Spatial and temporal boundaries to gene flow between *Chaenocephalus aceratus* populations at South Orkney and South Shetlands

Chiara Papetti¹, Emanuele Susana^{1,2}, Tomaso Patarnello^{1,3}, Lorenzo Zane^{1,*}

¹Department of Biology, University of Padova, Via G. Colombo 3, 35121 Padova, Italy ²Centro Analisi Chimiche Srl, Via Avogadro 23, Rubano 35030 (PD), Italy ³Department of Public Health, Comparative Pathology and Veterinary Hygiene, University of Padova, Viale dell'Università 16, Agripolis 35020 Legnaro (PD), Italy

*Corresponding author. Email: lorenz@bio.unipd.it

Marine Ecology Progress Series 376:269-281 (2009)

Appendix 1. Differentiation tests between population samples were performed using CHIFISH ver. 1.3 (Ryman 2006). The software calculates chi-squared tests at each locus, sums the test statistics and their associated degrees of freedom, directly from the genotypic data file, and provides p-values associated with these sums (Ryman 2006). The p-values from Fisher's exact test, estimated using a Markov chain algorithm (Raymond & Rousset 1995), are combined by means of Fisher's method. p-values were obtained by 500 000 iterations (100 batches with 5000 iterations per batch). Ryman & Jorde (2001) noted that the Fisher's approach might in some settings (small contingency tables with few populations and few alleles) result in low statistical power, potentially generating a high type II error rate. The chi-squared test can be a better alternative to Fisher's method, being very powerful even with weak population differentiation (Ryman & Jorde 2001, Waples & Gaggiotti 2006).

Table A1. p-values of population differentiation for and across all loci. Fisher test (p(Fisher)), relative standard errors (SEp), chi-squared (χ^2) and the degrees of freedom (df) values are reported for (a) all populations, (b) EI02 against SS02, (c) EI02 to EI06, (d) EI02 to SO06, (e) EI06 to SS02, (f) EI06 to SO06, (g) SS02 to SO06, (h) EI02+EI06-SO06and (i) EI02+EI06-SS02. Fisher's and chi-squared tests for population differentiation were performed including (Total) and excluding (–noHWE) loci that deviated from Hardy-Weinberg equilibrium

Locus	p(Fisher)	SE(p)	χ^2	df	$p(\chi^2)$			
(a)								
All populations								
Ca21	< 0.00001	0.00000	773.508	276	< 0.00001			
Ca26	0.04239	0.00588	96.1770	81	0.11964			
Ca40	0.02076	0.00388	185.616	144	0.01109			
Ca48	0.21630	0.00800	27.3520	18	0.07263			
Ca55	0.13661	0.00844	99.3550	81	0.08119			
Ca86	0.00239	0.00087	176.633	129	0.00344			
Ca88	0.00024	0.00010	97.7930	54	0.00025			
Cr15	0.26436	0.01071	16.1340	15	0.37319			
Cr127	0.40404	0.00975	26.2630	24	0.33993			
Cr171	< 0.00001	0.00000	377.612	174	< 0.00001			
Cr259	0.03069	0.00437	88.7890	63	0.01786			
Total	< 0.00001		1965.232	1059	< 0.00001			
(–noHWE)	0.00007		539.7070	402	0.00001			

Locus	p(Fisher)	SE(p)	χ^2	df	p(χ ²)
(b) EI02 to SS02					
Ca21	0.10999	0.00657	77.766	59	0.05131
Ca26	0.08361	0.00507	33.013	26	0.16172
Ca40	0.79944	0.00657	32.864	43	0.86854
Ca48	0.33076	0.00393	6.4700	5	0.26313
Ca55	0.12524	0.00485	32.871	26	0.16588
Ca86	0.47545	0.01021	41.111	41	0.46574
Ca88	0.61771	0.00586	15.136	15	0.44169
Cr15	0.18210	0.00369	5.5680	4	0.23379
Cr127	0.89407	0.00253	3.3240	8	0.91245
Cr171	0.03470	0.00343	59.722	44	0.05717
Cr259	0.40691	0.00733	20.795	20	0.40931
Total	0.10040		328.640	291	0.06363
(–noHWE)	0.23417		137.493	125	0.20974
(c) EI02 to EI06					
Ca21	0.39860	0.00578	5.90300	5	0.31581
Ca26	< 0.00001	0.00000	370.525	80	< 0.00001
Ca40	0.78370	0.00584	19.3850	25	0.77832
Ca48	0.07068	0.00381	64.1070	45	0.03202
Ca55	0.09413	0.00232	11.2740	5	0.04621
Ca86	0.28723	0.00667	31.7690	26	0.20086
Ca88	0.16170	0.00710	51.5170	41	0.12570
Cr15	0.00500	0.00075	35.8710	16	0.00302
Cr127	0.43018	0.00618	8.01300	8	0.43218
Cr171	< 0.00001	0.00000	136.633	43	< 0.00001
Cr259	0.54703	0.00759	19.5200	20	0.48826
Total	< 0.00001		754.518	314	< 0.00001
(–noHWE)	0.01968		163.731	126	0.01339
(d)					
Co21	0 72926	0.00276	2 05700	4	0 72522
Ca21	< 0.00001	0.00370	2.03700	4	< 0.72525
Ca40	0.03456	0.00000	39 /050	25	0.03354
Ca48	0.00506	0.00000	74 8240	46	0.00459
Ca55	0.20495	0.00293	5 14900	40	0.27230
Ca86	0.82304	0.00484	20.2210	2.5	0.73514
Ca88	0.00406	0.00071	68,7970	43	0.00749
Cr15	0.00229	0.00041	39.4300	16	0.00094
Cr127	0.14401	0.00402	12.3020	8	0.13823
Cr171	< 0.00001	0.00000	148.182	53	< 0.00001
Cr259	0.00426	0.00115	45.6080	21	0.00144
Total	< 0.00001		797.415	322	< 0.00001
(–noHWE)	0.00050		187.361	125	0.00026
(e)					
E106 to SS02	0.0445	0.000		-	
Ca21	0.01197	0.00066	7.12200	2	0.02841
Ca26	< 0.00001	0.00000	149.132	61	< 0.00001
Ca40	0.33343	0.00645	22.5390	21	0.36906
Ca48	0.43606	0.00758	37.5370	30	0.39857
Cabb	0.70900	0.00193	3.34800	5	0.04058
Ca89	0.02100	0.00102	33.970U	23 25	0.07190
Cr15	0.00073	0.00101	41.0000	20 1 <i>5</i>	0.01942
Cr127	0.00333	0.00047	8 52500	13	0.00012
Cr171	< 0.27201	0.00472	76 8720	7 20	0.20777
Cr259	0.62015	0.00589	16 9300	19	0.59462
Total	< 0.00001	0.00000	430.929	2.54	< 0.00001
(-noHWE)	0.00007		150.458	100	0.00083
, ···-,					

Locus	p(Fisher)	SE(p)	χ^2	df	$p(\chi^2)$		
(f) EI06 to SO06							
Ca21	0.13349	0.00228	3.29400	2	0.19263		
Ca26	0.00074	0.00026	74.2240	53	0.02874		
Ca40	0.09837	0.00370	24.7260	19	0.16976		
Ca48	0.01091	0.00106	58.9560	40	0.02701		
Ca55	0.73757	0.00205	3.51800	5	0.62066		
Ca86	0.02406	0.00170	35.8120	23	0.04311		
Ca88	0.00196	0.00031	42.5340	24	0.01124		
Cr15	0.34117	0.00628	18.4140	17	0.36315		
Cr127	0.09268	0.00278	11.9170	7	0.10333		
Cr171	0.00028	0.00016	78.8260	51	0.00746		
Cr259	0.00611	0.00068	33.7580	20	0.02781		
Total	< 0.00001		385.980	261	< 0.00001		
(–noHWE)	0.00131		140.215	97	0.00272		
(g) SS02 to SO06							
Ca21	0.31714	0.00187	1.17900	1	0.27758		
Ca26	< 0.00001	0.00000	138.425	55	< 0.00001		
Ca40	0.00054	0.00022	39.9830	21	0.00747		
Ca48	0.14905	0.00532	44.3310	37	0.18997		
Ca55	0.90860	0.00128	2.55600	5	0.76804		
Ca86	0.35067	0.00598	24.0680	22	0.34370		
Ca88	0.05656	0.00271	35.9080	26	0.09337		
Cr15	0.00765	0.00068	30.1760	16	0.01711		
Cr127	0.51895	0.00399	5.46200	6	0.48607		
Cr171	< 0.00001	0.00000	81.0060	46	0.00110		
Cr259	0.03119	0.00173	28.4260	19	0.07557		
Total	< 0.00001		431.518	254	< 0.00001		
(–noHWE)	0.00106		139.331	97	0.00316		
(h)							
E102+E106-SC	0.00047	0.00107	10.000	~	0.07051		
Ca21	0.06047	0.00127	10.098	5	0.07251		
Ca26	0.21570	0.00735	53.884	40	0.19826		
Ca40	< 0.00001	0.00000	04.833	33	0.00077		
Ca48	0.00012	0.00009	42.804	19	0.00138		
Cass	0.00368	0.00048	36.098	18	0.00685		
Cabb	0.00001	0.00001	80.303	48	0.0005t		
Ca88	0.0092t	0.00160	1.2410	<u>ک</u>	0.33773		
Cr107	1.00000	0.00112	1.0900	1	0.29030		
Cr12t	1.00000	0.00000	0.2100	4	0.99484		
C1171 Cr250	<0.00036	0.00074	41.005	24 10	0.01400		
CI259 Total	< 0.00001	0.00000	209.937	210	< 0.00001		
(–noHWE)	< 0.00001		229.457	82	< 0.00001		
(i)							
EI02+EI06-SS	502						
Ca21	0.14625	0.00558	13.182	10	0.21368		
Ca26	< 0.00001	0.00000	528.569	168	< 0.00001		
Ca40	0.30591	0.01239	56.649	54	0.37645		
Ca48	0.28172	0.01301	104.323	90	0.14349		
Ca55	0.18510	0.00571	20.252	12	0.06247		
Ca86	0.06375	0.00479	72.041	54	0.05093		
Ca88	0.12781	0.00830	99.818	82	0.08805		
Cr15	0.01345	0.00154	52.507	32	0.01260		
Cr127	0.68351	0.00681	12.575	16	0.70356		
Cr171	< 0.00001	0.00000	212.770	94	< 0.00001		
Cr259	0.53224	0.00987	40.269	40	0.45835		
Total	< 0.00001		1212.954	652	< 0.00001		
(–noHW)	0.11041		153.299	130	0.07961		

LITERATURE CITED

Ryman N (2006) CHIFISH: a computer program testing for genetic heterogeneity at multiple loci using chi-square and Fisher's exact test. Mol Ecol Notes 6:285–287

Ryman N, Jorde PE (2001) Statistical power when testing for

genetic differentiation. Mol Ecol 10:2361-2373

Waples RS, Gaggiotti OE (2006) What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Mol Ecol 15:1419–1439