


Fig. S1 The study location in (A) the Maldives, (B) Alif Dhaal atoll (centre of the atoll with island position indicated in grey box), on (C) Athuruga Resort Island (3°53'14"N, 72°48'59"E). The island (black) is surrounded by a reef rim (grey) inclosing a lagoon (white); scale bar = 1 km (modified from Dehnert et al. 2022).

Fig. S2 Disease metrics for infected nursery stocks *Acropora* in the lagoon and *Pocillopora* in the reef nursery, over 112 days of monitoring (a) Prevalence, the percentage of infected fragments in the stock (mean ACR: $78.5 \pm 12.6\%$; POC: $2.2 \pm 0.7\%$); (b) Incidence, the rate of new cases per survey (mean ACR: 0.064 ± 0.07 ; POC: 0.007 ± 0.01); (c) Boxplots showing mean disease progression in infected fragments as percent of total fragment tissue, which was significantly higher in *Pocillopora* ($1.28 \pm 1.4\%$ per day) than in *Acropora* ($0.42 \pm 0.8\%$ per day)

Table S1 Table showing disease metrics for *Pocillopora verrucosa* fragments at different rearing depths in a reef and a lagoon mid-water rope nursery after 112 monitoring days. Differences in disease occurrence and mortality between different rearing depths were tested but none of the tests yielded significant results of p < 0.05. Data are means \pm SD where applicable

Nursery	Depth Stock Survival (%)		al (%)	Disease	Prevalence	Incidence	Acute	Chronic	Total infections		
habitat	(m)	size	Start	End	mortality (%)	(%)	rate	cases	cases	Random	Adjacent
Reef	5	112	92.9	89.3	3.9	2.6 ± 0.4	0.006 ± 0.01	2.7 ± 0.5	0	0	6
Reef	10	112	93.8	90.2	3.8	2.9 ± 1.1	0.009 ± 0.01	3.0 ± 1.1	0	0	8
Reef	15	112	99.1	94.6	3.6	1.1 ± 1.1	0.011 ± 0.02	1.2 ± 1.3	0	2	4
Reef	All	336	95.2	91.4	3.8	2.2 ± 0.7	0.007 ± 0.01	6.9 ± 2.1	0	2	18
Lagoon	5	112	99.1	99.1	0.0	0	0.000 ± 0.00	0.0 ± 0.0	0	0	0

LITERATURE CITED

Dehnert I, Saponari L, Isa V, Seveso D, Galli P, Montano S (2022) Exploring the performance of mid-water lagoon nurseries for coral restoration in the Maldives. Restor Ecol 30:e13600 https://doi.org/10.1111/rec.13600