M	S	v	Ρ.	v	К	Е	L	S	M	т	Е	I	R	Ρ	R	т	Н	D	D .
atg	tct	gtt 	cct	gtg 	aag	gaa 	ttg 	tca	atg 	acc 	gaa	ata 	cga	ccg	aga	aca	cac	gac	gat
E	I	G	ggg	M	K	L	V	V	L	G	K	P	G	R	G	K	S	V	L
gaa	atc	gga	G	atg	aaa	ttg	gtt	gtt	ttg	ggc	aaa	ccg	ggc	cgt	gga	aaa	tcg		ttg
I ata	K aaa	S tca	I ata	I ata	A	S tca	K aaa	R Coa	H Cat	L tta	I atc	P ccc	A aca	A A	V att	V atc	I	S	G aat
S	E	E	A	N	H	F	Y	S	G	L	V	P	E	C	Y	I	Y	s	K
tca	.gaa	gaa	gcc	aat	cat	ttc	tat	tct	ggg	tta	gtt	cca	gaa	tgt	tac	att	tat	tcc	aaa
F	D	P	D	I	I	T	R	V	K	K	R	Q	L	E	L	K	H	L	D
ttt	gac	ccc	gat	att	att	acc	aga	gtc	aag	aaa	.cga		icta	igaa	atta	aaaa	acat	tcta	agat
P cct	K aaa	H cat	S tct	W tgg	L ctc	L tta	L ttg	A/ gtc	V I atc	D	D gat	C tgc	M ato	. D Igac) N caac	I I caco	l F	t I atto	, F gtti
N aat	N aat	E gaa	V gta	V gtt	A gct	D gat	L ttg	F	K aaa	N aac	G ggt	R	H acat	W	N gaad	L	gtt	, V ggt	I cat
I	A	S	Q	Y	I	M	D	L	K	A	D	L	R	C	S	I	D	G	V
att	gct	agt	cag	tac	att	atg	gat	tta	aaa	.gcc	gat	tta	laga	itgt	tca	aata	agai	tggi	tgta
F	L	F	S	E	S	N	L	T	S	Q	E	K	I	Y	K	Q	F	G	G
ttt	.ctc	ttt	agc	gaa	tct	aat	ttg	act	agt	caa	gaga	aaa	ata	tac	aaa	cag	ttt	gga	ggt
K	I	P	K	P	Q	F	M	L	L	M	E	K	V	T	L	D	Y	T	C
aaa	att	cca	aag	cct	caa	ttt	atg	cta	ctt	atg	gaga	aaa	gtg	aca	ttg	gat	tac	act	tgt
L	Y	I	D	N	A	S	Q	T	Q	H	W	T	E	C	V	R	Y	Y	K
ctc	tac	atc	gac	aac	gct	agc	caa	acg	cag	cac	tgga	acc	gaa	tgc	gtt	cga	tat	tac	aag
A	P	M	L	T	N	E	D	V	N	F	G	F	A	D	Y	K	N	S	A
gca		atg	tta	aca	aac	gag	gat	gtc	aat	ttt	ggt	ttt	gca	gat	tat	aaa	aac	ag <u>c</u>	gca
I <u>att</u>	A .gct	V gtt	V gtt	E gaa	- taa		738	3											

Figure S1. Aligned *ATPase* gene sequences of SDDV strains from Thailand (TH, MH152407) and Singapore (SG, KR139659; ORF_035L) showing regions targeted by primers used in the SYBR-Green qPCR assay described here (shaded) and in the semi-nested PCR described in Charoenwai et al. (2019) (underlined).

Figure S2. Optimizing the SYBR Green SDDV qPCR conditions. (a) Conventional gradient PCR over a 55-65°C Ta range using the qSDDV-AF/AR primer pair and SDDV-infected fish DNA (N = no template control), (b) Melt curve analysis of products of qPCR assays using a Ta of either 60 or 63°C and 200 nM each primer showing 2 peaks (left) and assays using a 63°C Ta and 150 nM each primer showing a single specific peak (right).

Figure S3. Data from an alternative SDDV SYBR Green qPCR assay using primers targeting the major capsid protein (*MCP*) gene to confirm positives among overtly-healthy fish DNA samples detected using the *ATPase* gene-specific qPCR. Data are shown for representative fish from Farms 8 to 11. P = SDDV positive fish DNA, N1 = no template control, N2 = SDDV-free fish sample. (a) *MCP* gene qPCR amplification plot, (b) melt peak analysis and (c) amplicon (121 bp) detected by electrophoresis in a 1.5% agarose gel.