PoCHL P expression pattern in **Posidonia oceanica** is related to critical light conditions

A. Bruno^{1,*}, L. Bruno^{1,*}, A. Chiappetta¹, D. Giannino², M. B. Bitonti^{1,**}

¹Department of Ecology, University of Calabria, 87036 Arcavacata di Rende (CS), Italy ²CNR - Institute of Biology and Agricultural Biotechnology, 00015 Monterotondo Scalo, Rome, Italy

*Both authors contributed equally to this work **Corresponding author. Email: b.bitonti@unical.it

Marine Ecology Progress Series 415: 61-71 (2010)

Supplement 1. Additional data on physical (light and temperature) and biochemical parameters (chlorophyll *a/b* ratios) in the meadows, aquarium and plants

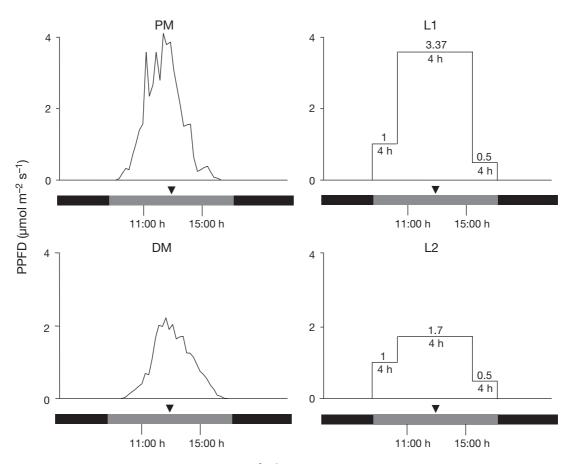


Fig. S1. Photosynthetic photon flux density (PPFD, μ mol m⁻² s⁻¹) values in preserved (PM) and disturbed (DM) *Posidonia oceanica* meadows on the sampling day in June 2005 and in aquaria at L1 = 3.37 ± 0.5 μ mol m⁻² s⁻¹ and L2 = 1.7 ± 0.4 μ mol m⁻² s⁻¹ light conditions. Bar under *x*-axis: Light (gray) and dark (black) periods during the day. Black arrowheads show sampling time of plants in the field sites and in the aquaria

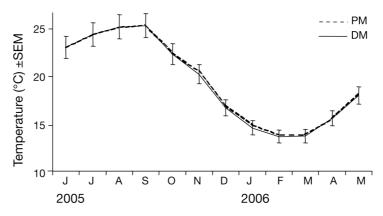


Fig. S2. Monthly average temperatures (°C \pm SEM) evaluated from June 2005 to May 2006 in preserved (PM) and disturbed (DM) Posidonia oceanica meadows

Table S1. Number of days per month in which photosynthetic photon flux density (PPFD) mean values measured at T-I (from 5:00/7:00 - 11:00 h), T-II (11:00 - 15:00 h) and T-III (15:00 - 18:00/20:00 h) day intervals in preserved (PM) and disturbed (DM) Posidonia oceanica meadows were lower than the irradiance compensation mean value (I_c) , higher than the saturating irradiance mean value (I_k) , or ranged between the I_c and I_k estimated for *Posidonia oceanica* by Lee et al. (2007). The value 1 was assigned to days with PPFD means measured at the considered irradiance condition ($\leq I_c$, ranging between \bar{I}_c and \bar{I}_k or $\geq \bar{I}_k$), and the value 0 to the remaining days outside of these conditions. Statistical differences reported for each DM were referred to the corresponding PM period and analyzed using 1-way ANOVA followed by Bonferroni post-hoc test; *p < 0.05, ***p < 0.001

PPFD mean value	Meadow	Jun 05	Jul	Aug	Sept	Oct	Nov	Dec	Jan 06	Feb	Mar	Apr	May	Sum of days
$\leq \bar{I}_{c}^{a}$	PM T-I	6	0	1	1	0	5	17	23	6	15	2	0	76
$\geq \bar{I}_k^b$		0	3	0	1	0	0	0	0	0	0	0	0	4
$\bar{I}_{c} \leq x \leq \bar{I}_{k}$		9	27	30	28	29	24	14	8	22	16	28	16	251
$\leq \bar{I}_{c}^{a}$	PM T-II	5	0	0	0	0	6	11	16	3	7	0	0	48
$\geq \bar{I}_{\mathrm{k}}^{\;\mathrm{b}}$		8	29	24	24	26	18	0	0	2	1	15	16	163
$\bar{I}_{c} \leq x \leq \bar{I}_{k}$		1	1	7	6	3	5	20	15	23	23	15	1	135
$\leq \bar{I}_{\rm c}^{\ a}$	PM T-III	6	0	2	0	1	10	31	29	9	17	2	0	107
$\geq ar{I_k}^b$		1	3	5	0	3	0	0	0	0	0	0	0	12
$\bar{I}_{c} \leq x \leq \bar{I}_{k}$		8	27	24	30	25	19	0	2	19	14	28	16	212
Total PM	$\leq \bar{I}_{\rm c}^{\ a}$													232
Total PM	$\geq \bar{I}_k^{\ b}$													164
Total PM	$\bar{I}_{c} \leq x \leq \bar{I}_{k}$													598
$\leq \bar{I}_{\rm c}^{\ a}$	DM T-I	6	0	0	0	0	11	23	22	28***	27*	30***	16***	163
$\geq ar{I_k}^b$		2	3	5	2	0	0	0	0	0	0	0	0	12
$\bar{I}_{c} \leq x \leq \bar{I}_{k}$		7	27	26	28	29	18	8	9	0***	4***	0***	0***	156
$\leq \bar{I}_{\rm c}^{\ a}$	DM T-II	6	0	0	0	0	8	18	9	19***	23***	30***	17***	130
$\geq ar{I_k}^{\mathrm{b}}$		8	25	29	24	23	13	0	0	0	0	0***	0***	122
$\bar{I}_{c} \leq x \leq \bar{I}_{k}$		1	5	3	6	6	8	13	22	9***	8***	0***	0	81
$\leq \bar{I}_{\rm c}^{\ a}$	DM T-III	6	1	0	1	1	14*	31	31	28***	31***	30***	16***	190
$\geq ar{I_k}^{ m b}$		2	1	1	1	0	0	0	0	0	0	0	0	5
$\bar{I}_{c} \leq x \leq \bar{I}_{k}$		7	28	30	28	28	15	8	0	0***	0***	0***	0***	144
Total DM	$\leq \bar{I}_{\rm c}^{\ a}$													483
Total DM	$\geq \bar{I}_{\mathrm{k}}^{\mathrm{b}}$													139
Total DM	$\bar{I}_c \le x \le \bar{I}_k$													373

 $[\]bar{I}_c = 7.8 \pm 1.8 \ \mu mol \ m^{-2} \ s^{-1}$ $^b\bar{I}_k = 73.3 \pm 16.1 \ \mu mol \ m^{-2} \ s^{-1}$

Table S2. *Posidonia oceanica*. Chlorophyll a/b ratios (\pm SEM) in leaves of plants sampled from preserved (PM) and disturbed meadows (DM) at different periods and from aquaria at L1 and L2 light conditions (see Table S1 for definitions). YL: young leaf, IL: intermediate leaf, AL: adult leaf

Sampling site	Chl <i>a/b</i> ratio								
	YL	IL	AL						
(A) Meadows (Sea)									
June 2005									
PM	1.94 ± 0.03	2.00 ± 0.04	1.96 ± 0.07						
DM	2.06 ± 0.01	2.14 ± 0.06	1.91 ± 0.05						
November 2005									
PM	2.17 ± 0.06	2.09 ± 0.02	2.06 ± 0.05						
DM	2.17 ± 0.05	2.27 ± 0.09	1.87 ± 0.09						
April 2006									
PM	1.93 ± 0.06	1.81 ± 0.10	1.91 ± 0.08						
DM	2.04 ± 0.08	2.15 ± 0.14	1.93 ± 0.05						
(B) Aquaria									
April 2006									
PM-L1	2.12 ± 0.03	2.22 ± 0.07	2.13 ± 0.08						
PM-L2	2.82 ± 0.09	2.25 ± 0.04	2.15 ± 0.06						
DM-L1	2.07 ± 0.06	2.11 ± 0.09	2.24 ± 0.06						
DM-L2	2.11 ± 0.04	2.14 ± 0.08	2.10 ± 0.12						