## Pre- and post-settlement factors controlling spatial variation in recruitment across a cold-seep mussel bed

Shawn M. Arellano<sup>1,2,\*</sup>, Craig M. Young<sup>1</sup>

<sup>1</sup>Oregon Institute of Marine Biology, University of Oregon, PO Box 5389, Charleston, Oregon, 97420, USA

<sup>2</sup>Present address: Department of Biology, Hong Kong University of Science and Technology,

Clear Water Bay, Hong Kong SAR

\*Email: shawnarellano@gmail.com

Marine Ecology Progress Series 414: 131–144

## Supplement 2. Additional data

Fig. S1. 'Bathymodiolus' childressi. Correlation between length and width or height. n = 462

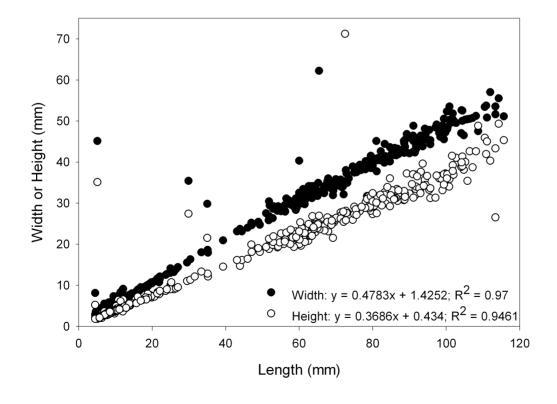



Table S1. 'Bathymodiolus' childressi. Total number of settlers on settlement racks at the inner and outer-seep zones. Expected frequencies are based on a hypothesized 6:1 ratio for the inner to the outer-seep zones.  $G_{adj}$  is Williams' adjusted log likelihood statistic G

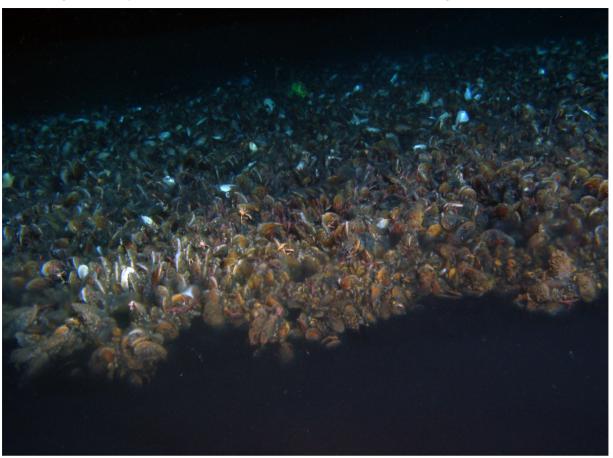
| Zone  | Obs. | Exp. | $G_{adj}$ | p       |
|-------|------|------|-----------|---------|
| Inner | 252  | 325  | 88.44     | < 0.001 |
| Outer | 127  | 54   |           |         |
| Total | 379  | 379  |           |         |

Table S2. 'Bathymodiolus' childressi. Two-factor randomized block ANOVA showing the effect of size (large or small) and state (living mussel or mussel shell) on recruitment density (recruits m<sup>-2</sup>) of 14 d old mussels in the inner-seep zone only. Blocks are the replicate settlement racks

| Source       | df | Type III SS | MS     | F     | p     |
|--------------|----|-------------|--------|-------|-------|
| Size         | 1  | 227.3       | 227.3  | 0.100 | 0.754 |
| State        | 1  | 5433.2      | 5433.2 | 2.390 | 0.131 |
| Size _ State | 1  | 1323.6      | 1323.6 | 0.582 | 0.450 |
| Block        | 12 | 22007.6     | 1834.0 | 0.807 | 0.642 |
| Error        | 36 | 81838.3     | 2273.3 |       |       |

Table S3. 'Bathymodiolus' childressi. Two-factor ANOVA showing the effect of zone (inner-, outer-, or non-seep) and treatment (caged, cage control, and uncaged) on the arcsine transformed survival ratio of juveniles (<15 mm long)

| Source           | df | Type III<br>SS | MS    | F      | p       | 2     |
|------------------|----|----------------|-------|--------|---------|-------|
| Zone             | 2  | 0.005          | 0.002 | 0.028  | 0.972   | 0.002 |
| Treatment        | 2  | 1.798          | 0.899 | 10.374 | < 0.001 | 0.372 |
| Zone _ Treatment | 4  | 0.748          | 0.187 | 2.158  | 0.094   | 0.198 |
| Error            | 35 | 3.032          | 0.087 |        |         |       |


## **Text S1. Predation experiments.**

Shipboard predation experiments were conducted on 2 occasions to obtain direct evidence of predation on 'Bathymodiolus' childressi juveniles by common predators found at the Brine Pool cold seep. In November 2003, the following potential predators were used: unidentified polyclad flatworms, the buccinid snail *Eosipho canetae*, *Rochina crassa* (a large spider crab), and the galatheid crabs Munidopsis sp. Three replicate flatworms were each placed in ~300 ml seawater with 10 small (<5 mm long) mussels, 5 replicate *E. canetae* (each 10 cm long) were each placed in 2 l seawater with 10 small mussels (~10 mm long), 2 replicate *R. crassa* of similar size were each placed in ~35 l seawater with 20 small mussels (~10 mm long), and 3 replicate galatheid crabs of similar size were each placed in ~300 ml of seawater with 10 small mussels (~5 mm long). Each replicate was left undisturbed in a 7–8 °C cold room on the ship for 48 h and then mussels were scored for percent mortality.

In July 2004, 3 more shipboard predation experiments were conducted using Eosipho canetae, the galatheid crabs, and *Sclerasterias tanneri* (a large starfish) as potential predators. Three replicate E. canetae (4–5 cm long) were each placed in 2 l seawater with 5 mussels from 2–3 cm long and 5 mussels less than 1 cm long. Two replicate S. tanneri of equal sizes were each placed in  $\sim$ 35 l seawater with 5 mussels from 2–3 cm long and 5 mussels < 1 cm long. Three replicate galatheid crabs of similar sizes were each placed with 10 juvenile mussels (<5 mm long) in 1 l of seawater. Each replicate was left undisturbed in a 7–8°C cold room on the ship for 10 d. The water was changed in each treatment on Days 4 and 7 and the mussels were scored for percent mortality on Day 10.

There was no evidence of predation on small mussels by polyclad flatworms, *Eosipho canetae*, *Rochina crassa*, or *Sclerasterias tanneri* in shipboard experiments conducted in November 2003 or July 2004. There was some mortality of the juvenile mussels placed with the galatheid crabs (average 16.6%) in November 2003. However, predation on the mussels by the galatheids was not directly observed. In July 2004, 2 juvenile mussels died in 1 replicate and the galatheid crab was observed scavenging on the dead mussels.

Fig. S2. 'Bathymodiolus' childressi mussels cantilevered over the edge of the Brine Pool

