Francisella noatunensis ssp. *noatunensis iglC* deletion mutant protects adult zebrafish challenged with acute mortality dose of wild-type strain

Elisabeth O. Lampe, Julia I. Tandberg, Anne-Lise Rishovd, Hanne C. Winther-Larsen*

*Corresponding author: hannewi@farmasi.uio.no

Diseases of Aquatic Organisms 123: 123-140 (2017)

Supplementary materials and methods

Several published RT-qPCR primers for immune response related carp genes (*ifn, socs*: Wang et al. 2013; *tnfa*: Xiao et al. 2010; *il1β*: MacKenzie et al. 2009; *il6, il10*: Ouyang et al. 2013; *inos*: Chadzinska et al. 2008) were tested for their transcription in CLC cells and in CLC cells infected with *Francisella noatunensis ssp. noatunensis (Fnn)* as these genes have been studied previously in other animal species infected with *Francisella* sp. Unfortunately, transcription was only detected for *tnfa* and the reference genes 40SrRNA (Chadzinska et al. 2008) and 18SrRNA (Wang et al. 2013).

Supplementary figures and tables

Fig. S1. *Fnn* WT and *Fnn* $\Delta iglC$ mutant infection in CLC cells. (A) Quantification of *Fnn* WT or *Fnn* $\Delta iglC$ as percentage of infected CLC cells measured by manual counting on immunolabeled samples by fluorescence microscope. Results are presented as mean ± SEM. (B) Micrographs of CLC cells labeled with Alexa Fluor® 594 conjugated Wheat Germ Agglutinin (red) infected with *Fnn* WT (pKK289Km::*gfp*) or *Fnn* $\Delta iglC$ (pKK289Km::*gfp*) labeled with α -gfp and Alexa Fluor® 488 conjugated secondary antibodies (green). Scale bars = 5 µm

Average spleen weight, mg (SD)

Fig. S2. Splenomegaly of adult zebrafish infected with lower dose *Fnn* WT versus $\Delta iglC$ infected or PBS injected fish 14 dpi. Six fish per group were sampled from which three representative spleens from each group are presented. Scale bar = 1 cm

Fig. S3. Immune responses in adult zebrafish during lower dose $(3 \times 10^7 \text{ CFU})$ experiment. RTqPCR was performed on RNA extracted from kidneys of each group at 2 dpi (n = 5) and 14 dpi (n = 6). Results are presented as mean \pm SEM with significance level p < 0.05. ^aSignificant difference from PBS control at timepoint. ^bSignificant difference between infected groups at timepoint

Fig. S4. Immune responses in adult zebrafish during high dose $(3 \times 10^9 \text{ CFU})$ experiment. RT-qPCR was performed on RNA extracted from kidneys of each group at 2 dpi (n = 5), 9 dpi for PBS injected fish (n = 4) and at the endpoint of infected groups. The endpoint was 7 dpi (n = 6) and 5 dpi (n = 5) for the *Fnn* WT and *Fnn* $\Delta iglC$, respectively. Results are presented as mean ± SEM with significance level p < 0.05. ^aSignificantly different from PBS control at closest timepoint. ^bSignificant difference between infected groups at closest timepoint. The vertical dotted line separates the common early sampling time at 2 dpi from the different endpoints. Significance calculated between the different endpoints are interpreted with caution

Fig. S5. Immune responses in adult zebrafish after immunization with $Fnn \Delta iglC$ and challenge with Fnn WT. RT-qPCR was performed on RNA extracted from spleen and kidneys from four sampled fish per group 1 dbc, 1, 3, 7 dpc and at the endpoint of both groups, which was 10 dpc for non-immunized fish and 28 dpc for mutant immunized fish. Results are presented as mean \pm SEM. The vertical dotted line separates the early sampling days from the different endpoints

	Name	Sequence (5'-3')	Product	Reference
1	5		size (bp)	
QI	Fnn spes_fw	TGAGTIGGTAACCATIGATIGTACATAGT	97	Duodu et al. (2012)
Q2	Fnn spes_rev	CGAGTACCTGGTGGGAGAAAGA		
Q9	ef1α (cod)_F	ATGTGAGCGGTGTGGCAATC	72	Seppola et al. (2008)
Q10	ef1α (cod)_R	TCATCATCCTGAACCACCCTG		
Q11	il1β (cod)_F	GGAGAACACGGACGACCTGA	50	Seppola et al. (2008)
Q12	il1β (cod)_R	CGCACCATGTCACTGTCCTT		
Q13	il6 (cod)_F	TGAAGAAGGAGTACCCCGACAAT	92	Bakkemo et al. (2012)
Q14	il6 (cod)_R	GGTGCCTCATCTTTTCCTCAATG		
Q15	il8 (cod)_F	GGTTTGTTCAATGATGGGCTGTT	70	Seppola et al. (2008)
Q16	il8 (cod)_R	GACCTTGCCTCCTCATGGTAATACT		
Q17	il10 (cod)_F	CCTATAAAGCCATCGGCGAGTTA	75	Seppola et al. (2008)
Q18	il10 (cod) R	TGAAGTCGTCGTTTTGAACCAAG		
Q19	efla (zf)_F	CTTCTCAGGCTGACTGTGC	358	McCurley & Callard (2008)
Q20	efla (zf)_R	CCGCTAGCATTACCCTCC		
Q21	18S (zf)_F	ACCACCCACAGAATCGAGAAA	98	Dios et al. (2010)
Q22	18S (zf)_R	GCCTGCGGCTTAATTTGACT		
Q23	β -actin (zf)	QuantiTect Primer Assay Dr actb1 1 SG	142	Qiagen, cat# QT02174907
Q24	il1β (zf)	QuantiTect Primer Assay Dr il1b 1 SG	111	Qiagen, cat# QT02063565
Q25	tnfa (zf)	QuantiTect Primer Assay Dr tnfa 1 SG	81	Qiagen, cat# QT02097655
Q26	il6 (zf) F	TCAACTTCTCCAGCGTGATG	73	Varela et al. (2012)
Q27	il6 (zf) R	TCTTTCCCTCTTTTCCTCCTG		
Q28	il8 (zf)	QuantiTect Primer Assay Dr il8 1 SG	147	Qiagen, cat# QT02108190
Q29	il10 (zf)	QuantiTect Primer Assay Dr il10 1 SG	144	Qiagen, cat# QT02063922
Q30	il12a (zf)	QuantiTect Primer Assay Dr il12a 1 SG	94	Qiagen, cat# QT02085300
Q31	ifng1 1 (zf)	QuantiTect Primer Assay Dr ifng1-1 1 SG	116	Qiagen, cat# QT02151961
Q32	ifng1 2 (zf)	QuantiTect Primer Assay Dr ifng1-2 1 SG	89	Qiagen, cat# QT02064328
Q33	illb (zf gDNA) F	TTCCCCAAGTGCTGCTTATT	149	Dios et al. (2010)
Q34	il1b (zf_gDNA)_R	AAGTTAAAACCGCTGTGGTCA		

Table S1. Primers used for qPCR in this study

LITERATURE CITED

- Bakkemo KR, Mikkelsen H, Bordevik M, Torgersen J and others (2011) Intracellular localisation and innate immune responses following *Francisella noatunensis* infection of Atlantic cod (*Gadus morhua*) macrophages. Fish Shellfish Immunol 31:993–1004
- Chadzinska M, Baginski P, Kolaczkowska E, Savelkoul HF, Kemenade BM (2008) Expression profiles of matrix metalloproteinase 9 in teleost fish provide evidence for its active role in initiation and resolution of inflammation. Immunology 125:601–610
- Dios S, Romero A, Chamorro R, Figueras A, Novoa B (2010) Effect of the temperature during antiviral immune response ontogeny in teleosts. Fish Shellfish Immunol 29:1019–27
- Duodu S, Larsson P, Sjodin A, Soto E, Forsman M, Colquhoun DJ (2012) Real-time PCR assays targeting unique DNA sequences of fish-pathogenic *Francisella noatunensis* subspecies *noatunensis* and *orientalis*. Dis Aquat Org 101:225–34
- MacKenzie S, Ribas L, Pilarczyk M, Capdevila DM, Kadri S, Huntingford FA (2009) Screening for coping style increases the power of gene expression studies. PLOS ONE 4:e5314
- McCurley AT, Callard GV (2008) Characterization of housekeeping genes in zebrafish: male-female differences and effects of tissue type, developmental stage and chemical treatment. BMC Mol Biol 9:102
- Ouyang P, Rakus K, Boutier M, Reschner A and others (2013) The IL-10 homologue encoded by cyprinid herpesvirus 3 is essential neither for viral replication *in vitro* nor for virulence *in vivo*. Veterinary research 44:53

- Seppola M, Larsen AN, Steiro K, Robertsen B, Jensen I (2008) Characterisation and expression analysis of the interleukin genes, IL-1β, IL-8 and IL-10, in Atlantic cod (*Gadus morhua* L.). Mol Immunol 45:887–97
- Varela M, Dios S, Novoa B, Figueras A. (2012) Characterisation, expression and ontogeny of interleukin-6 and its receptors in zebrafish (*Danio rerio*). Dev Comp Immunol 37:97–106
- Wang L, Shang N, Feng H, Guo Q, Dai H (2013) Molecular cloning of grass carp (*Ctenopharyngodon idellus*) T-bet and GATA-3, and their expression profiles with IFNgamma in response to grass carp reovirus (GCRV) infection. Fish Physiol Biochem 39: 793–805
- Xiao ZG, Liu H, Fu JP, Hu W, Wang YP, Guo QL (2010) Cloning of common carp SOCS-3 gene and its expression during embryogenesis, GH-transgene and viral infection. Fish Shellfish Immunol 28:362–371