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Supplement 1. Methodology and supplementary results 

Methodology 

According to the zero-inflated Poisson model (ZIP), bycatch can be modelled through 2 distinct processes, 

i.e. binary and Poisson (Lambert 1992). The ZIP model takes into account 2 different groups: (1) an out-

of-risk group of shearwaters not attending vessels for which the probability of capture is always zero and 

(2) a risk group of shearwaters attending vessels for which the probability of capture could be equal to or 

different from zero, following a Poisson distribution. Both the probability of being at risk and the 

probability of being entangled in a longline are allowed to depend on covariates through the canonical 

link. The corresponding equations used to fit the models are shown in the main paper. We used the Stata 

software to fit the Generalized Linear Models (GLM) and the R package glmmADMB to fit all 

Generalized Linear Mixed Models (GLMMs). 

The corrected Akaike’s information criteria (AICc) was used as a model selection criterion (Burnham & 

Anderson 2004) since the maximum number of estimable parameters K was large relative to sample size n 

(n/K = 29.6). The model with the lowest AICc was considered to be the best compromise between model 

deviance and model complexity (i.e. the number of model parameters). However, absolute AICc values are 

only useful for model ranking and the relevant parameter for model selection becomes the amount of 

Kullback-Leibler information loss ( i) (Burnham & Anderson 2004): 

i =AICc i – AICc min 
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where AIC c min is the minimum AICc value among all models considered. The lower the i, the better the 

fit of the model (Burnham & Anderson 2004). 

The likelihood )|L( datagi of model gi, given the data, can be calculated as exp (– i /2), for i=1, 2,..., R 

for each of the R models in the subset (Burnham & Anderson 2004). The likelihood of each individual 

model was compared to the total sum of the likelihood of all models to calculate Akaike weights wi, 

defined as: 
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where wi is the probability that model i is the best model for the data (Burnham & Anderson 2002, 2004). 

Akaike weights wi are scaled to sum 1. 

Fig. S1. Histogram of Akaike weights for the ZIP models fitted in an 

                                                  exploratory analysis 
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Number of hooks as a predictor variable 

 

Number of per set hooks is extensively used as a measure of fishing effort in the bycatch literature (Belda 

& Sánchez 2001, Bugoni et al. 2008b) and it was initially included as one more predictor variable in the 

ZIP models, the results of which are shown in Table S1. The linear predictor coefficient for this variable is 

zero. The same result is obtained whenever the number of hooks per set is included as an additional 

variable. The AICc value when the number of hooks is included as an additional variable is similar to 

those obtained for the selected models in the main paper (AICc = 195, K = 9). Even though number of 

hooks has been considered as a bycatch predictor (Bugoni et al. 2008a, Dietrich et al. 2009), we found that 

this variable did not affect bycatch in our case. However, setting duration should be correlated with the 

number of hooks and, therefore, bycatch is expected to change with this quantity; hence, the number of 

hooks was included as an offset variable in the model (forcing hooks predictor coefficient to be 1). Those 

results are given in the main paper. 

 

Table S1. Linear predictor coefficients when number of hooks is included as an additional variable in the 

models. Analyses were performed using the Stata software 

 

Coefficient (±SE) 
Variables 

0i for Binary 1i for Poisson 

Day –0.8 ± 1.6 –1.5 ± 0.7 

Night 4.6 ± 2.8 1.4 ± 0.7 

Trawling 

allowance 
–4.1 ± 2.7 –2.2 ± 0.6 

Incubation 3.7 ± 1.5  

Chick-rearing 0.8 ± 0.9  

Hooks 0.0001 ± 0.0008 –0.00008 ± 0.0004 

Constant ( 1) –0.3 ± 1.1 0.5 ± 0.5 
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Table S2. Calonectris diomedea. Shearwater bycatch per unit effort (BPUE), number of shearwaters 

                                      attending vessels and other relevant quantities per year 

Year Attending Dead Alive Bycatch Hooks 

BPUE 

(bycatch/hooks) Attending/hooks Number_settings 

1998 249 12 0 12 18950 0.0006332 0.01314 26 

1999 83 1 0 1 32086 0.0000312 0.00259 78 

2000 52 2 0 2 15600 0.0001282 0.00333 21 

2001 44 2 0 2 28096 0.0000712 0.00157 18 

2003 348 3 4 7 6550 0.0010687 0.05313 16 

2004 302 10 0 10 64176 0.0001558 0.00471 86 

2005 10 0 0 0 2242 0.0000000 0.00446 8 

Year as a random variable 

Given that our sampling effort has been very unbalanced with respect to year (Table S2), we introduced 

year as a random variable. Table S3 shows that when year is included as a random variable, AICcs are 

considerably higher than those corresponding to the set of models selected (Table 3 in the main paper). 

Also, some unidentifiable parameters arise in 2005 (see Table S4), presumably due to the small sampling 

effort during that year (Table 1 in the main paper,  Table S2). 

However, the obtained coefficients (see Table S4) are in agreement with the ones presented in the main 

paper, e.g. setting time and moratorium. We can therefore conclude that the effect of setting time and 

trawling moratorium is robust when introducing year random effects, which is not the case for the 

coefficients corresponding to different breeding periods (Table S4). Therefore, given that the AICc values 

increase when year is included as a random variable and that there are some unidentified coefficients (see 

year 2005 in Table S4) we didn’t present these models in the main text. These analyses were performed 

using the R package glmmADMB. In the main text, we present the most parsimonious models that do not 

take into account year as a random variable. 

 

Table S3. Corrected Akaike’s information criteria values (AICc) for the models when 

hooks are introduced as a variable and year is introduced as an offset. Explanatory 

variables are: TR: trawling activity, FT: fishing time, BS: breeding stage, HS: number 

of hooks per set. K: number of parameters. Analyses were performed using R package 

                                 glmmADMB and the function glmm.admb 

Model K AICc 

ZIP(FT,TR,BS,random year) 20 199.8 

ZIP(FT,TR,BS,HS,random year) 21 249.8 
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Table S4. Calonectris diomedea. Coefficients for models listed in Table S3. The first column 

corresponds to the model without year as a random variable and is reported here as a reference for 

comparison. Explanatory variables are: TR: trawling regime, FT: fishing time, BS: breeding stage, HS: 

              number of hooks per set. Analyses were performed using R package glmmADMB 

Coefficient (±SE) 

 for Binary and Poisson 

Variables 

ZIP 

(FT,TR,BS,HS) 

ZIP 

(FT,TR,BS,random 

year) 

ZIP 

(FT,TR,BS,HS,random 

year) 

Day –1.1 ± 0.6 –1.0 ± 0.6 –1.1 ± 0.6 

Night –0.3 ± 0.5 –0.2 ± 0.5 –0.6 ± 0.5 

Trawling allowance –1.2 ± 0.5 –1.6 ± 0.5 –1.1 ± 0.5 

Incubation –0.17 ± 0.8 0.4 ± 1 –0.5 ± 0.8 

Chick-rearing –0.16 ± 0.8 –0.1 ± 0.8 –1.4 ± 0.9 

Hooks 0.00004 ± 0.0004  0.0007 ± 0.0003 

1999  –5 ± 1 –3.4 ± 0.9 

2000  –2.2 ± 0.8 –1.9 ± 0.9 

2001  –2.8 ± 0.9 –2.0 ± 0.8 

2003  –0.03 ± 0.9 –1.2 ± 0.9 

2004  –1.6 ± 0.6 –2.0 ± 0.6 

2005  –43 ± 352570 –18 ± 3066 

Constant ( 1) 1.09 ± 1.04 3 ± 1 3.6 ± 1 

 

Attendance and bycatch 

Even though we observed a strong positive linear correlation between bycatch and birds attending vessels 

(Pearson correlation = 0.6; 95% confidence interval: 0.49 to 0.66), we can not establish a simple linear 

relationship between bycatch and number of birds attending vessels, given the high dispersion in the data 

(Fig. S2). According to Fig. S2, bycatch could be maximum for an intermediate level of attendance, 

presumably due to overlapping in the competition for resources when density of birds attending vessels is 

very high or simply because of the lack of consideration of other species that might also be competing 

with shearwaters. Moreover, it has been reported elsewhere that Cory’s shearwater abundance behind 

trawlers is not a good indicator of their discard consumption rate in the western Mediterranean (Martínez-

Abraín et al. 2002). 
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Fig. S2. Calonectris diomedea. Birds attending 

vessels per set as a function of the number of captures 

     per set. The black line corresponds to a linear fit 

 

Instead of explicitly including the number of birds attending vessels into the model, we implicitly included 

this quantity through the ZIP model, assuming that the probability of presence/absence of birds in the 

region of bycatch is linearly related with our explanatory variables, e.g. trawling moratoria, breeding-stage 

and fishing time. In this way, we avoid the use of the high dispersion data shown in Fig. S2 by using more 

accurate data like breeding stage, fishing time and trawling moratoria periods. 

It is well known that some of these factors affect the number of birds attending vessels. For instance, the 

frequency of foraging trips could increase during the chick-rearing period (Weimerskirch & Lys 2000). 

The number of birds attending vessels increases during sunrise (Belda & Sánchez 2001), presumably due 

to the higher need for food after night fasting. Recent studies indicate that seabird activity increases during 

sunrise and sunset (Péron et al. 2010). Also, changes in seabird foraging behaviour seem to be related to 

fishing activities (Bartumeus et al. 2010), the time distribution as well as the length of foraging trips being 

affected by trawling moratoria in the north-western Mediterranean. We therefore hypothesise that birds 

could be attracted by longlines in the absence of trawlers (i.e. during trawling moratoria, including 

weekends and calendar holidays), increasing the probability of attending vessels during this period. 

In the following, we checked for a possible linear relationship between the probability of attendance and 

the mentioned set of explanatory variables. According to Eq. (1a) in the main paper, (1 – ) is the 

probability of presence of seabirds in the region of bycatch. A plot of (1 – ) versus number of birds 

attending vessels is presented in Fig. S3. If we fit a linear model between these quantities we obtain: 
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Coefficients 

lm(formula = Observed attendance ~ (1 – ) – 1) 

Estimate Std. Error t value Pr(>|t|) 

100.89 32.72 3.084 0.00673 ** 

which clearly reflects that the modelled probability can be interpreted as the probability of birds attending 

vessels and can be modelled as a linear function of the explanatory variables, i.e. trawling moratoria, 

breeding-stage and fishing time. The fit was done using R package Stats (Fig. S3). 

Fig. S3. Calonectris diomedea. Probability of seabirds 

attending vessels vs. observed attendance per set. The 

                 black line corresponds to a linear fit 

 

Interaction terms 

Given our relatively small sample size and the important unbalanced sampling effort in our dataset, we did 

not consider interaction terms. 

However to our knowledge, trawling moratoria do not interact with breeding stage. 

Breeding stage and fishing time occur at different temporal scales and therefore an interaction would be 

unfeasible in this case. 

Finally, given that trawling is not performed at night we could expect some degree of interaction between 

trawling moratoria and setting time. However due to the unbalanced sampling effort, we couldn’t test this 

interaction, better observer programmes would be essential to test it. 
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Ranking variable importance 

We calculated the relative importance (in %) for each variable included within the best subset of models 

by summing up the rescaled Akaike weights for all models containing that variable (McAlpine et al. 

2008). Overall, the relative importance of individual variables was: fishing time > trawling regime > 

breeding stage. 

Fig. S4. Ranking of explanatory variables included in best subset of models by 

sum of Akaike weights ( wi) for ZIP model. Explanatory variables are: TR: 

                     trawling activity, FT: fishing time, BS: breeding stage 
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