0.134
	Grand Banks (3)			-0.127	-0.259, +0.005	3	0.00	0.125
	null					2	0.79	
	null		DD			3	9.28	
	Grand Banks (3)		DD	-0.113	-0.265, +0.038	4	10.04	0.125
Sklinna	Grand Banks (1)		DD	-0.549	-1.031, -0.242	4	-1.35	0.334
	null					2	0.00	
	Grand Banks (1)	detr.		-0.476	-1.097, +0.146	3	0.67	0.112
	Grand Banks (1)			-0.284	-0.661, +0.088	3	0.70	0.110
_	null		DD			3	1.94	
Vedøy	null					2	0.00	
	Grand Banks (3)			-0.059	-0.145, +0.025	3	0.65	0.063
	Grand Banks (3)	detr.		-0.052	-0.178, +0.074	3	1.84	0.023
	null		DD			3	9.09	
	Grand Banks (3)		DD	-0.065	-0.163, +0.033	4	10.05	0.063
Hjelmsøya	Svalbard (1) $+$ colony (1)	detr.		-1.122 +0.971	-1.789, -0.446 +0.223, +1.722	4	-1.46	0.416
	Svalbard (1) + colony (1)			-1.186 +0.589	-1.865, -0.490 + $0.102, +1.068$	4	0.00	0.372
	Svalbard (1)	detr.		-0.948	-1.710, -0.178	3	0.92	0.233
	Svalbard (1)			-0.733	-1.391, -0.090	3	1.95	0.192
	null					2	3.47	
	Svalbard (1) $+$ colony (1)		DD	-1.151 +0.596	-1.952, -0.349 +0.025, +1.176	5	10.01	0.372
	null		DD			3	10.28	
	Svalbard (1)		DD	-0.692	-1.435, +0.068	4	10.35	0.192
Hornøya	Svalbard (1)			-0.310	-0.526, -0.084	3	0.00	0.210
	Svalbard (1)	detr.		-0.344	-0.646, -0.041	3	1.97	0.152
	Grand Banks (3)			-0.077	-0.151, -0.002	3	2.78	0.127
	colony (4)			-0.140	-0.285, +0.005	3	3.33	0.110
	null					2	4.11	
	Svalbard (1)		DD	-0.318	-0.555, -0.082	4	5.58	0.210
	colony (4)		DD	-0.143	-0.295, +0.011	4	8.80	0.110
	Grand Banks (3)		DD	-0.073	-0.153, +0.007	4	8.81	0.127
	null		DD			3	9.21	