Table S1. Grouping table of CCO treated with different glutamine and SHVV. Note: Gln represents glutamine; SHVV represents snakehead vesiculovirus; + represents the component contained in the cell culture medium; - represents a component not contained in the cell culture medium.

|           | CCO cell line |        |        |        |  |
|-----------|---------------|--------|--------|--------|--|
| Treatment | GroupA        | GroupB | GroupC | GroupD |  |
| Gln       | +             | +      | -      | -      |  |
| SHVV      | -             | +      | -      | +      |  |

Table S2. R<sup>2</sup>X(cum) of the Principal Component Analysis (PCA)

| Mixed ion model |             |             |             |             |  |
|-----------------|-------------|-------------|-------------|-------------|--|
|                 | GroupD vs B | GroupB vs A | GroupD vs C | GroupC vs A |  |
| p1              | 0.301       | 0.304       | 0.366       | 0.329       |  |
| p2              | 0.478       | 0.494       | 0.515       | 0.569       |  |
| p3              | 0.616       | 0.627       | 0.623       | 0.668       |  |

Table S3.  $R^2X(cum)$ ,  $R^2Y(cum)$ , and  $Q^2(cum)$  of the orthogonal partial least squarediscriminate analysis model (OPLS-DA)

|             | Mixed ion model |                       |                      |
|-------------|-----------------|-----------------------|----------------------|
|             | $R^2X(cum)$     | R <sup>2</sup> Y(cum) | Q <sup>2</sup> (cum) |
| GroupD vs B | 0.594           | 0.997                 | 0.873                |
| GroupB vs A | 0.589           | 0.985                 | 0.536                |
| GroupD vs C | 0.505           | 0.939                 | 0.609                |
| GroupC vs A | 0.557           | 0.982                 | 0.923                |

Table S4. KEGG enrichment pathway list of group A and group B

| First category | Second category      | Pathway description                   | Pathway_ID | р     |
|----------------|----------------------|---------------------------------------|------------|-------|
| Cellular       | Transport and        | Autophagy - animal                    | map04140   | 0.006 |
| processes      | catabolism           | Autophagy - other                     | map04136   | 0.006 |
| Human          | Cancers: Overview    | Choline metabolism in cancer          | map05231   | 0.014 |
| diseases       | Infectious diseases: | Pathogenic Escherichia coli infection | map05130   | 0.003 |
|                | Bacterial            |                                       |            |       |
| Metabolism     | Lipid metabolism     | Linoleic acid metabolism              | map00591   | 0.025 |
|                |                      | Sphingolipid metabolism               | map00600   | 0.028 |
|                |                      | Ether lipid metabolism                | map00565   | 0.028 |
|                |                      | alpha-Linolenic acid metabolism       | map00592   | 0.035 |
|                |                      | Glycerophospholipid metabolism        | map00564   | 0.004 |
|                |                      | Arachidonic acid metabolism           | map00590   | 0.005 |
|                | Glycan               | Glycosylphosphatidylinositol (GPI)-   | map00563   | 0.006 |
|                | biosynthesis and     | anchor biosynthesis                   |            |       |
|                | metabolism           |                                       |            |       |
| Organismal     | Nervous system       | Retrograde endocannabinoid            | map04723   | 0.001 |
| systems        |                      | signaling                             |            |       |



Figure S1. Orthogonal partial least squares discriminant analysis (OPLS-DA) scores of Group D and Group C, the first predicted principal component resolution of Comp1, and the first orthogonal component resolution of orthogonal comp1 (a). The permutation testing of the OPLS-DA model between Groups D vs. C (b). The variable weight (VIP) value analysis chart of GroupD and GroupC groups only shows the information of the top 30 metabolites (c). Enrichment diagram of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, a differential metabolite in GroupD and GroupC groups (d). Histogram of KEGG functional pathway in GroupD and GroupC groups (e). \* indicates p < 0.05, \*\* indicates p < 0.01, and \*\*\* indicates p < 0.001.



Figure S2. Orthogonal partial least squares discriminant analysis (OPLS-DA) scores of GroupC and GroupA, the first predicted principal component resolution of Comp1 and the first orthogonal component resolution of orthogonal comp1 (a). The permutation testing of the OPLS-DA model between Groups D vs. C (b). The variable weight (VIP) value analysis chart of Group C and Group A shows only the information of the top 30 metabolites (c). Enrichment diagram of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway of differential metabolites in Group C and Group A groups (d). Histogram of KEGG functional pathway of differential metabolite in Group C and Group A (e). \* indicates p < 0.05, \*\* indicates p < 0.01, and \*\*\* indicates p < 0.001.



Figure S3. Under the condition of glutamine deficiency, differential metabolites were identified among Channel catfish (*Parasilurus asotus*) ovary cell line (CCO) cells and matched to pathway in Kyoto Encyclopedia of Genes and Genomes (KEGG) database (a). In the presence of glutamine, differential metabolites were identified among CCO cells and matched to pathway in KEGG database (b). \* indicates p < 0.05, \*\* indicates p < 0.01, and \*\*\* indicates p < 0.001.



Figure S4. The structure formula of metabolites. The PS(16:0/16:0) consisted of two chains of palmitic acid (HMDB, 2005) (a). The PS(18:0/18:1(9Z)) consisted of one chain of stearic acid and one chain of oleic acid (HMDB, 2008) (b). The SM(d18:1/20:0), SM(d18:1/22:1(13Z)), and SM(d18:1/24:1(15Z)) metabolites consisted of sphinganine backbone and arachidonic acid, erucic acid, and nervonic acid chain, respectively (HMDB, 2009a; HMDB, 2009b; HMDB, 2009c) (c-e).

## References

- HMDB. 2005. *Showing metabocard for PS(16:0/16:0) (HMDB0000614)* [Online]. Available: <u>https://hmdb.ca/metabolites/HMDB0000614</u> [Accessed].
- HMDB. 2008. Showing metabocard for PS(18:0/18:1(9Z)) (HMDB0010163) [Online]. Available: https://hmdb.ca/metabolites/HMDB0010163 [Accessed].
- HMDB. 2009a. Showing metabocard for SM(d18:1/20:0) (HMDB0012102) [Online]. Available: https://hmdb.ca/metabolites/HMDB0012102 [Accessed].
- HMDB. 2009b. Showing metabocard for SM(d18:1/22:1(13Z)) (HMDB0012104) [Online]. Available: https://hmdb.ca/metabolites/HMDB0012104 [Accessed].
- HMDB. 2009c. *Showing metabocard for SM(d18:1/24:1) (HMDB0012107)* [Online]. Available: <u>https://hmdb.ca/metabolites/HMDB0012107</u> [Accessed].