Table S1: Years and locations of samples for each species, with sample sizes (n) for stable isotope (SI) and fatty acid (FA) analyses.

Туре	Common name	Scientific Name	SI n	FA n	Years	Location
	Bearded seal	Erignathus barbatus	8	8	2011	Aappilattoq
			9	11	2012	Ittoqqortoormiit
	Ringed seal	Pusa hispida	2	2	2018	Tasiilaq
Arctic			17	17	2018	Ittoqqortoormiit
	Walrus	Odobenus rosmarus	2	2	2011	Ittoqqortoormiit
	NT 1.1		17	17	2015	Gåsefjord
	Narwhal	Monodon monoceros	2	2	2018	Melville
	TT	D	6	6	2018	Tasiilaq
	Harp seal	Pagophilus groenlandicus	4	5	2015	West Ice
	Hooded seal	Cystophora cristata	4	5	2015	West Ice
	Harbor porpoise	Phocoena phocoena	10	10	2018	Nuuk and Maniitsoq
		T 1 1 11	99	105	2016	Tasiilaq
	White-beaked dolphin	Lagenorhynchus albirostris	0	5	2018	Maniitsoq
	T (* 1 '1 / 1 1		7	9	2016	Sermiligaaq
	Long-finned pilot whale	Globicephala melas	13	7	2018	Tasiilaq
			1	1	2000	Qasigiannguit
			2	3	2013	Maniitsoq
	Minke whale	Balaenoptera acutorostrata	2	2	2017	Tasiilaq
sub-Arctic			1	1	unk	Arsuk
			1	1	unk	unk
			1	1	2010	Nuuk
			2	2	2011	Paamiut
			2	2	2011	Nuuk
			1	1	2011	Ilulissat
			1	1	2012	Ilulissat
	Humpback whale	Megaptera novaeangliae	2	2	2013	Nuuk
			1	1	2013	Qeqertarsuaq
			1	1	2014	Paamiut
			1	1	2015	Nuuk
			1	1	2016	Nuuk
			1	1	unk	Narsaq

Table S2: Adapted from Pedro et al. 2020. Fatty acid biomarkers used to compare feeding patterns and calculate niche breadth and overlap of marine mammals in Greenland. Additional fatty acids that are considered to be primarily derived from diet for marine mammals were also included. (Dalsgaard et al. 2003, Kelly & Scheibling 2012)

Biomarker	Fatty acids
Calanoid copepods	20:1n9, 20:1n11, 22:1n9 and 22:1n11
Diatom dominance	EPA (20:5n3)
Dinoflagellate dominance	18:4n3 DHA (22:6n3)
Terrestrial plants/green algae; terrestrial input into marine sediments	18:3n3 and 18:2n6
Macroalgae (red algae)	EPA 20:4n6 C ₂₀ -PUFAS

Table S3: Stable isotope ratios, percentages of carbon and nitrogen, and carbon:nitrogen ratios in paired non-lipid-extracted (non-LE) and lipid-extracted (LE) marine mammal tissues sampled in Greenland primarily from 2010 to 2018. Muscle was used for all species except harbor porpoise, for which only liver was available. Significant differences in isotope ratios (δ^{13} C, δ^{15} N, δ^{34} S) after lipid extraction are noted with (*) and bolded. All samples were analyzed at the Ecological Tracers Lab at McGill University for both treatments.

Species	tissue	n	treatment	δ ¹³ C	$\delta^{15}N$	δ ³⁴ S	% C	% N	C:N
D 1 . 1			non-LE	-17.94 ± 0.73	13.55 ± 0.54	$17.30~\pm~0.30$	48.35 ± 2.88	13.04 ± 0.85	$3.73~\pm~0.46$
seal	muscle	8	LE	-17.63 ± 0.29	$14.06~\pm~0.41$	16.57 ± 0.28	45.48 ± 1.29	13.71 ± 0.43	$3.32~\pm~0.11$
			Δ after LE	0.31 ± 0.72	$*0.52 \pm 0.18$	$*-0.74 \pm 0.15$	-2.87 ± 2.35	$0.68~\pm~0.92$	-0.41 ± 0.39
			non-LE	-22.38 ± 1.92	13.67 ± 1.15	18.32 ± 0.23	51.93 ± 4.40	11.54 ± 2.01	4.70 ± 1.27
Ringed seal	muscle	11	LE	-21.22 ± 0.97	14.08 ± 1.18	17.47 ± 0.57	$46.40~\pm~0.90$	13.58 ± 0.31	$3.42~\pm~0.14$
			Δ after LE	1.16 ± 1.14	$*0.41 \pm 0.10$	$*-0.85 \pm 0.38$	-5.53 ± 3.79	$2.03~\pm~1.81$	-1.28 ± 1.18
			non-LE	-22.19 ± 1.13	11.50 ± 0.09	17.72 ± 0.01	$49.88~\pm~2.61$	12.35 ± 1.40	$4.08~\pm~0.67$
Walrus	muscle	2	LE	-21.48 ± 0.11	11.87 ± 0.09	17.07 ± 0.18	46.26 ± 0.52	13.66 ± 0.11	$3.38~\pm~0.06$
			Δ after LE	0.71 ± 1.03	$0.37~\pm~0.00$	-0.64 ± 0.18	-3.61 ± 2.09	1.31 ± 1.29	-0.69 ± 0.61
			non-LE	-18.91 ± 0.01	15.37 ± 0.49	18.79 ± 0.78	45.14 ± 1.21	13.96 ± 0.57	$3.23~\pm~0.04$
Narwhal	muscle	2	LE	-19.16 ± 0.37	15.82 ± 0.25	17.26 ± 0.87	44.62 ± 0.11	14.12 ± 0.10	$3.16~\pm~0.03$
			Δ after LE	-0.24 ± 0.36	$0.45~\pm~0.24$	-1.53 ± 0.09	-0.52 ± 1.32	$0.16~\pm~0.47$	-0.07 ± 0.01
			non-LE	-19.67 ± 0.23	$11.99~\pm~0.81$	$17.88~\pm~0.30$	$46.02~\pm~0.43$	13.72 ± 0.06	$3.35~\pm~0.04$
Harp seal	muscle	5	LE	-19.97 ± 0.19	$12.43~\pm~0.86$	$16.89~\pm~0.25$	45.16 ± 0.25	$13.93~\pm~0.10$	$3.24~\pm~0.02$
			Δ after LE	-0.31 ± 0.13	$0.44~\pm~0.12$	$*-0.99 \pm 0.10$	-0.86 ± 0.36	0.21 ± 0.11	-0.11 ± 0.02
TT. J			non-LE	-19.34 ± 0.43	$12.16~\pm~0.68$	18.21 ± 0.18	47.43 ± 1.52	12.91 ± 0.56	$3.68~\pm~0.26$
porpoise	liver	10	LE	-19.27 ± 0.56	$12.28~\pm~0.60$	$17.50~\pm~0.18$	$44.96~\pm~1.13$	$13.80~\pm~0.55$	$3.26~\pm~0.06$
r - r			Δ after LE	$0.07~\pm~0.68$	$0.11~\pm~0.10$	$*-0.72 \pm 0.17$	-2.47 ± 1.67	$0.88~\pm~0.83$	-0.42 ± 0.26
White-			non-LE	-19.75 ± 0.38	$11.52~\pm~0.43$	17.79 ± 0.61	$48.36~\pm~2.33$	13.35 ± 0.71	$3.64~\pm~0.38$
beaked	muscle	99	LE	-19.23 ± 0.20	12.11 ± 0.46	$17.87~\pm~0.48$	44.38 ± 1.01	$13.66~\pm~0.35$	$3.25~\pm~0.04$
dolphin			Δ after LE	$*0.52 \pm 0.43$	$*0.59 \pm 0.18$	$0.08~\pm~0.73$	-3.98 ± 2.69	0.31 ± 0.79	-0.39 ± 0.36
T (* 1			non-LE	-19.60 ± 0.70	$10.98~\pm~0.36$	$18.46~\pm~0.61$	$49.69~\pm~2.08$	12.87 ± 0.77	$3.88~\pm~0.39$
pilot whale	muscle	20	LE	-18.62 ± 0.28	11.53 ± 0.38	17.86 ± 0.25	45.24 ± 0.62	$13.93~\pm~0.16$	$3.25~\pm~0.04$
r			Δ after LE	$*0.98 \pm 0.64$	$*0.55 \pm 0.10$	-0.60 ± 0.79	-4.45 ± 1.92	$1.07~\pm~0.79$	-0.64 ± 0.38
Mala			non-LE	-19.86 ± 0.61	11.24 ± 0.32	$17.20~\pm~0.29$	50.25 ± 3.03	12.59 ± 1.61	$4.04~\pm~0.60$
whale	muscle	4	LE	-19.06 ± 0.46	11.74 ± 0.66	17.60 ± 0.57	43.82 ± 1.53	13.02 ± 1.60	$3.40~\pm~0.42$
			Δ after LE	$0.80~\pm~0.96$	$0.50~\pm~0.42$	$0.40~\pm~0.63$	-6.43 ± 3.18	$0.43~\pm~1.01$	-0.64 ± 0.53
IIh.a.t.			non-LE	-19.09 ± 0.53	12.10 ± 1.27	$1\overline{7.41} \pm 0.40$	$49.02~\pm~2.07$	13.93 ± 0.55	$3.52~\pm~0.20$
Humpback whale	muscle	14	LE	-18.99 ± 0.38	12.44 ± 1.22	$1\overline{7.24} \pm 0.58$	43.38 ± 0.63	13.16 ± 0.41	3.30 ± 0.08
-			Δ after LE	0.10 ± 0.34	0.34 ± 0.52	-0.17 ± 0.51	-5.63 ± 2.27	-0.78 ± 0.68	-0.22 ± 0.15

Table S4: Stable isotope muscle samples used for inter-species comparisons of marine mammals in Greenland. Choices of tissue treatment for each isotope were based on the results of the lipid extraction portion of this study. Whenever possible, lipid-extracted tissue was used for δ^{13} C and non-lipid-extracted tissue was used for δ^{15} N and δ^{34} S. All samples analyzed for δ^{13} C and δ^{15} N at the University of Copenhagen (U. Cop.) were non-lipid extracted, and three minke whale samples were only analyzed for non-lipid-extracted analysis because of very small amounts of tissue. Samples for which non-lipid-extracted tissue was used for δ^{13} C are noted and justified.

S		Tab	Isotopes	Lipid	extrac	ted?	Justification for including non-				
Species	n	Lad	analyzed	δ ¹³ C	$\delta^{15}N$ $\delta^{34}S$		lipid-extracted $\delta^{13}C$				
Bearded seal	8	McGill	CNS	Y	N	Ν					
	11	McGill	CNS	Y	Ν	Ν					
Ringed seal	17	U. Cop	CN	N	Ν		No effect of lipid extraction found on any seal species				
Walrus	2	McGill	CNS	Y	Ν	Ν					
	2	McGill	CNS	Y	Ν	Ν					
Narwhal	17	U. Cop.	CN	Ν	Ν		Very small effect size of lipid extraction seen for narwhal				
	5	McGill	CNS	Y	Ν	Ν					
Harp seal	4	U. Cop.	CN	Ν	Ν		No effect of lipid extraction found on any seal species				
Hooded seal	4	U. Cop.	CN	Ν	Ν		No effect of lipid extraction found on any seal species				
White-beaked dolphin	99	McGill	CNS	Y	Ν	N					
Long-finned pilot whale	20	McGill	CNS	Y	Ν	N					
	4	McGill	CNS	Y	Ν	Ν					
Minke whale	3	McGill	CNS	Ν	Ν	N	No effect of lipid extraction found on minke whale				
Humpback whale	14	McGill	CNS	Y	N	N					

Table S5: Stable isotope ratios of marine mammal species collected around Greenland, primarily from
2010-2018. δ^{15} N and δ^{34} S values were all measured in non-lipid-extracted muscle, while δ^{13} C was
measured in lipid-extracted muscle when possible.

		δ ¹³ C			$\delta^{15}N$			$\delta^{34}S$	
Species	n	mean (‰)	sd (± ‰)	n	mean (‰)	sd (± ‰)	n	mean (‰)	sd (± ‰)
Bearded seal	8	-17.63	0.29	8	13.55	0.54	8	17.30	0.30
Ringed seal	28	-21.27	0.63	28	13.84	0.82	11	18.32	0.23
Walrus	2	-21.48	0.11	2	11.49	0.09	2	17.72	0.01
Narwhal	19	-20.48	0.63	19	14.41	0.55	2	18.79	0.78
Harp seal	9	-20.07	0.28	9	12.62	1.02	5	17.88	0.30
Hooded seal	4	-20.07	1.04	4	13.79	0.72	0		
White-beaked dolphin	99	-19.23	0.20	99	11.52	0.43	99	17.79	0.61
Long-finned pilot whale	20	-18.62	0.28	20	10.98	0.36	20	18.46	0.61
Minke whale	7	-19.28	0.77	7	11.73	0.66	7	17.14	0.23
Humpback whale	14	-18.99	0.38	14	12.10	1.27	14	17.41	0.40

Table S6: Mean proportions of the major fatty acids of dietary origin in the blubber of Arctic and sub-Arctic marine mammal species sampled around Greenland primarily from 2010 to 2018. A one-way MANOVA of these seven fatty acids determined that fatty acid profile varies by species. *Post-hoc* Welch's ANOVAs on each fatty acid determined that all individual fatty acids also varied by species. Within each fatty acid, same letters (a-f) indicate species that did not have significantly different mean proportions of that fatty acid.

Species	18:2n6		18:4n3	3	20:1n1	1	20:1n9		20:5n3		22:1n11		22:6n3		
Bearded seal	$1.29\pm\!\!0.13$	а	1.05 ± 0.21	а	$1.32 \pm \! 0.45$	а	$4.17\pm\!\!2.33$	а	8.64 ± 1.76	a	0.88 ± 0.44	а	9.84	±0.72	ab
Ringed seal	1.39 ± 0.20	b	$2.43 \ {\pm}0.82$	b	1.64 ± 0.54	b	6.37 ± 2.14	b	9.64 ± 1.01	b	1.55 ± 1.14	а	7.98	± 0.91	а
Walrus	1.27 ± 0.31	-	1.48 ± 0.15	-	1.58 ± 0.57	-	5.48 ± 2.55	-	6.13 ± 2.62	-	0.86 ± 0.62	-	6.53	± 1.46	-
Narwhal	$1.13 \ \pm 0.07$	а	$0.52 \ \pm 0.13$	c	$3.62 \pm \! 0.58$	c	8.12 ± 1.47	bc	$2.49 \ \pm 0.80$	c	$4.26 \ \pm 1.44$	b	1.88	± 0.90	с
Harp/ hooded seal	1.53 ±0.23	bc	2.04 ± 0.64	b	2.12 ±0.62	bd	9.36 ±2.45	c	6.44 ±1.90	ad	4.72 ±2.40	b	7.91	±1.50	ab
Harbor porpoise	1.23 ±0.12	а	0.43 ± 0.19	cd	2.81 ±0.64	d	4.64 ±2.32	а	1.97 ± 1.08	ce	3.99 ±2.01	b	2.28	±1.63	cd
White- beaked dolphin	1.74 ±0.13	с	1.47 ±0.27	а	2.91 ±0.43	d	6.24 ±1.13	а	3.08 ±1.45	c	5.58 ±1.33	b	3.71	±1.43	de
Long-finned pilot whale	1.26 ±0.10	а	0.40 ± 0.09	d	6.07 ±1.31	e	8.38 ± 0.90	bc	1.48 ±0.29	e	8.94 ±1.44	с	2.78	±0.48	de
Minke whale	1.26 ± 0.49	abc	1.00 ±0.62	abcd	1.87 ± 1.11	abcd	$\frac{11.5}{2}\pm 6.30$	abc	4.45 ±1.75	d	9.45 ± 5.94	abc	5.66	±3.02	bef
Humpback whale	1.45 ±0.24	bc	1.31 ±0.62	a	2.55 ±1.14	bcd	$9.19 \pm \! 3.36$	bc	5.10 ±1.59	ad	6.22 ±2.99	bc	4.71	±1.27	f

Table S7: Niche breadth of Arctic and sub-Arctic marine mammal species sampled around Greenland primarily from 2010 to 2018 (except one minke whale from 2000 and two humpback whales of unknown year), calculated as probabilistic niche region size (N_R) using stable isotope ratios δ^{13} C, δ^{15} N, and δ^{34} S using the package nicheROVER (Swanson et al. 2015) in R. N_R were calculated with a probability level of 40%, to be roughly comparable to SEA_C.

Species	N _R (SI, CNS)
Bearded seal	0.30
Ringed seal	0.66
Narwhal	NA
Harp/hooded seal	0.10
Harbor porpoise	NA
White-beaked dolphin	0.51
Long-finned pilot whale	0.49
Minke whale	0.58
Humpback whale	1.68

Figure S1: Stable isotope ratio biplots of (a) carbon (δ^{13} C) and sulfur (δ^{34} S) and (b) sulfur (δ^{34} S) and nitrogen (δ^{15} N) in muscle samples of Arctic (filled shapes) and sub-Arctic (open shapes) marine mammal species sampled around Greenland primarily from 2010 to 2018 (except one minke whale from 2000 and two humpback whales of unknown year). Ellipses represent confidence intervals of 0.4 for each species. Harp and hooded seals are grouped based on similar ecology and small sample sizes.

Supplemental works cited

- Dalsgaard J, St. John M, Kattner G, Müller-Navarra D, Hagen W (2003) Fatty acid trophic markers in the pelagic marine environment. Advances in Marine Biology 46:225–340.
- Kelly JR, Scheibling RE (2012) Fatty acids as dietary tracers in benthic food webs. Marine Ecology Progress Series 446:1–22.
- Pedro S, Fisk AT, Ferguson SH, Hussey NE, Kessel ST, McKinney MA (2020) Broad feeding niches of capelin and sand lance may overlap those of polar cod and other native fish in the eastern Canadian Arctic. Polar Biol 43:1707–1724.
- Swanson HK, Lysy M, Power M, Stasko AD, Johnson JD, Reist JD (2015) A new probabilistic method for quantifying n-dimensional ecological niches and niche overlap. Ecology 96:318–324.