Table S1. Relationship of sponge infestation (boreholes cm⁻²) to damage to the internal surface of the left valve. Categories of damage to the internal valve surface were visually assessed as percentage cover of borehole scars in relation to shell size. None: 0%, Minimal: 1-20%, Moderate: 21-50%, High: 51-80%, Extensive: 81-100%. Because 90% of oysters used here (n= 172) only had boreholes on the left (curved) valve and borehole scars only visible on the inner surface of the left valve, additional borehole scars on the inner surface of the right valve were not considered for these categories. Model statistics are from ordinal logistic regression and wald-test.

Independent Variable: Sponge Infestation (boreholes cm ⁻²); Residual deviance:								
309.232, AIC: 319.232								
Comparison: Internal Shell Damage Intensity	Estimate	Std. Error	t	р	p adj.			
None: Minimal	1.745	0.293	5.948	< 0.001	< 0.001			
Minimal: Moderate	4.022	0.474	8.480	< 0.001	< 0.001			
Moderate: High	5.928	0.621	9.540	< 0.001	< 0.001			
High: Extensive	7.555	0.742	10.180	< 0.001	< 0.001			

Figure S1. a) Castrated by *Alcicornis longicornutus*. Hc = Haemocyte, Al = developing *A*. *longicornutus* cercariae within sporocysts. b) Reabsorption of gonad material, note the infiltration of haemocytes into the gonad follicle. Hc = Haemocyte, Fc = Follicle. c) Spawned, with collapsed follicles, note Haemocytes infiltrating Follicles. Hc = Haemocyte, Fc = Follicle. d) Developing (early) Male gonad. Sg = Spermatogonia, Sc = Spermatocytes, Sd = Spermatids. e) Ripe Male gonad. Sg = Spermatogonia, Sc = Spermatocytes, Sd = Spermatids. Sz = Spermatozoa. f) Developing (late) Female gonad. Og = Ovogonia, Oc = Ovocytes. g) Ripe Female gonad. Ov = Ova

Figure S2. Oyster tissue cross section depicting areas selected to calculate Gonad Index. The black line marks the selected cross section area, and the red line marks the selected gonad area.

Figure S3. a) Box plot showing meat quality index in different visual meat quality categories. Bold solid line indicates the median, box shows the interquartile range (IQR), the whiskers are 1.5×IQR; **b)** meat quality index plotted against meat dry weight (g). Colours indicate visual meat quality categories (grey: low quality; bronze: medium quality; gold: good quality). Lines and asterisks indicate significance.

Dependent Variable: Meat Quality Index; Residual deviance: 18.009, df: 391, AIC: -89.56								
Comparison: Visual Quality Categories	Mean Difference	Std. Error	t	padj.				
Low: Medium	0.415	0.035	11.86	< 0.001				
Low: Good	0.698	0.035	20.23	< 0.001				
Medium: Good	0.283	0.023	12.21	< 0.001				

Table S2. Comparison of mean meat quality index in different Visual Quality categories.Model statistics are from general linear model and post-hoc Tukey comparisons.

Table S3. Regression of impact of meat quality index on meat dry weight (g). Model statistics are from general linear model (formula = polynomial).

Dependent Variable: Meat Quality Index									
Independent Variable	F	р	df	Residual df	Residual SE	Multiple R ²	Adjusted R ²		
Meat Dry Weight (g)	85.830	< 0.001	21	190	0.204	0.475	0.469		

Table S4. Regression of impact of sponge infestation (boreholes cm⁻²) on meat quality index. Model statistics are from general linear model.

Dependent Variable: Sponge infestation (boreholes cm ⁻²)										
Independent Variable	F	р	df	Residual df	Residual SE	Multiple R ²	Adjusted R ²			
Meat Quality Index	2.832	0.093	1	392	0.313	0.007	0.005			

Table S5. Regression of impact of sponge infestation (boreholes cm⁻²) on the condition index.Model statistics are from general linear model.

Dependent Variable: Sponge infestation (boreholes cm ⁻²)									
Independent Variable	F	р	df	Residual df	Residual SE	Multiple R ²	Adjusted R ²		
Condition Index	0.023	0.880	1	191	1.065	< 0.001	-0.005		

Table S6. Results from logistic regression testing the effect of Length (mm) on oyster sex (Male/Female) in oysters with sponge infestation and uninfested oysters. Model statistics are from generalised linear model (family = binomial).

Independent Variable: Length (mm), Infestation; Dependent Variable: Sex (Male/Female)								
Residual Deviance: 101.74, Residual df: 117								
Effect	Estimate	Std. Error	Z	р				
Length (mm)	0.103	0.041	2.535	0.011				
Infestation (infested/unifested)	-2.366	4.950	-0.478	0.633				
Length: Infestation (infested/uninfested)	0.041	0.078	0.522	0.602				

Figure S4. a)–b) Density plots illustrating kernel density estimate of the distribution of: **a)** sponge infestation within different sex categories for medium (~50–58 mm) oysters; **b)** sponge infestation within different sex categories for large (>58 mm) oysters; **c)–d)** Dot plots showing the distribution of broad sex categories (M= Male, H = Hermaphrodite, F = Female) in relation to sponge infestation (boreholes cm⁻²) for **c)** medium (~50–58 mm) oysters and **d)** large oysters (>58 mm). Male: >60% male reproductive cells, Hermaphrodite: 60–40% male reproductive cells, Female: >60% female reproductive cells. n₀ = number of uninfested oysters (0 boreholes cm⁻²) per category, n_{tot} = number of oysters in total per category.

Figure S5. a)–b) Density plots illustrating kernel density estimate of the distribution of **a**) shell length (mm) within different sex categories for medium (~50–58 mm) oysters; **b**) shell length (mm) within broad sex categories (M= Male, H = Hermaphrodite, F = Female) for large (>58 mm) oysters. **c)–d)** Dot plots showing the distribution of broad sex categories in relation to shell length (mm) for **c**) medium (~50–58 mm) oysters and **d**) large oysters (>58 mm). Male: >60% male reproductive cells, Hermaphrodite: 60–40% male reproductive cells, Female: >60% female reproductive cells.

Independent	Variable: Sponge Infesta	ation (boreh	oles cm ⁻²); I	Medium	oysters:	Residual		
deviance 120.622, AIC: 128.622; Large oysters: Residual deviance 192.517; AIC: 200.517								
Size	Dependent Variable:	Estimato	C4J E	-	-	nadi		
Category	Broad Sex Categories	Estimate	Stu. Error	Z	р	pauj.		
	Male: Hermaphrodite	0.497	0.250	1.991	0.046	0.138		
Medium	Male: Female	0.294	0.254	1.157	0.247	0.371		
	Hermaphrodite: Female	-0.203	0.237	-0.857	0.392	0.392		
Large	Male: Hermaphrodite	-0.038	0.142	-0.270	0.791	0.857		
	Male: Female	0.030	0.167	0.181	0.857	0.857		
	Hermaphrodite: Female	0.068	0.180	0.376	0.710	0.857		

Table S7. Relationship of sponge infestation to broader sex categories in medium and large oysters. Model statistics are from multinomial logistic regression and wald-test.

Table S8. Relationship of sponge infestation to detailed sex categories in medium and large oysters. Model statistics are from multinomial logistic regression and wald-test.

Independent	Variable:	Sponge	Infestation	(boreholes	cm ⁻²);	Medium:	Residual	deviance
158.938, AIG	C: 174.938	Large: F	Residual dev	iance 278.63	39; AIC	C: 294.639		

Size Category	Dependent Variable:		Std Ennon	-		J:
Size Category	Detailed Sex Categories	Estimate	Stu. Error	Z	p pac	uj.
Medium	Male: Pred. Male	0.496	0.419	1.182	0.2370.5	93
	Male: Equal	0.255	0.309	0.826	0.4090.6	82
	Male: Pred. Female	0.643	0.287	0.954	0.0250.2	50
	Male: Female	0.269	0.282	2.240	0.3400.6	80
	Female: Pred. Male	0.227	0.429	0.528	0.5970.7	46
	Female: Equal	-0.014	0.325	-0.042	0.9660.9	66
	Female: Pred. Female	0.374	0.300	1.250	0.2110.5	93
	Pred. Male: Equal	-0.240	0.448	-0.537	0.5910.7	46
	Pred. Male: Pred. Female	0.148	0.426	-0.528	0.7290.8	10
	Equal: Pred. Female	0.388	0.326	1.192	0.2330.5	93
	Male: Pred. Male	-0.207	0.195	-1.061	0.2890.4	85
	Male: Equal	-0.017	0.164	-0.101	0.9200.92	20
	Male: Pred. Female	-0.286	0.222	-1.285	0.1990.4	85
	Male: Female	0.187	0.216	0.864	0.3880.4	85
Largo	Female: Pred. Male	-0.394	0.256	-1.539	0.1240.4	85
Large	Female: Equal	-0.203	0.231	-0.88	0.3790.4	85
-	Female: Pred. Female	-0.473	0.278	-1.701	0.0890.4	85
	Pred. Male: Equal	0.191	0.211	0.902	0.3670.4	85
	Pred. Male: Pred. Female	-0.078	0.257	-0.305	0.7600.8	45
	Equal: Pred. Female	-0.269	0.237	-1.138	0.2550.4	85

Table S9. Relationship of shell length (mm) to broader sex categories in medium and large oysters. Model statistics are from multinomial logistic regression and wald-test.

independent Variable. Shen Length (init), Medium. Residuar deviance. 120.761, Ale.								
128.781; Large: Residual deviance 192.123, AIC: 200.123								
Size	Dependent Variables:	Estimato	Std Ennon	-		nadi		
Category	Broad Sex Categories	Estimate	Stu. Error	Z	þ	pauj.		
Medium	Male: Hermaphrodite	0.251	0.132	1.905	0.056	0.168		
	Male: Female	0.114	0.111	1.021	0.307	0.461		
	Hermaphrodite: Female	-0.092	0.140	-0.700	0.510	0.510		
Large	Male: Hermaphrodite	0.017	0.038	0.447	0.655	0.751		
	Male: Female	0.032	0.045	0.712	0.476	0.751		
	Hermaphrodite: Female	0.015	0.047	0.317	0.751	0.751		

Independent Variable: Shell Length (mm): Medium: Residual deviance: 120.781 AIC:

Table S10. Relationship of shell length (mm) to detailed sex categories in medium and large oysters. Model statistics are from multinomial logistic regression and wald-test.

	Independent Variable:	Shell Leng	th (mm); Me	dium: Re	esidual o	leviance
	159.548, AIC: 175.548;	Large: Resi	dual deviance	276.407,	AIC:292	2.407
Size	Dependent Variables:	Fstimato	Std Frror	7	n	nadi
Category	Sex Categories	Estimate	Stu. Error	L	h	pauj.
	Male: Pred. Male	0.431	0.322	1.338	0.254	0.710
	Male: Equal	0.168	0.147	1.140	0.181	0.710
	Male: Pred. Female	0.212	0.155	1.368	0.171	0.710
	Male: Female	0.116	0.125	0.925	0.355	0.710
Madium	Female: Pred. Male	0.332	0.337	0.985	0.324	0.710
Medium	Female: Equal	0.064	0.169	0.376	0.707	0.846
	Female: Pred. Female	0.095	0.174	0.546	0.585	0.846
	Pred. Male: Equal	-0.109	0.293	-0.372	0.710	0.846
	Pred. Male: Pred. Female	-0.064	0.296	-0.216	0.830	0.846
	Equal: Pred. Female	0.037	0.192	0.195	0.846	0.846
	Male: Pred. Male	-0.084	0.062	-1.369	0.171	0.357
	Male: Equal	0.028	0.044	0.631	0.528	0.587
	Male: Pred. Female	-0.060	0.062	-0.924	0.336	0.480
	Male: Female	0.070	0.057	-1.241	0.218	0.363
Largo	Female: Pred. Male	-0.155	0.075	-2.064	0.039	0.324
Large	Female: Equal	-0.043	0.059	-0.724	0.469	0.586
	Female: Pred. Female	-0.130	0.075	-1.733	0.083	0.324
	Pred. Male: Equal	0.107	0.064	1.659	0.097	0.324
	Pred. Male: Pred. Female	0.026	0.075	0.343	0.731	0.731
	Equal: Pred. Female	-0.088	0.065	-1.345	0.179	0.357

Figure S6. a)–b) Density plots illustrating kernel density estimate of the distribution of **a**) sponge infestation (boreholes cm⁻²) within different gonad development stages for medium (~50–58 mm) oysters; **b**) sponge infestation (holes cm⁻²) within different gonad development stages for large (>58 mm) oysters. **c)–d)** Dot plots showing the distribution of gonad development stages in relation to sponge infestation (boreholes cm⁻²) for **c**) medium (~50–58 mm) oysters and **d**) large (>58 mm) oysters. n₀ = number of uninfested oysters (0 boreholes cm⁻²) per category, n_{tot} = number of oysters in total per category.

Figure S7. a)-b) Density plots illustrating kernel density estimate of the distribution of a) shell length (mm) within different gonad development stages for medium (~50–58 mm) oysters; b) shell length (mm) within different gonad development stages for large (>58 mm) oysters. c)-d) Dot plots showing the distribution of gonad development stages in relation to shell length (mm) for c) medium (~50–58 mm) oysters and d) large oysters (>58 mm).

Table S11. Relationship of sponge infestation to developmental stages in medium and large oysters. Model statistics are from multinomial logistic regression and wald-test.

Independent	Variable: Sponge Infesta	tion (boreh	oles cm ⁻²); N	fedium o	oyster:	Residual		
deviance: 397.130, AIC: 409.130; Large oysters: Residual deviance: 397.130, AIC: 409.130								
Oyster Size	Dependent Variable:	Fstimata	Std Frror	7	n	nadi		
Category	Gonad Stage	Estimate	Stu. EITU	L	h	pauj.		
Medium	Ripe: Absorption	-0.161	0.385	-0.416	0.677	0.713		
	Ripe: Developing	-0.301	0.199	-1.516	0.130	0.375		
	Ripe: Spawned	-1.400	0.960	-1.457	0.145	0.375		
	Developing: Absorption	0.141	0.382	0.368	0.713	0.713		
	Developing: Spawned	-1.098	0.955	-1.150	0.250	0.375		
	Absorption: Spawned	-1.237	1.011	-1.223	0.221	0.375		
	Ripe: Absorption	-0.132	0.181	-0.730	0.465	0852		
	Ripe: Developing	-0.158	0.132	-1.202	0.229	0.852		
Larga	Ripe: Spawned	0.019	0.227	0.082	0.935	0.935		
Large	Developing: Absorption	0.026	0.188	0.140	0.889	0.935		
	Developing: Spawned	0.177	0.233	0.759	0.448	0.852		
	Absorption: Spawned	0.151	0.264	0.570	0.568	0.852		

Table S12. Relationship of shell length (mm) to gonad developmental stages in medium and large oysters. Model statistics are from multinomial logistic regression and wald-test.

independent variable. Shen Dengan (inin), Wedduni. Residual deviance. 150.914, Mic.									
150.914; Large: Residual deviance: 394.672, AIC: 406.672									
Size	Dependent Variable:	Estima	Std Frror	7	n	nadi			
Category	Gonad Stage	te	Stu. EITOI	L	Р	pauj.			
Medium	Ripe: Absorption	0.096	0.194	-0.496	0.620	0.810			
	Ripe: Developing	-0.205	0.105	-1.939	0.052	0.312			
	Ripe: Spawned	-0.208	0.151	-1.376	0.169	0.507			
	Developing: Absorption	0.104	0.179	0.580	0.562	0.810			
	Developing: Spawned	< 0.001	0.129	0.002	0.998	0.998			
	Absorption: Spawned	-0.086	0.206	-0.419	0.675	0.810			
Large	Ripe: Absorption	-0.022	0.051	-0.437	0.662	0.753			
	Ripe: Developing	-0.036	0.038	-0.952	0.341	0.753			
	Ripe: Spawned	0.025	0.061	0.401	0.689	0.753			
	Developing: Absorption	0.017	0.053	0.315	0.753	0.753			
	Developing: Spawned	0.063	0.063	0.988	0.323	0.753			
	Absorption: Spawned	0.045	0.072	0.625	0.532	0.753			

Independent Variable: Shell Length (mm): Medium: Residual deviance: 138.914. AIC:

Table S13. Regression of impact of sponge infestation (boreholes cm⁻²) on gonad index for developing and ripe oysters. Model statistics are from general linear model.

Dependent Variable: Gonad Index, Independent Variable: Sponge Infestation									
Gonad Stage	F	р	df	Multiple R2	Adjusted R2	Residual SE	Residual df		
Developing	1.762	0.189	1	0.025	0.012	0.062	70		
Ripe	0.008	0.925	11	< 0.001	-0.016	0.063	63		

Table S14. Relationship of sponge infestation to presence and absence (P/A) of differentpathogens and number of pathogen types. Model statistics are from generalised linear models(P/A: family = binomial; Number of pathogen types: family = Poisson). APX = ApicomplexanX, RLO/ELO = Rickettsia-/Endozoicomonas-like organisms, Alcicornis = Alcicornislongicornutus, M. rapuae = Microsporidium rapuae. Bonamia = Bonamia exitiosa.

Independent Variable: Sponge Infestation (boreholes cm ⁻² , Sponge) and Presence of other										
diseases (PO); Dependent Variable: Pathogens P/A. df =195										
Dependent Variable	Effect	Estimate	Std. Error	Z	р	Residual deviance	AIC			
	Sponge	-0.223	0.195	-1.145	0.252	256.67	264.67			
<i>Bonamia</i> P/A	PO	-0.275	0.402	-0.683	0.495	256.67	264.67			
	Sponge: PO	0.0361	0.227	0.159	0.873	256.67	264.67			
	Sponge	0.101	0.128	0.787	0.432	272.8	280.8			
APX P/A	PO	-0.217	0.374	-0.581	0.561	272.8	280.8			
	Sponge: PO	0.028	0.181	0.155	0.876	272.8	280.8			
	Sponge	0.155	0.267	0.582	0.561	148.90	156.9			
Alcicornis	PO	0.587	0.726	0.809	0.419	148.90	156.9			
	Sponge: PO	-0.329	0.317	-1.038	0.299	148.90	156.9			
	Sponge	0.121	0.286	0.420	0.675	132.63	140.63			
М. гариае	PO	-0.665	0.7452	-0.893	0.372	132.63	140.63			
-	Sponge: PO	0.208	0.321	0.647	0.518	132.63	140.63			
RLO/ELO	Sponge	-0.087	0.314	-0.278	0.781	124.10	132.10			
	PO	-0.495	0.678	-0.730	0.465	132.63	140.63			
	Sponge: PO	-0.015	0.367	-0.041	0.968	132.63	140.63			

Table S15. Relationship of sponge infestation to number of pathogen types. Model statistics are from generalised linear models (Number of pathogen types: family = Poisson).

Independent Variable: Sponge Infestation (boreholes cm ⁻² , Sponge) and Presence of other								
diseases (PO); Dependent Variable: Pathogens P/A								
Dependent Variable	Estimate	Std. Error	Z	р	df	Residual deviance	AIC	
Number of pathogen types	РО	0.040	0.028	0.977	197	151.88	524.0 6	

Table S16. Relationship of sponge infestation to presence and absence of any type of pathogen.

Model statistics are fro	m generalised linear model	(family = binomial).
	0	

Independent Variable: Sponge Infestation (boreholes cm ⁻²); Residual deviance: 200.1, AIC: 204.1								
Dependent Presence/Absence	Variable:	Estimate	Std. Error	Z	р	df		
Pathogen Presence		-0.0232	0.1081	-0.215	0.83	199		

Figure S8. a)-e) Density plots illustrating kernel density estimate of the distribution of sponge infestation (holes cm⁻²) in oysters with presence/absence of **a**) Bonamia = *Bonamia exitiosa*, **b**) APX = Apicomplexan X, **c**) Alcicornis = *Alcicornis longicornutus*, **d**) Microsporidium = *Microsporidium rapuae*, **e**) RLO/ELO = Rickettsia-/Endozoicomonas-like organism. **f**) Density plot illustrating the distribution of sponge infestation (holes cm⁻²) in relation to number of different pathogen types detected. 0P = zero pathogens detected, 1P = one type of pathogen detected, 2P = two types of pathogens detected, 3P = three types of pathogens detected, 4P = four types of pathogens detected. Colours indicate type of pathogen present (greywhite = none, petrol = *B. exitiosa*, brown = APX, lightpetrol = *A. longicornutus*, lightbrown = *M. rapuae*, lightblue = RLO/ ELO = Rickketsia-/ Endozoicomonas-like organism).

Figure S9. a)–e) Dot plots showing the distribution of pathogen presence and absence in relation to Sponge Infestation (boreholes cm⁻²) for **a**) Bonamia = *Bonamia exitiosa*, **b**) APX = Apicomplexan X, **c**) Alcicornis = *Alcicornis longicornutus*, **d**) Microsporidium = *Microsporidium rapuae*, **e**) RLO/ELO = Rickettsia-/Endozoicomonas-like organism. **f**) Dot plots showing the distribution number of different pathogen types detected in relation to Sponge Infestation (boreholes cm⁻²). Colours indicate type of pathogen present (greywhite = none, petrol = *B. exitiosa*, brown = APX, lightpetrol = *A. longicornutus*, lightbrown = *M. rapuae*, lightblue = RLO/ ELO = Rickketsia-/ Endozoicomonas-like organism). n₀ = number of uninfested oysters (0 boreholes cm⁻²) per category, n_{tot} = number of oysters in total per category.